Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dynamic Light Scattering (DLS) and Zeta Potential Measurements
2.2. Agarose Gel Electrophoresis
2.3. Two-Dimensional Fluorescence Difference Spectroscopy (2-D FDS)
3. Results and Discussion
3.1. Zeta Potential and Particle Size Changes as Cas9 and COR Interact with Copper Nanoparticles
3.2. Degradation of COR upon Cas9 Binding Possibly Enhanced by CuNPs and poly I:C
3.3. Shifts in the Fluorescence Spectra from Two-Dimensional Fluorescence Difference Spectroscopy (2-D FDS)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CDC. “Coronavirus Disease 2019 (COVID-19),” Centers for Disease Control and Prevention. 11 February 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html (accessed on 31 January 2023).
- Singh, H.; Dahiya, N.; Yadav, M.; Sehrawat, N. Emergence of SARS-CoV-2 New Variants and Their Clinical Significance. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 7336309. [Google Scholar] [CrossRef] [PubMed]
- CDC. “Understanding How COVID-19 Vaccines Work,” Centers for Disease Control and Prevention. 3 February 2023. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/how-they-work.html (accessed on 23 February 2023).
- Huber, H.F.; Jaberi-Douraki, M.; DeVader, S.; Aparicio-Lopez, C.; Nava-Chavez, J.; Xu, X.; Gedara, N.I.M.; Gaudreault, N.N.; Delong, R.K. Targeting SARS-CoV-2 Variants with Nucleic Acid Therapeutic Nanoparticle Conjugates. Pharmaceuticals 2021, 14, 1012. [Google Scholar] [CrossRef]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef] [PubMed]
- Ishino, Y.; Krupovic, M.; Forterre, P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J. Bacteriol. 2018, 200, e00580-17. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Koonin, E.V. Annotation and Classification of CRISPR-Cas Systems. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1311, pp. 47–75. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- CRISPR-Cas9 | New Tool for Genome Editing | by Jennifer Doudna—Summary—Genetics—Crispr Cas9 a New Tool for Genome Editing. Available online: https://explorebiology.org/summary/genetics/crispr-cas9-a-new-tool-for-genome-editing (accessed on 18 November 2022).
- Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.M.; Wolf, Y.I.; Yakunin, A.F.; et al. Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Genet. 2011, 9, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.; Edraki, A.; Lee, J.; Sontheimer, E.J. Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS Chem. Biol. 2017, 13, 357–365. [Google Scholar] [CrossRef]
- Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011, 39, 9275–9282. [Google Scholar] [CrossRef]
- O’connell, M.R.; Oakes, B.L.; Sternberg, S.H.; East-Seletsky, A.; Kaplan, M.; Doudna, J.A. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 2014, 516, 263–266. [Google Scholar] [CrossRef]
- Strutt, S.C.; Torrez, R.M.; Kaya, E.; Negrete, O.A.; Doudna, J.A. RNA-dependent RNA targeting by CRISPR-Cas9. eLife 2018, 7, e32724. [Google Scholar] [CrossRef]
- Hale, C.R.; Zhao, P.; Olson, S.; Duff, M.O.; Graveley, B.R.; Wells, L.; Terns, R.M.; Terns, M.P. RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell 2009, 139, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Techakriengkrai, N.; Nedumpun, T.; Suradhat, S. Abrogation of PRRSV infectivity by CRISPR-Cas13b-mediated viral RNA cleavage in mammalian cells. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Glass, Z.; Lee, M.; Li, Y.; Xu, Q. Engineering the Delivery System for CRISPR-Based Genome Editing. Trends Biotechnol. 2018, 36, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front. Genet. 2021, 12, 673286. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef]
