Estimating the Standing Long Jump Length from Smartphone Inertial Sensors through Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Data Processing
2.3. Feature Selection
2.4. Model Creation and Evaluation
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sgrò, F.; Mango, P.; Pignato, S.; Schembri, R.; Licari, D.; Lipoma, M. Assessing Standing Long Jump Developmental Levels Using an Inertial Measurement Unit. Percept. Mot. Ski. 2017, 124, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Akay, M.F.; Özçiloğlu, M.M.; Bahar, A. Development of Standing Long Jump Distance Prediction Models Using Generalized Regression Neural Network. ICOLES 2018, 6, 28. [Google Scholar]
- Castro-Piñero, J.; Ortega, F.B.; Artero, E.G.; Girela-Rejón, M.J.; Mora, J.; Sjöström, M.; Ruiz, J.R. Assessing Muscular Strength in Youth: Usefulness of Standing Long Jump as a General Index of Muscular Fitness. J. Strength Cond. Res. 2010, 24, 1810–1817. [Google Scholar] [CrossRef]
- Hudgins, B.; Scharfenberg, J.; Triplett, N.T.; McBride, J.M. Relationship Between Jumping Ability and Running Performance in Events of Varying Distance. J. Strength Cond. Res. 2013, 27, 563–567. [Google Scholar] [CrossRef]
- Wiklander, J.; Lysholm, J. Simple Tests for Surveying Muscle Strength and Muscle Stiffness in Sportsmen. Int. J. Sport Med. 1987, 8, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Vincent, L.M.; Blissmer, B.J.; Hatfield, D.L. National Scouting Combine Scores as Performance Predictors in the National Football League. J. Strength Cond. Res. 2019, 33, 104–111. [Google Scholar] [CrossRef]
- Agar-Newman, D.J.; Klimstra, M.D. Efficacy of Horizontal Jumping Tasks as a Method for Talent Identification of Female Rugby Players. J. Strength Cond. Res. 2015, 29, 737–743. [Google Scholar] [CrossRef]
- Beato, M.; Bigby, A.E.J.; De Keijzer, K.L.; Nakamura, F.Y.; Coratella, G.; McErlain-Naylor, S.A. Post-Activation Potentiation Effect of Eccentric Overload and Traditional Weightlifting Exercise on Jumping and Sprinting Performance in Male Athletes. PLoS ONE 2019, 14, e0222466. [Google Scholar] [CrossRef]
- Zerf, M.; Kerroum, M.A.; Bouabdellah, S.B.A. Relationship between Power Strength and Anaerobic Power Index as a Clear Picture of the Effect of Strength Training among Young Soccer Elite Players. Cлoбoжaнськuй Hayкoвo-Cnopmuвнuй Bісник 2019, 2, 80–85. [Google Scholar] [CrossRef]
- Almuzaini, K.S.; Fleck, S.J. Modification of the Standing Long Jump Test Enhances Ability to Predict Anaerobic Performance. J. Strength Cond. Res. 2008, 22, 1265–1272. [Google Scholar] [CrossRef]
- Mann, J.B.; Bird, M.; Signorile, J.F.; Brechue, W.F.; Mayhew, J.L. Prediction of Anaerobic Power From Standing Long Jump in NCAA Division IA Football Players. J. Strength Cond. Res. 2021; publish ahead of print. [Google Scholar] [CrossRef]
- Brumitt, J.; Heiderscheit, B.C.; Manske, R.C.; Niemuth, P.E.; Mitchell, J.; Rauh, M.J. Lower Extremity Functional Tests and Risk of Injury in Division Iii Collegiate Athletes. Int. J. Sport Phys. Ther. 2013, 8, 216–227. [Google Scholar]
- Konz, S.M. Vertical Jump and Standing Long Jump Power to Determine Lower Extremity Imbalance and Injury Risk: 2638 Board #161 June 3, 11. Med. Sci. Sport Exerc. 2016, 48, 735–736. [Google Scholar] [CrossRef]
- Mackala, K.; Stodółka, J.; Siemienski, A.; Ćoh, M. Biomechanical Analysis of Standing Long Jump From Varying Starting Positions. J. Strength Cond. Res. 2013, 27, 2674–2684. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.F.W.; Porter, J.M.; Brown, L.E. Effect of Attentional Focus Strategies on Peak Force and Performance in the Standing Long Jump. J. Strength Cond. Res. 2012, 26, 1226–1231. [Google Scholar] [CrossRef] [PubMed]
- Harry, J.R.; Krzyszkowski, J.; Chowning, L.D.; Kipp, K. Phase-Specific Force and Time Predictors of Standing Long Jump Distance. J. Appl. Biomech. 2021, 37, 400–407. [Google Scholar] [CrossRef]
