Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification
Abstract
:1. Introduction
- (1)
- We proposed a novel algorithm TransEEGNet to improve EEGNet with self-attention mechanism for MI-BCI classification task, through measuring the intensity of attention between different nodes, which can yield decoding accuracy and computing efficiency comparing with existing solutions.
- (2)
- We applied hybrid particle swarm optimization in classification method, which allows optimization of the key parameters of extraction and classification process, in order to improve the classification efficiency of the optimized model.
- (3)
- A VAT-EEGNet method was proposed to build smooth regularization constraints of TransEEGNet, which avoids the overfitting problem caused by the limited sample datasets, and improves the robustness of the model against random and local perturbations.
- (4)
- We also evaluate our methods on a Competition dataset of BCI, and the results verify the effectiveness of our proposed approach.
2. Related Work
3. Methods
3.1. Preprocessing
3.2. TransEEGNet
3.3. Optimization
Algorithm 1 Hybrid PSO-Adam-EEGNet method (PAE) |
Require: Population size , generation , exponential decay rates for moment estimates,
and in [0,1), small constant used for numerical stabilization, Input: Initialize the particles randomly until the total number of particles reach , ← Empty, 0 Initial parameters Initialize 1st and 2nd moment variables = 0, = 0 Initialize time step = 0 while stopping criterion not met, do while do for particle in do ← Position update of using standard PSO operation. fitness ← Compute the fitness for through the TransEEGNet Fitness update of by fitness if fitness > fitness of the personal best then Update the personal best of p with the p; end if end for ← + 1; end while Post process it by sending it to the TransEEGNet. do . (operations applied element-wise) end while |
3.4. VAT-TransEEGNet
4. Experiments and Results
4.1. A. Study Design
4.1.1. Dataset
4.1.2. Model Parameter
4.1.3. Compared Methods
- FBCSP [12]: FBCSP was used as the baseline method. CSP was used for feature extraction with one-vs-rest (OVR) strategy, and the support vector machine was used for inter-subject classification.
- DeepConvNet [24]: DeepConvNet is a general-purpose architecture that consists of five convolutional layers. We trained this model in the same way we train the TransEEGNet model.
- ShallowConvNet [24]: ShallowConvNet was designed as a lightweight CNN with a temporal and spatial convolutional layer. Our implementation was performed according to Schirrmeister et al.
- MCNN [51]: MCNN uses a multilayer perceptron and autoencoders for fusing the CNN model to improve EEG decoding performance. The experiment parameters were adjusted according to the origin study.
4.2. Experiment Results
4.2.1. Comparison Experiments
4.2.2. Ablation Study
- (a)
- we removed the transformer block from the VAT-TransEEGNet module;
- (b)
- we removed the PSO-Adam-EEGNet method from the VAT-TransEEGNet module;
- (c)
- we removed the VAT process from the VAT-TransEEGNet module;
4.2.3. Algorithm Performance
4.2.4. Interpretability and Visualization
5. Discussion
5.1. Framework Analysis
5.2. The Influence of Different Number of Attention Heads on Model Results
5.3. The Influence of Hyper-Parameter of VAT-EEGNet
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arpaia, P.; Esposito, A.; Natalizio, A.; Parvis, M. How to successfully classify EEG in motor imagery BCI: A metrological analysis of the state of the art. J. Neural Eng. 2022, 19, 031002. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.D. Algorithms, Humans, and Interactions; Routledge: New York, NY, USA, 2023. [Google Scholar]