- Thomas, S.E.; Comer, J.; Kim, M.J.; Marroquin, S.; Murthy, V.; Ramani, M.; Hopke, T.G.; McCall, J.; Choi, S.-O.; DeLong, R.K. Comparative functional dynamics studies on the enzyme nano-bio interface. Int. J. Nanomed. 2018, 13, 4523–4536. [Google Scholar] [CrossRef] [PubMed]
- DeLong, R.K.; Huber, H.; Aparicio-Lopez, C.; Bhatti, A.; Swanson, R.; Shrestha, T.B.; Gaudreault, N.N. Enzyme Nanoscale Interactions with Manganese Zinc Sulfide Give Insight into Potential Antiviral Mechanisms and SARS-CoV-2 Inhibition. ACS Pharmacol. Transl. Sci. 2022, 5, 449–457. [Google Scholar] [CrossRef]
- Alavi, M.; Rai, M. Antisense RNA, the modified CRISPR-Cas9, and metal/metal oxide nanoparticles to inactivate pathogenic bacteria. Cell. Mol. Biomed. Rep. 2021, 1, 52–59. [Google Scholar] [CrossRef]
- Sharmin, S.; Rahaman, M.; Sarkar, C.; Atolani, O.; Islam, M.T.; Adeyemi, O.S. Nanoparticles as antimicrobial and antiviral agents: A literature-based perspective study. Heliyon 2021, 7, e06456. [Google Scholar] [CrossRef]
- Alavi, M.; Kamarasu, P.; McClements, D.J.; Moore, M.D. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv. Colloid Interface Sci. 2022, 306, 102726. [Google Scholar] [CrossRef]
- Govind, V.; Bharadwaj, S.; Ganesh, M.R.S.; Vishnu, J.; Shankar, K.V.; Shankar, B.; Rajesh, R. Antiviral properties of copper and its alloys to inactivate COVID-19 virus: A review. Biometals 2021, 34, 1217–1235. [Google Scholar] [CrossRef] [PubMed]
- Merkl, P.; Long, S.; McInerney, G.M.; Sotiriou, G.A. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials 2021, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Purniawan, A.; Lusida, M.I.; Pujiyanto, R.W.; Nastri, A.M.; Permanasari, A.A.; Harsono, A.A.H.; Oktavia, N.H.; Wicaksono, S.T.; Dewantari, J.R.; Prasetya, R.R.; et al. Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Sci. Rep. 2022, 12, 4835. [Google Scholar] [CrossRef]
- Zhou, Z.-X.; Zhang, B.-C.; Sun, L. Poly(I:C) Induces Antiviral Immune Responses in Japanese Flounder (Paralichthys olivaceus) That Require TLR3 and MDA5 and Is Negatively Regulated by Myd88. PLoS ONE 2014, 9, e112918. [Google Scholar] [CrossRef] [PubMed]
- Bao, M.; Hofsink, N.; Plösch, T. LPS versus Poly I:C model: Comparison of long-term effects of bacterial and viral maternal immune activation on the offspring. Am. J. Physiol. Integr. Comp. Physiol. 2022, 322, R99–R111. [Google Scholar] [CrossRef]
- Palchetti, S.; Starace, D.; De Cesaris, P.; Filippini, A.; Ziparo, E.; Riccioli, A. Transfected Poly(I:C) Activates Different dsRNA Receptors, Leading to Apoptosis or Immunoadjuvant Response in Androgen-independent Prostate Cancer Cells. J. Biol. Chem. 2015, 290, 5470–5483. [Google Scholar] [CrossRef]
- Ramani, M.; Mudge, M.C.; Morris, R.T.; Zhang, Y.; Warcholek, S.A.; Hurst, M.N.; Riviere, J.E.; DeLong, R.K. Zinc Oxide Nanoparticle–Poly I:C RNA Complexes: Implication as Therapeutics against Experimental Melanoma. Mol. Pharm. 2017, 14, 614–625. [Google Scholar] [CrossRef]
- Hemmerich, P.H.; von Mikecz, A.H. Defining the Subcellular Interface of Nanoparticles by Live-Cell Imaging. PLoS ONE 2013, 8, e62018. [Google Scholar] [CrossRef]