- Szerdiová, L.; Simšik, D.; Dolná, Z. Assessment of Kinematics of Sportsmen Performing Standing Long Jump in 2 Different Dynamical Conditions. Metrol. Meas. Syst. 2012, 19, 85–94. [Google Scholar] [CrossRef]
- Hickox, L.J.; Ashby, B.M.; Alderink, G.J. Exploration of the Validity of the Two-Dimensional Sagittal Plane Assumption in Modeling the Standing Long Jump. J. Biomech. 2016, 49, 1085–1093. [Google Scholar] [CrossRef]
- Ibata, Y.; Kitamura, S.; Motoi, K.; Sagawa, K. Measurement of Three-Dimensional Posture and Trajectory of Lower Body during Standing Long Jumping Utilizing Body-Mounted Sensors. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 4891–4894. [Google Scholar]
- Ashby, B.M.; Delp, S.L. Optimal Control Simulations Reveal Mechanisms by Which Arm Movement Improves Standing Long Jump Performance. J. Biomech. 2006, 39, 1726–1734. [Google Scholar] [CrossRef] [PubMed]
- Ashby, B.M.; Heegaard, J.H. Role of Arm Motion in the Standing Long Jump. J. Biomech. 2002, 35, 1631–1637. [Google Scholar] [CrossRef]
- Jacob, A.; Wan Zakaria, W.N.; Md Tomari, M.R.B. Implementation of IMU Sensor for Elbow Movement Measurement of Badminton Players. In Proceedings of the 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), Ipoh, Malaysia, 25–27 September 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Hughes, G.T.G.; Camomilla, V.; Vanwanseele, B.; Harrison, A.J.; Fong, D.T.P.; Bradshaw, E.J. Novel Technology in Sports Biomechanics: Some Words of Caution. Sport Biomech. 2021, 1–9. [Google Scholar] [CrossRef]
- Rantalainen, T.; Finni, T.; Walker, S. Jump Height from Inertial Recordings: A Tutorial for a Sports Scientist. Scand. J. Med. Sci. Sport 2020, 30, 38–45. [Google Scholar] [CrossRef]
- Picerno, P.; Camomilla, V.; Capranica, L. Countermovement Jump Performance Assessment Using a Wearable 3D Inertial Measurement Unit. J. Sport Sci. 2011, 29, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Cust, E.E.; Sweeting, A.J.; Ball, K.; Robertson, S. Machine and Deep Learning for Sport-Specific Movement Recognition: A Systematic Review of Model Development and Performance. J. Sport Sci. 2019, 37, 568–600. [Google Scholar] [CrossRef] [PubMed]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-Field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef]
- Dorschky, E.; Camomilla, V.; Davis, J.; Federolf, P.; Reenalda, J.; Koelewijn, A.D. Perspective on “in the Wild” Movement Analysis Using Machine Learning. Hum. Mov. Sci. 2023, 87, 103042. [Google Scholar] [CrossRef]
- Mascia, G.; De Lazzari, B.; Camomilla, V. Machine Learning Aided Jump Height Estimate Democratization through Smartphone Measures. Front. Sport Act. Living 2023, 5, 27. [Google Scholar] [CrossRef]
- Mascia, G.; Camomilla, V. An Automated Method for the Estimate of Vertical Jump Power through Inertial Measurement Units. ISBS Proc. Arch. 2021, 39, 288. [Google Scholar]
- White, M.G.; Bezodis, N.E.; Neville, J.; Summers, H.; Rees, P. Determining Jumping Performance from a Single Body-Worn Accelerometer Using Machine Learning. PLoS ONE 2022, 17, e0263846. [Google Scholar] [CrossRef]
- Karvekar, S.; Abdollahi, M.; Rashedi, E. Smartphone-Based Human Fatigue Level Detection Using Machine Learning Approaches. Ergonomics 2021, 64, 600–612. [Google Scholar] [CrossRef]
- Staacks, S.; Hütz, S.; Heinke, H.; Stampfer, C. Advanced Tools for Smartphone-Based Experiments: Phyphox. Phys. Educ. 2018, 53, 045009. [Google Scholar] [CrossRef]
- Bergamini, E.; Ligorio, G.; Summa, A.; Vannozzi, G.; Cappozzo, A.; Sabatini, A. Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks. Sensors 2014, 14, 18625–18649. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Lake, J.P.; Suchomel, T.J. Vertical Jump Testing. In Performance Assessment in Strength and Conditioning; Comfort, P., Jones, P.A., McMahon, J.J., Eds.; Routledge: Oxfordshire, UK, 2018. [Google Scholar]
- Owen, N.J.; Watkins, J.; Kilduff, L.P.; Bevan, H.R.; Bennett, M.A. Development of a Criterion Method to Determine Peak Mechanical Power Output in a Countermovement Jump. J. Strength Cond. Res. 2014, 28, 1552–1558. [Google Scholar] [CrossRef]
