Design and Implement Strategy of Wireless Bite Force Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Designing and Manufacturing of the Bite Force Detector
2.2. Sensor Assembly and Testing
2.3. Verification and Calibration of the Pressure Detection Device
3. Results
3.1. The Main Structure of the Detector Based on the Sandwich Principle
3.2. Chip Assembly, Data Collection, and Wireless Transmission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buvinic, S.; Balanta-Melo, J.; Kupczik, K.; Vasquez, W.; Beato, C.; Toro-Ibacache, V. Muscle-bone crosstalk in the masticatory system: From biomechanical to molecular interactions. Front. Endocrinol. 2021, 11, 606947. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Bai, Y.; Xie, X. Bite force transducers and measurement devices. Front. Bioeng. Biotechnol. 2021, 9, 665081. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Singh, N.; Gupta, H.; Chakarvarty, A.; Sadana, P.; Gupta, N.; Kochhar, A.; Bhasin, R. Effect of various malocclusion on maximal bite force—A systematic review. J. Oral Biol. Craniofac. Res. 2022, 12, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Lee, Y.H.; Park, H.K.; Auh, Q.S.; Nah, H.; Lee, J.S.; Moon, H.J.; Heo, D.N.; Kim, I.S.; Kwon, I.K. Emerging potential of exosomes in regenerative medicine for temporomandibular joint osteoarthritis. Int. J. Mol. Sci. 2020, 21, 1541. [Google Scholar] [CrossRef]
- Boer, C.G.; Hatzikotoulas, K.; Southam, L.; Stefansdottir, L.; Zhang, Y.; Coutinho de Almeida, R.; Wu, T.T.; Zheng, J.; Hartley, A.; Teder-Laving, M.; et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 2021, 184, 6003–6005. [Google Scholar] [CrossRef]
- Bianchi, J.; de Oliveira Ruellas, A.C.; Goncalves, J.R.; Paniagua, B.; Prieto, J.C.; Styner, M.; Li, T.; Zhu, H.; Sugai, J.; Giannobile, W.; et al. Osteoarthritis of the temporomandibular joint can be diagnosed earlier using biomarkers and machine learning. Sci. Rep. 2020, 10, 8012. [Google Scholar] [CrossRef]
- Lu, K.; Ma, F.; Yi, D.; Yu, H.; Tong, L.; Chen, D. Molecular signaling in temporomandibular joint osteoarthritis. J. Orthop. Translat. 2022, 32, 21–27. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, J.; Luo, L.; Wang, Y. Does bruxism contribute to dental implant failure? A systematic review and meta-analysis. Clin. Implant. Dent. Relat. Res. 2016, 18, 410–420. [Google Scholar] [CrossRef]
- Derwich, M.; Mitus-Kenig, M.; Pawlowska, E. Interdisciplinary approach to the temporomandibular joint osteoarthritis-review of the literature. Medicina 2020, 56, 225. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Wang, Z.; Wu, X.; Yang, C.; Yang, H. Hypoxia-inducible factor expression is related to apoptosis and cartilage degradation in temporomandibular joint osteoarthritis. BMC Musculoskelet. Disord. 2022, 23, 583. [Google Scholar] [CrossRef]
- Li, H.; Guo, H.; Lei, C.; Liu, L.; Xu, L.; Feng, Y.; Ke, J.; Fang, W.; Song, H.; Xu, C.; et al. Nanotherapy in joints: Increasing endogenous hyaluronan production by delivering hyaluronan synthase 2. Adv. Mater. 2019, 31, e1904535. [Google Scholar] [CrossRef]
- Tanaka, E.; Liu, Y.; Xia, L.; Ogasawara, N.; Sakamaki, T.; Kano, F.; Hashimoto, N.; Feng, X.; Yamamoto, A. Effectiveness of low-intensity pulsed ultrasound on osteoarthritis of the temporomandibular joint: A review. Ann. Biomed. Eng. 2020, 48, 2158–2170. [Google Scholar] [CrossRef]
- Iwasaki, M.; Maeda, I.; Kokubo, Y.; Tanaka, Y.; Ueno, T.; Ohara, Y.; Motokawa, K.; Hayakawa, M.; Shirobe, M.; Edahiro, A. Standard values and concurrent validity of a newly developed occlusal force-measuring device among community-dwelling older adults: The otassha study. Int. J. Environ. Res. Public Health 2022, 19, 5588. [Google Scholar] [CrossRef]
- Lee, W.; Kwon, H.B.; Kim, M.J.; Lim, Y.J. Determination of the reliability and repeatability of a quantitative occlusal analyzer by using a piezoelectric film sensor: An in vitro study. J. Prosthet. Dent. 2022, 127, 331–337. [Google Scholar] [CrossRef]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Dye, B.A.; Albino, J. Finding knowledge to improve oral health for all. J. Dent. Res. 2022, 101, 739–741. [Google Scholar] [CrossRef]