- Niso, G.; Romero, E.; Moreau, J.T.; Araujo, A.; Krol, L.R. Wireless EEG: A survey of systems and studies. Neuroimage 2023, 269, 119774. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, M.; Evers, S.; Wolf, M.; Rupp, R.; Schwarz, A. Decoding reach and attempted grasp actions from EEG of persons with Spinal Cord Injury. In Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic, 9–12 October 2022; pp. 1624–1629. [Google Scholar] [CrossRef]
- Kim, K.-T.; Suk, H.-I.; Lee, S.-W. Commanding a Brain-Controlled Wheelchair Using Steady-State Somatosensory Evoked Potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 26, 654–665. [Google Scholar] [CrossRef] [PubMed]
- Muellerputz, G.; Daly, I.; Kaiser, V. Motor imagery induced EEG patterns in spinal cord injury patients and their impact on brain-computer interface accuracy. J. Neural Eng. 2014, 11, 035011. [Google Scholar] [CrossRef]
- Palumbo, A.; Gramigna, V.; Calabrese, B.; Ielpo, N. Motor-Imagery EEG-Based BCIs in Wheelchair Movement and Control: A Systematic Literature Review. Sensors 2021, 21, 6285. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Brunner, C.; Schlögl, A.; da Silva, F.L. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 2006, 31, 153–159. [Google Scholar] [CrossRef]
- Grazia, A.; Wimmer, M.; Müller-Putz, G.R.; Wriessnegger, S.C. Neural Suppression Elicited During Motor Imagery Following the Observation of Biological Motion from Point-Light Walker Stimuli. Front. Hum. Neurosci. 2022, 15. [Google Scholar] [CrossRef]
- Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S.U.; Altuwaijri, G.A.; Abdul, W.; Bencherif, M.A.; Faisal, M. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Comput. Appl. 2021, 1–42. [Google Scholar] [CrossRef]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef]
- Kai, K.A.; Zhang, Y.C.; Zhang, H.; Guan, C. Filter bank common spatial pattern (FBCSP) in brain-computer interface. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; IEEE: New York, NY, USA, 2008. [Google Scholar]
- Keng, A.K.; Yang, C.Z.; Chuanchu, W.; Cuntai, G.; Haihong, Z. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 2012, 6, 39. [Google Scholar]
- Quadrianto, N.; Cuntai, G.; Dat, T.H.; Xue, P. Sub-band Common Spatial Pattern (SBCSP) for Brain-Computer Interface. International IEEE/EMBS Conference on Neural Engineering. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–7 May 2007; IEEE: New York, NY, USA, 2007. [Google Scholar]
- Jin, J.; Miao, Y.; Daly, I.; Zuo, C.; Hu, D.; Cichocki, A. Correlation-based channel selection and regularized feature optimization for MI-based BCI. Neural Netw. 2019, 118, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, T.; Panigrahi, B.K.; Anand, S. A comparative study of wavelet families for EEG signal classification. Neurocomputing 2011, 74, 3051–3057. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Mamun, K.; Tsunoda, T. A Deep Learning Approach for Motor Imagery EEG Signal Classification. In Proceedings of the 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, Fiji, 10–12 December 2016; pp. 34–39. [Google Scholar] [CrossRef]
- Lotte, F.; Congedo, M.; Lécuyer, A.; Lamarche, F.; Arnaldi, B. A review of classification algorithms for EEG-based brain–computer interfaces. J. Neural Eng. 2007, 4, R1–R13. [Google Scholar] [CrossRef]
- Yannick, R.; Hubert, B.; Isabela, A.; Alexandre, G.; Falk, T.H.; Jocelyn, F. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar]
