Influence of Dairy Manure as Inoculum Source on Anaerobic Digestion of Swine Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physicochemical Characteristics of Inoculum and Substrate
2.2. Microbial Analysis of Inoculum and Substrate
2.3. Experimental Design and Setup
2.4. Analytical Methods
2.5. Estimation of Ultimate Biodegradability
2.6. Kinetic Modeling (Modified Gompertz)
2.7. Statistical Analysis
3. Results and Discussion
3.1. pH Changes during the Digestion
3.2. NH4+-N Changes during the Digestion
3.3. Total VFA and VFA/Alkalinity Ratio Changes
3.4. Ultimate Biodegradability and Volatile Solids Removal
3.5. Methane Production and Kinetic Modeling
3.6. Microbial Composition of Inoculum and Substrate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Park, S.Y.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Kafle, G.K.; Chen, L. Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag. 2016, 48, 492–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapport, J.; Zhang, R.; Jenkins, B.; Williams, R. Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste; California Environmental Protection Agency: Sacramento, CA, USA, 2008.
- Brown, D.; Shi, J.; Li, Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour. Technol. 2012, 124, 379–386. [Google Scholar] [CrossRef]
- Zhou, H.; Wen, Z. Solid-state anaerobic digestion for waste management and biogas production. Solid State Ferment. 2019, 169, 147–168. [Google Scholar]
- Guendouz, J.; Buffiere, P.; Cacho, J.; Carrère, M.; Delgenes, J.-P. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor. Waste Manag. 2010, 30, 1768–1771. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, Z.; Stiverson, J.A.; Yu, Z.; Li, Y. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour. Technol. 2013, 136, 574–581. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y. Anaerobic digestion of giant reed for methane production. Bioresour. Technol. 2014, 171, 233–239. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Song, J.; Hai, Z.; Lu, X.; Ji, X.; Wang, C. Adjusting the rheological properties of corn-straw slurry to reduce the agitation power consumption in anaerobic digestion. Bioresour. Technol. 2019, 272, 360–369. [Google Scholar] [CrossRef]
- Trisakti, B.; Irvan; Zahara, I.; Taslim; Turmuzi, M. Effect of agitation on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas. AIP Conf. Proc. 2017, 1840, 050004. [Google Scholar]
- El-Mashad, H.M.; van Loon, W.K.; Zeeman, G.; Bot, G.P.; Lettinga, G. Effect of inoculum addition modes and leachate recirculation on anaerobic digestion of solid cattle manure in an accumulation system. Biosyst. Eng. 2006, 95, 245–254. [Google Scholar] [CrossRef]
- Kusch, S.; Oechsner, H.; Jungbluth, T. Effect of various leachate recirculation strategies on batch anaerobic digestion of solid substrates. Int. J. Environ. Waste Manag. 2012, 9, 69–88. [Google Scholar] [CrossRef] [Green Version]
- Lee, S. Optimizing of Solid-State Anaerobic Co-Digestion Od Dairy Cow Manure Collected from Sawdust Bedded Pack Barn and Milking Parlor Wastewater. Ph.D. Thesis, Chungnam National University, Daejeon, Republic of Korea, 2019. [Google Scholar]
- Kim, E.; Lee, S.; Jo, H.; Jeong, J.; Mulbry, W.; Rahman, S.; Ahn, H. Solid-state anaerobic digestion of dairy manure from a sawdust-bedded pack barn: Moisture responses. Energies 2018, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Wang, F.; Lin, L.; Li, Y. Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings. Bioresour. Technol. 2016, 200, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Xu, F.; Ge, X.; Li, Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 2015, 44, 824–834. [Google Scholar] [CrossRef]
- Jha, A.K.; Li, J.; Nies, L.; Zhang, L. Research advances in dry anaerobic digestion process of solid organic wastes. Afr. J. Biotechnol. 2011, 10, 14242–14253. [Google Scholar]