- He, J.; Ran, J.; Zheng, B.; Algahefi, A.; Liu, Y. Finite element analysis of various thickness occlusal stabilization splint therapy on unilateral temporomandibular joint anterior disc displacement without reduction. Am. J. Orthod. Dentofacial. Orthop. 2022, 161, e277–e286. [Google Scholar] [CrossRef]
- Gao, J.; Liu, L.; Gao, P.; Zheng, Y.; Hou, W.; Wang, J. Intelligent occlusion stabilization splint with stress-sensor system for bruxism diagnosis and treatment. Sensors 2019, 20, 89. [Google Scholar] [CrossRef]
- Gao, J.; Liu, L.; Su, Z.; Wang, H. Sandwich integration technique for the pressure sensor detection of occlusal force in vitro. Sensors 2021, 22, 220. [Google Scholar] [CrossRef]
- Shan, T.; Tay, F.R.; Gu, L. Application of artificial intelligence in dentistry. J. Dent. Res. 2021, 100, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, C.; Bosio, J.A.; Melo, M.A.S. Smart flexible 3D sensor for monitoring orthodontics forces: Prototype design and proof of principle experiment. Bioengineering 2022, 9, 570. [Google Scholar] [CrossRef] [PubMed]
- Khorsandi, D.; Fahimipour, A.; Abasian, P.; Saber, S.S.; Seyedi, M.; Ghanavati, S.; Ahmad, A.; De Stephanis, A.A.; Taghavinezhaddilami, F.; Leonova, A.; et al. 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications. Acta Biomater. 2021, 122, 26–49. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, Z.; Gray, R.J.; Davies, S.J.; Sloan, P.; Glenny, A.M. Stabilization splint therapy for the treatment of temporomandibular myofascial pain: A systematic review. J. Dent. Educ. 2005, 69, 1242–1250. [Google Scholar] [CrossRef]
- Bakke, M. Bite force and occlusion. Semin. Orthod. 2006, 12, 120–126. [Google Scholar] [CrossRef]
- Goh, G.L.; Dikshit, V.; Koneru, R.; Peh, Z.K.; Lu, W.; Goh, G.D.; Yeong, W.Y. Fabrication of design-optimized multifunctional safety cage with conformal circuits for drone using hybrid 3D printing technology. Int. J. Adv. Manuf. Technol. 2022, 120, 2573–2586. [Google Scholar] [CrossRef]
- Saari, M.; Xia, B.; Cox, B.; Krueger, P.S.; Cohen, A.L.; Richer, E. Fabrication and analysis of a composite 3D printed capacitive force sensor. 3D Print. Addit. Manuf. 2016, 3, 136–141. [Google Scholar] [CrossRef]
- Choudhary, H.; Vaithiyanathan, D.; Kumar, H. A review on 3D printed force sensors. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1104, 012013. [Google Scholar] [CrossRef]
- Cao, Y. Occlusal disharmony and chronic oro-facial pain: From clinical observation to animal study. J. Oral. Rehabil. 2022, 49, 116–124. [Google Scholar] [CrossRef]
- Cesanelli, L.; Cesaretti, G.; Ylaite, B.; Iovane, A.; Bianco, A.; Messina, G. Occlusal splints and exercise performance: A systematic review of current evidence. Int. J. Environ. Res. Public Health 2021, 18, 10338. [Google Scholar] [CrossRef]
- Ahmed, N.; Abbasi, M.S.; Zuberi, F.; Qamar, W.; Halim, M.S.B.; Maqsood, A.; Alam, M.K. Artificial intelligence techniques: Analysis, application, and outcome in dentistry-A systematic review. Biomed. Res. Int. 2021, 2021, 9751564. [Google Scholar] [CrossRef]
- Bianchi, J.; Ruellas, A.; Prieto, J.C.; Li, T.; Soroushmehr, R.; Najarian, K.; Gryak, J.; Deleat-Besson, R.; Le, C.; Yatabe, M.; et al. Decision support systems in temporomandibular joint osteoarthritis: A review of data science and artificial intelligence applications. Semin. Orthod. 2021, 27, 78–86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Su, Z.; Liu, L. Design and Implement Strategy of Wireless Bite Force Device. Bioengineering 2023, 10, 507. https://doi.org/10.3390/bioengineering10050507
Gao J, Su Z, Liu L. Design and Implement Strategy of Wireless Bite Force Device. Bioengineering. 2023; 10(5):507. https://doi.org/10.3390/bioengineering10050507
Chicago/Turabian StyleGao, Jinxia, Zhiwen Su, and Longjun Liu. 2023. "Design and Implement Strategy of Wireless Bite Force Device" Bioengineering 10, no. 5: 507. https://doi.org/10.3390/bioengineering10050507
APA StyleGao, J., Su, Z., & Liu, L. (2023). Design and Implement Strategy of Wireless Bite Force Device. Bioengineering, 10(5), 507. https://doi.org/10.3390/bioengineering10050507