- Dowling, J.J.; Vamos, L. Identification of Kinetic and Temporal Factors Related to Vertical Jump Performance. J. Appl. Biomech. 1993, 9, 95–110. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine Learning in Human Movement Biomechanics: Best Practices, Common Pitfalls, and New Opportunities. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. arXiv 2012, arXiv:1206.2944. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Fisher, A.; Rudin, C.; Dominici, F. All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously. J. Mach. Learn. Res. 2018, 20, 1–81. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation Importance: A Corrected Feature Importance Measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistics Notes: Measurement Error Proportional to the Mean. BMJ 1996, 313, 106. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman Analysis. Biochem. Med. 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.G. A New Measure of Rank Correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Hay, J.G. Citius, Altius, Longius (Faster, Higher, Longer): The Biomechanics of Jumping for Distance. J. Biomech. 1993, 26, 7–21. [Google Scholar] [CrossRef]
- Dobbs, C.W.; Gill, N.D.; Smart, D.J.; McGuigan, M.R. Relationship Between Vertical and Horizontal Jump Variables and Muscular Performance in Athletes. J. Strength Cond. Res. 2015, 29, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.L.; Bahamonde, R. Power Output Estimate in University Athletes. J. Strength Cond. Res. 1996, 10, 161. [Google Scholar]
- Sayers, S.P.; Harackiewicz, D.V.; Harman, E.A.; Frykman, P.N.; Rosenstein, M.T. Cross-Validation of Three Jump Power Equations. Med. Sci. Sport Exerc. 1999, 31, 572–577. [Google Scholar] [CrossRef]
ID | Feature | Measurement Unit | Description | |
---|---|---|---|---|
Anthro | hanthro | Stature of the participant | m | - |
wanthro | Body mass of the participant | kg | - | |
yanthro | Age of the participant | y | - | |
Ballistic | α | Velocity angle at take off | deg | |
bjump | Ballistic SLJ length | m | ||
hjump | Ballistic SLJ height | m | ||
tflight | Ballistic time of flight | s | ||
Biomechanical | A V | Unweighting phase duration | s | [t0, tUB] |
b * | Minimum acceleration | m/s2 | aV(taV_min) | |
C * | Time from minimum to maximum acceleration | s | [ta*_min, ta*_max] | |
Δa * | Range between min-to-max acceleration in the time between t0 and tTO | m/s2 | ||
Δv * | Range between min-to-max acceleration in the time between t0 and tTO | m/s | ||
D * | Main positive impulse time | s | Time duration of positive acceleration in a* signal in the time interval [t0, tTO] | |
e * | Maximum acceleration | m/s2 | aV(taV_max) | |
F * | Time from acceleration positive peak to the take off | s | [ta*_min, tTO] | |
GV | Ground contact duration | s | [t0, tTO] | |
H * | Time from minimum acceleration to the end of the eccentric braking phase | s | [tUL, tBP] | |
Maximum positive slope of aV | m/s2 | [t0, tBP] | ||
J * | Time from the negative peak velocity to the end of the eccentric braking phase | s | [tv*_min, tBP] | |
k * | Acceleration at the end of the eccentric breaking phase | m/s2 | a*(tBP) | |
l * | Negative peak power | W/kg | P(tP*_max) | |
LAP | Power peaks delta time found in the range [t0 ÷ tTO] | s | [tPAP_min, tPAP_max] | |
M * | Positive power duration in the V component | s | - | |
n * | Positive peak power | W/kg | P(tP*_min) | |
Biomechanical | O * | Time distance between positive peak power and take-off | s | [tP*_max, tTO] |
p * | Mean slope between acceleration peaks | a.u. | ||
q * | Shape factor | a.u. | Ratio between the area under the curve from tUB to the last positive sample prior tTO (lasting D*) and the one of a rectangle of sides D* and e* | |
QV | Time duration between the eccentric braking phase and the take off | s | [tBP, tTO] | |
r * | Impulse ratio | a.u. | ||
RAP | Entire positive power duration in the AP component | s | - | |
u * | Mean concentric power | W/kg | Average value of P*(t), [tBP, tTO] | |