- Le Hyaric, R.; Benbelkacem, H.; Bollon, J.; Bayard, R.; Escudié, R.; Buffière, P. Influence of moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate. J. Chem. Technol. Biotechnol. 2012, 87, 1032–1035. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, F.; Li, Y. Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover. Bioresour. Technol. 2013, 144, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xu, F.; Wang, Z.; Stiverson, J.A.; Yu, Z.; Li, Y. Effects of microbial and non-microbial factors of liquid anaerobic digestion effluent as inoculum on solid-state anaerobic digestion of corn stover. Bioresour. Technol. 2014, 157, 188–196. [Google Scholar] [CrossRef]
- Wan, C.; Zhou, Q.; Fu, G.; Li, Y. Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease. Waste Manag. 2011, 31, 1752–1758. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, X.; Liu, Z.; Zhou, X.; Zhang, Y. Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour. Technol. 2014, 158, 149–155. [Google Scholar] [CrossRef]
- Quintero, M.; Castro, L.; Ortiz, C.; Guzmán, C.; Escalante, H. Enhancement of starting up anaerobic digestion of lignocellulosic substrate: Fique’s bagasse as an example. Bioresour. Technol. 2012, 108, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Karthikeyan, O.P.; Visvanathan, C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Rev. Environ. Sci. Bio/Technol. 2013, 12, 257–284. [Google Scholar] [CrossRef]
- Martin, D.; Potts, L.; Heslop, V. Reaction mechanisms in solid-state anaerobic digestion: 1. The reaction front hypothesis. Process Saf. Environ. Prot. 2003, 81, 171–179. [Google Scholar] [CrossRef]
- Lopes, W.S.; Leite, V.D.; Prasad, S. Influence of inoculum on performance of anaerobic reactors for treating municipal solid waste. Bioresour. Technol. 2004, 94, 261–266. [Google Scholar] [CrossRef]
- Procházka, J.; Mrázek, J.; Štrosová, L.; Fliegerová, K.; Zábranská, J.; Dohányos, M. Enhanced biogas yield from energy crops with rumen anaerobic fungi. Eng. Life Sci. 2012, 12, 343–351. [Google Scholar] [CrossRef]
- McGarvey, J.A.; Miller, W.G.; Zhang, R.; Ma, Y.; Mitloehner, F. Bacterial population dynamics in dairy waste during aerobic and anaerobic treatment and subsequent storage. Appl. Environ. Microbiol. 2007, 73, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Girija, D.; Deepa, K.; Xavier, F.; Antony, I.; Shidhi, P. Analysis of Cow Dung Microbiota—A Metagenomic Approach; NISCAIR-CSIR: New Delhi, India, 2013. [Google Scholar]
- Jain, S.; Wolf, I.T.; Wah, T.Y. Anaerobic digestion of food waste using artificially cultured and natural anaerobes under Mesophilic conditions. J. Mater. Environ. Sci. 2014, 5, 1709–1714. [Google Scholar]
- Neo, S.; Vintilă, T.; Bura, M. Conversion of agricultural wastes to biogas using as inoculum cattle manure and activated sludge. Anim. Sci. Biotechnol. 2012, 45, 328–334. [Google Scholar]
- Lee, S. Effects of Substrate to Inoculum Ratio on Methane Production and Volatile Solid Removal during Solid-State Anaerobic Digestion of Livestock Manure. Master’s Thesis, Chungnam National University, Daejeon, Republic of Korea, 2016. [Google Scholar]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Tritt, W.; Kang, H. Ultimate biodegradability and decay rates of cow paunch manure under anaerobic conditions. Bioresour. Technol. 1991, 36, 161–165. [Google Scholar] [CrossRef]
- Widiasa, I.N.; Johari, S. The kinetic of biogas production rate from cattle manure in batch mode. Int. J. Chem. Mol. Eng. 2010, 4, 75–80. [Google Scholar]
- Zhang, J.; Kan, X.; Shen, Y.; Loh, K.-C.; Wang, C.-H.; Dai, Y.; Tong, Y.W. A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment. Energy 2018, 152, 214–222. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Macé, S.; Llabres, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
- Neves, L.; Oliveira, R.; Alves, M. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem. 2004, 39, 2019–2024. [Google Scholar] [CrossRef] [Green Version]
- McCarty, P.L. Anaerobic waste treatment fundamentals, Part III, Toxic materials and their control. Public Work. 1964, 95, 91–94. [Google Scholar]