- Yang, Y.; Chevallier, S.; Wiart, J.; Bloch, I. Time-frequency selection in two bipolar channels for improving the classification of motor imagery EEG. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 2744–2747. [Google Scholar] [CrossRef]
- Dai, G.; Zhou, J.; Huang, J.; Wang, N. HS-CNN: A CNN with hybrid convolution scale for EEG motor imagery classification. J. Neural Eng. 2020, 17, 016025. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-T.; Chuang, C.-H.; Hung, Y.-C.; Fang, C.-N.; Wu, D.; Wang, Y.-K. A Driving Performance Forecasting System Based on Brain Dynamic State Analysis Using 4-D Convolutional Neural Networks. IEEE Trans. Cybern. 2021, 51, 4959–4967. [Google Scholar] [CrossRef] [PubMed]
- Schirrmeister, R.; Gemein, L.; Eggensperger, K.; Hutter, F.; Ball, T. Deep learning with convolutional neural networks for decoding and visualization of EEG pathology. In Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 2 December 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Sakhavi, S.; Guan, C.; Yan, S. Learning Temporal Information for Brain-Computer Interface Using Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5619–5629. [Google Scholar] [CrossRef]
- Fahimi, F.; Zhang, Z.; Goh, W.B.; Lee, T.-S.; Ang, K.K.; Guan, C. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. J. Neural Eng. 2019, 16, 026007. [Google Scholar] [CrossRef]
- He, J.; Zhao, L.; Yang, H.; Zhang, M.; Li, W. HSI-BERT: Hyperspectral image classification using the bidirectional encoder representation from transformers. IEEE Trans. Geosci. Remote Sens. 2019, 58, 165–178. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, W.; Cui, Z.; Zong, Y.; Li, Y. Spatial–Temporal Recurrent Neural Network for Emotion Recognition. IEEE Trans. Cybern. 2017, 49, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Li, S.; Wang, S.; Liu, Q.; Zhou, L. CostNet: A Concise Overpass Spatiotemporal Network for Predictive Learning. ISPRS Int. J. Geo. Inf. 2020, 9, 209. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Ping, W.; Jiang, A.; Liu, X.; Jing, S.; Li, Z. LSTM-based EEG classification in motor imagery tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 2086–2095. [Google Scholar]
- Tsiouris, K.M.; Pezoulas, V.C.; Zervakis, M.; Konitsiotis, S.; Koutsouris, D.D.; Fotiadis, D.I. A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput. Biol. Med. 2018, 99, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Gulcehre, C.; Cho, K.H.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Garcia-Moreno, F.M.; Bermudez-Edo, M.; Rodriguez-Fortiz, M.J.; Garrido, J.L. A CNN-LSTM Deep Learning Classifier for Motor Imagery EEG Detection Using a Low-invasive and Low-Cost BCI Headband. In Proceedings of the 2020 16th International Conference on Intelligent Environments (IE), Madrid, Spain, 20–23 July 2020; pp. 84–91. [Google Scholar] [CrossRef]
- Luo, T.-J.; Zhou, C.-L.; Chao, F. Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinform. 2018, 19, 344. [Google Scholar] [CrossRef]
- Lindsay, G.W. Attention in psychology, neuroscience, and machine learning. Front. Comput. Neurosci. 2020, 14, 29. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov, A.; Zagoruyko, S. End-to-End Object Detection with Transformers. In Computer Vision—ECCV 2020; Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Houlsby, N. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Srinivas, A.; Lin, T.-Y.; Parmar, N.; Shlens, J.; Abbeel, P.; Vaswani, A. Bottleneck Transformers for Visual Recognition. 2021, pp. 16519–16529. Available online: http://arxiv.org/abs/2101.11605 (accessed on 3 September 2021).
- Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 568–578. [Google Scholar] [CrossRef]
- Miyato, T.; Maeda, S.I.; Koyama, M.; Nakae, K.; Ishii, S. Distributional smoothing with virtual adversarial training. Computer Science. arXiv 2015, arXiv:1507.00677. [Google Scholar]
- Miyato, T.; Maeda, S.-I.; Koyama, M.; Ishii, S. Virtual Adversarial Training: A Regularization Method for Supervised and Semi-Supervised Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 1979–1993. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-international Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: New York, NY, USA, 1995. [Google Scholar]
- Wu, D.; Xu, J.; Zhao, H.; Song, Y. A novel gate resource allocation method using improved PSO-based QEA. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1737–1745. [Google Scholar]
- Dos, S.; Paulo, P.J. Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Comput. Surv. 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. JMLR Org. 2015, 37, 448–456. [Google Scholar]
- Tangermann, M.; Müller, K.-R.; Aertsen, A.; Birbaumer, N.; Braun, C.; Brunner, C.; Leeb, R.; Mehring, C.; Miller, K.J.; Müller-Putz, G.R.; et al. Review of the BCI Competition IV. Front. Neurosci. 2012, 6, 55. [Google Scholar] [CrossRef]
- Chen, J.; Wang, D.; Yi, W.; Xu, M.; Tan, X. Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding. J. Neural Eng. 2023, 20, 026001. [Google Scholar] [CrossRef]
- Borra, D.; Fantozzi, S.; Magosso, E. Interpretable and lightweight convolutional neural network for EEG decoding: Application to movement execution and imagination. Neural Netw. 2020, 129, 55–74. [Google Scholar] [CrossRef]
- Amin, S.U.; Alsulaiman, M.; Muhammad, G.; Mekhtiche, M.A.; Hossain, M.S. Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion. Futur. Gener. Comput. Syst. 2019, 101, 542–554. [Google Scholar] [CrossRef]
- Laurens, V.D.M.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Method | FBCSP (%) | DeepConvNet (%) | EEGNet (%) | ShallowConvNet (%) | MCNN (%) | Proposed (%) |
---|---|---|---|---|---|---|
Subject 1 | 47.95 | 46.88 | 54.06 | 57.26 | 61.84 | 61.61 |
Subject 2 | 25.03 | 31.14 | 42.34 | 26.32 | 42.60 | 59.12 |
Subject 3 | 39.44 | 40.76 | 55.02 | 66.45 | 62.75 | 64.35 |
Subject 4 | 39.73 | 33.54 | 45.88 | 45.60 | 53.22 | 62.36 |
Subject 5 | 27.56 | 41.02 | 51.70 | 33.02 | 50.15 | 67.35 |
Subject 6 | 29.86 | 35.81 | 48.12 | 34.97 | 36.98 | 63.02 |
Subject 7 | 26.97 | 43.12 | 59.95 | 41.26 | 62.80 | 65.62 |
Subject 8 | 47.15 | 45.97 | 60.26 | 60.78 | 58.92 | 63.67 |
Subject 9 | 37.12 | 52.65 | 46.55 | 60.05 | 69.26 | 64.97 |
Average | 35.65 | 41.21 | 51.54 | 47.30 | 55.39 | 63.56 |
Std | 10.04 | 13.26 | 12.24 | 12.82 | 11.27 | 11.54 |
Category | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Specificity (%) |
---|---|---|---|---|---|
0 | 79.86 | 55.98 | 90.97 | 69.31 | 76.16 |
1 | 92.71 | 86.43 | 84.03 | 85.21 | 95.60 |
2 | 80.72 | 59.32 | 72.92 | 65.42 | 83.33 |
3 | 78.99 | 86.96 | 16.67 | 28.40 | 97.31 |
Numbers of Heads | Average Accuracy(%) |
---|---|
1 | 62.65 |
4 | 62.97 |
6 | 63.48 |
8 | 63.56 |
16 | 62.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Wang, D.; Chen, J.; Xu, M. Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification. Bioengineering 2023, 10, 609. https://doi.org/10.3390/bioengineering10050609
Tan X, Wang D, Chen J, Xu M. Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification. Bioengineering. 2023; 10(5):609. https://doi.org/10.3390/bioengineering10050609
Chicago/Turabian StyleTan, Xiyue, Dan Wang, Jiaming Chen, and Meng Xu. 2023. "Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification" Bioengineering 10, no. 5: 609. https://doi.org/10.3390/bioengineering10050609
APA StyleTan, X., Wang, D., Chen, J., & Xu, M. (2023). Transformer-Based Network with Optimization for Cross-Subject Motor Imagery Identification. Bioengineering, 10(5), 609. https://doi.org/10.3390/bioengineering10050609