ν * | Minimum negative velocity | m/s | v*(tv*_min) | |
W * | Power peaks delta time | s | [tP*_min, tP_max] | |
z * | Mean eccentric power | W/kg | Average value of P*(t), [t0, tBP] | |
Time-frequency | f1 * | High central frequency | Hz | Highest VMD central frequency, associated with wobbling and noise |
f2 * | Middle central frequency | Hz | Middle VMD central frequency, associated with wobbling tissues | |
f3 * | Low central frequency | Hz | Lower VMD central frequency, associated with the jump proper |
Model | Hyperparameter | Hyperparameter Options/Ranges |
---|---|---|
Linear regression (LR) | - | - |
Stepwise regression (SR) | - | - |
SVMs | Function | Gaussian, Quadratic, Cubic, Linear |
Epsilon | [3.15 × 10−4, 31.50] | |
Box Constraint | [10−3, 103] | |
Kernel Scale | [10−3, 103] | |
Ensemble | Function | Bag, LSBoost |
Minimum leaf size | [1, 114] | |
Number of learners | [10, 500] | |
Number of predictors to sample | [1, 11] | |
GPR | Function | Rational Quadratic, Exponential, Matern 5/2, Matern 3/2, Squared Exponential |
Sigma | [10−4, 3.05] | |
Basis Function | Constant, Zero, Linear | |
NNs | Function | Sigmoid, Tanh, ReLu, None |
Number of connected layers | [1, 3] | |
Layer size | [1, 300] | |
Lambda | [4.36 × 10−8, 4.36 × 102] |
Model | Function | Optimized Hyperparameters | RMSE [m] | MSE [m2] | MAE [m] | R2 |
---|---|---|---|---|---|---|
LR | - | 0.18–0.17 | 0.03–0.03 | 0.14–0.14 | 0.67–0.63 | |
SR | - | 0.19–0.17 | 0.04–0.03 | 0.15–0.14 | 0.60–0.62 | |
SVMs | Gaussian * | Box Constraint: 0.7205 Epsilon: 0.07 | 0.18–0.18 | 0.03–0.03 | 0.14–0.14 | 0.66–0.59 |
Ensemble | - | Learners: 70 Minimum leaf size: 1 Predictors to sample: 11 Method: Bag | 0.16–0.15 | 0.03–0.02 | 0.13–0.12 | 0.73–0.72 |
GPR | Rational Quadratic * | Sigma: 1.949 × 10−4 Basis Function: Linear | 0.11–0.12 | 0.01–0.02 | 0.08–0.09 | 0.88–0.81 |
NNs | Sigmoid § | Fully connected layers: 1 Lambda: 0.0116 Layer size: 1 | 0.17–0.17 | 0.03–0.03 | 0.14–0.14 | 0.68–0.64 |
Parameter | LR | SR | SVMs | Ensemble | GPR | NNs |
---|---|---|---|---|---|---|
Accuracy [m] | 0.17 | 0.17 | 0.18 | 0.15 | 0.12 | 0.17 |
Precision [m] | 0.17 | 0.17 | 0.18 | 0.15 | 0.12 | 0.17 |
Bias [m] | −0.01 | −0.03 | −0.04 | −0.02 | 0.01 | −0.01 |
CIBIAS (95%) [m] | [−0.06, 0.03] | [−0.07, 0.02] | [−0.07, 0.02] | [−0.06, 0.02] | [−0.02, 0.04] | [−0.06, 0.03] |
UL [m] | 0.32 | 0.31 | 0.31 | 0.027 | 0.25 | 0.32 |
CIUL (95%) [m] | [0.25, 0.40] | [0.23, 0.39] | [0.23, 0.38] | [0.19, 0.33] | [0.19, 0.31] | [0.24, 0.39] |
LL [m] | −0.35 | −0.36 | −0.36 | −0.31 | −0.23 | −0.34 |
CILL (95%) [m] | [−0.43, −0.27] | [−0.44, −0.28] | [−0.43, −0.23] | [−0.38, −0.24] | [−0.29, −0.17] | [−0.42, −0.26] |
Kendall’s τ | 0.06 | 0.021 | 0.02 | 0.08 | 0.06 | 0.06 |
Samples (n) | 57 | 57 | 57 | 57 | 57 | 57 |
t-value | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 |
SEBIAS (s/√n) | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Lazzari, B.; Mascia, G.; Vannozzi, G.; Camomilla, V. Estimating the Standing Long Jump Length from Smartphone Inertial Sensors through Machine Learning Algorithms. Bioengineering 2023, 10, 546. https://doi.org/10.3390/bioengineering10050546
De Lazzari B, Mascia G, Vannozzi G, Camomilla V. Estimating the Standing Long Jump Length from Smartphone Inertial Sensors through Machine Learning Algorithms. Bioengineering. 2023; 10(5):546. https://doi.org/10.3390/bioengineering10050546
Chicago/Turabian StyleDe Lazzari, Beatrice, Guido Mascia, Giuseppe Vannozzi, and Valentina Camomilla. 2023. "Estimating the Standing Long Jump Length from Smartphone Inertial Sensors through Machine Learning Algorithms" Bioengineering 10, no. 5: 546. https://doi.org/10.3390/bioengineering10050546
APA StyleDe Lazzari, B., Mascia, G., Vannozzi, G., & Camomilla, V. (2023). Estimating the Standing Long Jump Length from Smartphone Inertial Sensors through Machine Learning Algorithms. Bioengineering, 10(5), 546. https://doi.org/10.3390/bioengineering10050546