- Clogston, J.D.; Patri, A.K. Zeta potential measurement. Methods Mol. Biol. 2011, 697, 63–70. [Google Scholar] [CrossRef]
- Mathew, E.N.; Hurst, M.N.; Wang, B.; Murthy, V.; Zhang, Y.; DeLong, R.K. Interaction of Ras Binding Domain (RBD) by chemotherapeutic zinc oxide nanoparticles: Progress towards RAS pathway protein interference. PLoS ONE 2020, 15, e0243802. [Google Scholar] [CrossRef]
- Pons, T.; Uyeda, H.T.; Medintz, I.L.; Mattoussi, H. Hydrodynamic Dimensions, Electrophoretic Mobility, and Stability of Hydrophilic Quantum Dots. J. Phys. Chem. B 2006, 110, 20308–20316. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Tyner, K.M.; Dair, B.J.; Deschamps, J.R.; Medintz, I.L. Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal. Chem. 2011, 83, 4453–4488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shen, J.; Li, D.; Cheng, Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021, 11, 614–648. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Front. Chem. 2018, 6, 237. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef]
- Mudalige, T.; Qu, H.; Van Haute, D.; Ansar, S.M.; Paredes, A.; Ingle, T. Chapter 11—Characterization of Nanomaterials: Tools and Challenges. In Nanomaterials for Food Applications; Rubio, A.L., Rovira, M.J.F., Sanz, M.M., Gómez-Mascaraque, L.G., Eds.; Elsevier: Amsterdam, Netherlands, 2019; pp. 313–353. [Google Scholar] [CrossRef]
- McCall, J.; Smith, J.J.; Marquardt, K.N.; Knight, K.R.; Bane, H.; Barber, A.; DeLong, R.K. ZnO Nanoparticles Protect RNA from Degradation Better than DNA. Nanomaterials 2017, 7, 378. [Google Scholar] [CrossRef]
- Mbatha, L.S.; Singh, M. Starburst Poly(amidoamine) Dendrimer Grafted Gold Nanoparticles as a Scaffold for Folic Acid-Targeted Plasmid DNA Delivery In Vitro. J. Nanosci. Nanotechnol. 2019, 19, 1959–1970. [Google Scholar] [CrossRef]
- Hlaváček, A.; Sedlmeier, A.; Skládal, P.; Gorris, H.H. Electrophoretic Characterization and Purification of Silica-Coated Photon-Upconverting Nanoparticles and Their Bioconjugates. ACS Appl. Mater. Interfaces 2014, 6, 6930–6935. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Deng, Z.-X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 2015, 26, 1435–1438. [Google Scholar] [CrossRef]
- Skeeters, S.S.; Rosu, A.C.; Divyanshi; Yang, J.; Zhang, K. Comparative Determination of Cytotoxicity of Sub-10 nm Copper Nanoparticles to Prokaryotic and Eukaryotic Systems. ACS Appl. Mater. Interfaces 2020, 12, 50203–50211. [Google Scholar] [CrossRef] [PubMed]
- Lodha, A.; Ansari, N.; Shah, S.; Rao, M.; Menon, S.K. Isolation of PCR ready-human DNA using copper nanoparticles from skeletal remains. Forensic Sci. Int. 2017, 270, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.; Wu, X.; Wang, J.; Brodeur, A.; Thomas, R.; Thakkar, R.; Hadi, H.; Glaspell, G.P.; Duszynski, M.; Wanekaya, A.; et al. Two-Dimensional Fluorescence Difference Spectroscopy of ZnO and Mg Composites in the Detection of Physiological Protein and RNA Interactions. Materials 2017, 10, 1430. [Google Scholar] [CrossRef] [PubMed]
- Spectral Signature Analysis of Surface Functionalized Nanoparticles, Molecular Devices. Available online: https://www.moleculardevices.com/en/assets/app-note/br/spectral-signature-analysis-of-surface-functionalized-nanoparticles (accessed on 18 November 2022).