- Ahring, B.K.; Sandberg, M.; Angelidaki, I. Volatile fatty acids as indicators of process imbalance in anaerobic digestors. Appl. Microbiol. Biotechnol. 1995, 43, 559–565. [Google Scholar] [CrossRef]
- Drosg, B. Process Monitoring in Biogas Plants; IEA Bioenergy: Paris, France, 2013. [Google Scholar]
- Acosta, N.; Kang, I.D.; Rabaey, K.; De Vrieze, J. Cow manure stabilizes anaerobic digestion of cocoa waste. Waste Manag. 2021, 126, 508–516. [Google Scholar] [CrossRef]
- Prasad Lohani, S. Anaerobic co-digestion of food waste with cow manure. Iran. (Iran.) J. Energy Environ. 2020, 11, 57–60. [Google Scholar]
- Korazbekova, K.; Bakhov, Z.K. Performance of leach-bed reactor with immobilization of microorganisms in terms of methane production kinetics. J. Biol. Sci. 2014, 14, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Mao, S.; Zhang, M.; Liu, J.; Zhu, W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci. Rep. 2015, 5, 16116. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, A.; Bekel, T.; Diaz, N.N.; Dondrup, M.; Eichenlaub, R.; Gartemann, K.-H.; Krahn, I.; Krause, L.; Krömeke, H.; Kruse, O. The Metagenome of a Biogas-Producing Microbial Community of a Production-Scale Biogas Plant Fermenter Analysed by the 454-Pyrosequencing Technology. J. Biotechnol. 2008, 136, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Świątczak, P.; Cydzik-Kwiatkowska, A.; Rusanowska, P. Microbiota of anaerobic digesters in a full-scale wastewater treatment plant. Arch. Environ. Prot. 2017, 43, 53–60. [Google Scholar] [CrossRef] [Green Version]
Items | Dairy Manure 1 | Swine Manure 2 |
---|---|---|
Moisture content (%, w.b. 3) | 65.4 ± 0.3 | 72.3 ± 0.2 |
Volatile solids (%, d.b. 4) | 75.5 ± 0.3 | 89.0 ± 0.3 |
Bulk density (kg·m−3) | 600.0 ± 3.0 | 485.0 ± 7.5 |
C (%, d.b.) | 38.0 ± 1.4 | 43.6 ± 0.1 |
H (%, d.b.) | 5.1 ± 0.1 | 6.1 ± 0.1 |
O (%, d.b.) | 28.5 ± 0.5 | 38.5 ± 1.2 |
N (%, d.b.) | 5.0 ± 0.2 | 4.7 ± 0.4 |
S (%, d.b.) | 0.7 ± 0.1 | 0.6 ± 0.1 |
C/N ratio | 7.6 | 9.3 |
Items | Inoculum (g) 1 | Substrate (g) 2 | Total Weight (g) |
---|---|---|---|
Dairy manure alone | 461.8 | 0 | 461.8 |
Ratio 3 | 321.4 | 113.5 | 434.9 |
Ratio 1 | 199.9 | 211.7 | 411.6 |
Ratio 0.3 | 93.7 | 297.6 | 391.3 |
Swine manure alone | 0 | 373.3 | 373.3 |
Items | I/S Ratio | ||||
---|---|---|---|---|---|
Dairy Manure Alone | Ratio 3 | Ratio 1 | Ratio 0.3 | Swine Manure Alone | |
Initial VS (g) | 120.5 ± 0.0 | 111.9 ± 0.0 | 104.4 ± 0.0 | 97.7 ± 0.0 | 92.0 ± 0.0 |
BMR (g) | 18.2 ± 0.3 | 23.2 ± 2.4 | 37.3 ± 1.3 | 38.8 ± 0.9 | 24.4 ± 2.3 |
UB (%) | 16.2 ± 0.2 a | 21.5 ± 2.2 a | 36.5 ± 1.2 b | 40.4 ± 1.4 b | 39.9 ± 3.3 b |
VS removal (%) | 15.1 ± 0.3 a | 20.7 ± 2.1 ac | 35.8 ± 1.3 b | 39.7 ± 0.9 b | 26.5 ± 2.5 c |
BVS removal (%) | 93.4 ± 1.6 ab | 96.6 ± 10.0 ab | 98.1 ± 3.5 a | 98.2 ± 2.3 a | 66.5 ± 6.3 b |
Items | I/S ratio | |||||
---|---|---|---|---|---|---|
Unit | Dairy Manure Alone | Ratio 3 | Ratio 1 | Ratio 0.3 | Swine Manure Alone | |
Cumulative methane yield (exp.) | N·mL·g−1 VS | 54.3 ± 1.7 a | 67.2 ± 11.1 a | 132.7 ± 13.1 b | 143.0 ± 5.0 b | 103.0 ± 4.4 ab |
P | N·mL·g−1 VS | 53.9 ± 1.8 a | 67.1 ± 11.1 a | 132.7 ± 13.2 b | 144.6 ± 5.6 b | 104.2 ± 5.5 ab |
Rm | N·mL·g−1 VS·day−1 | 3.0 ± 0.3 a | 4.7 ± 0.5 ab | 7.5 ± 0.6 b | 5.8 ± 0.1 ab | 5.8 ± 0.9 ab |
λ | days | 7.5 ± 0.3 a | 8.5 ± 0.4 a | 9.9 ± 0.2 a | 13.4 ± 2.6 a | 54.8 ± 4.2 b |
T95 | days | 34.1 ± 2.0 ab | 30.6 ± 5.5 a | 35.6 ± 1.6 ab | 49.7 ± 3.3 b | 83.1 ± 1.7 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wi, J.; Lee, S.; Ahn, H. Influence of Dairy Manure as Inoculum Source on Anaerobic Digestion of Swine Manure. Bioengineering 2023, 10, 432. https://doi.org/10.3390/bioengineering10040432
Wi J, Lee S, Ahn H. Influence of Dairy Manure as Inoculum Source on Anaerobic Digestion of Swine Manure. Bioengineering. 2023; 10(4):432. https://doi.org/10.3390/bioengineering10040432
Chicago/Turabian StyleWi, Jisoo, Seunghun Lee, and Heekwon Ahn. 2023. "Influence of Dairy Manure as Inoculum Source on Anaerobic Digestion of Swine Manure" Bioengineering 10, no. 4: 432. https://doi.org/10.3390/bioengineering10040432