- Hurst, M.N.; Delong, R.K. Two-Dimensional Fluorescence Difference Spectroscopy to Characterize Nanoparticles and their Interactions. Sci. Rep. 2016, 6, 33287. [Google Scholar] [CrossRef] [PubMed]
Sample Treatments | Contents (µL) | |||
---|---|---|---|---|
Cu NPs (1 mg/mL) | COR (1 µM) | Cas9 (0.04 µM) | poly I:C (1 mg/mL) | |
1. Cu NPs alone | 20 | - | - | - |
2. Cu NPs + COR | 1 | - | - | |
3. Cu NPs + Cas9 | - | 14 | - | |
4. Cu NPs + COR + Cas9 | 1 | 14 | - | |
5. Cu NPs + poly I:C | - | - | 1 | |
6. Cu NPs + poly I:C + COR + Cas9 | 1 | 14 | 1 | |
7. Cu NPs + COR + poly I:C + Cas9 |
Sample Treatments | Contents (µL) | |||||
---|---|---|---|---|---|---|
Cu NPs | COR | Cas9 | poly I:C | Milli-Q Water | Binding Buffer | |
1. COR | - | 2 | - | - | 8 | - |
2. COR + Cas9 | - | 2 | 2 | - | 3 | 5 |
3. COR + Cas9 + Cu NPs | 1 | 2 | 1 | - | - | |
4. COR + Cas9 + Cu NPs + poly I:C | 1 | 2 | 1 | 1 | - |
Sample Treatments | Contents (µL) | ||||
---|---|---|---|---|---|
Cu NPs | COR—Hoechst Dye Mix | Cas9 | poly I:C | Milli-Q Water | |
1. COR | - | 4 | - | - | 100 |
2. COR + Cu NPs | 100 | - | - | - | |
3. COR + Cu NPs + Cas9 | 25 | - | 75 | ||
4. COR + CuNP + Cas9 + poly I:C | 25 | 10 | 75 |
Sample | Size (d. nm) | Polydispersity Index |
---|---|---|
1. Cu NPs | 394 ± 97.8 | 0.49 ± 0.11 |
2. Cu NPs + COR | 6005 ± 90. | 0.62 ± 0.17 |
3. Cu NPs + Cas9 | 5513 ± 246 | 0.5 ± 0.04 |
4. Cu NPs + COR + Cas9 | 727 ± 2754 | 0.62 ± 0.19 |
5. Cu NPs + poly I:C | 3149 ± 1468 | 0.43 ± 0.23 |
6. Cu NPs + poly I:C + COR + Cas9 | 4009 ± 2643 | 0.51 ± 0.16 |
7. Cu NPs + COR + poly I:C + Cas9 | 3738 ± 1979 | 0.47 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karrer, L.G.; Mathew, E.N.; Nava-Chavez, J.; Bhatti, A.; Delong, R.K. Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA). Bioengineering 2023, 10, 512. https://doi.org/10.3390/bioengineering10050512
Karrer LG, Mathew EN, Nava-Chavez J, Bhatti A, Delong RK. Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA). Bioengineering. 2023; 10(5):512. https://doi.org/10.3390/bioengineering10050512
Chicago/Turabian StyleKarrer, Lindy G., Elza Neelima Mathew, Juliet Nava-Chavez, Abeera Bhatti, and Robert K. Delong. 2023. "Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA)" Bioengineering 10, no. 5: 512. https://doi.org/10.3390/bioengineering10050512
APA StyleKarrer, L. G., Mathew, E. N., Nava-Chavez, J., Bhatti, A., & Delong, R. K. (2023). Evidence of Copper Nanoparticles and Poly I:C Modulating Cas9 Interaction and Cleavage of COR (Conserved Omicron RNA). Bioengineering, 10(5), 512. https://doi.org/10.3390/bioengineering10050512