Adverse Pathology after Radical Prostatectomy of Patients Eligible for Active Surveillance—A Summary 7 Years after Introducing mpMRI-Guided Biopsy in a Real-World Setting
Abstract
:1. Introduction
2. Subjects and Methods
2.1. MpMRI/Ultrasound Fusion-Guided Transrectal Prostate Biopsy (FBx)
2.2. Systematic Randomized Transrectal Ultrasound-Guided Biopsy of the Prostate (SBx)
2.3. Propensity Score Matching and Statistical Analysis
3. Results
3.1. Subgroup Analysis of Up- and Downgrading Rates Regarding Gleason Scores
3.2. Adverse Pathology of Gleason Score 6 Prostate Cancer Diagnosed by FBx
3.3. Upgrading and -Staging of Patients Eligible for Active Surveillance
3.4. Univariate and Multivariable Logistic Regression Analyses: Up- and Downgrading after RP
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mottet, N.; Cornford, P.; Van den Bergh, R.C.N.; Briers, E.; De Santis, M.; Gillessen, S.; Grummet, J.; Henry, A.M.; van Der Kwast, T.H.; Lam, T.B.; et al. EAU Guidelines on Prostate Cancer. Edn. Presented at the EAU Annual Congress Amsterdam 2022. Available online: https://uroweb.org/guidelines/prostate-cancer (accessed on 1 January 2023).
- Ahmed, H.U.; El-Shater Bosaily, A.; Brown, L.C.; Gabe, R.; Kaplan, R.; Parmar, M.K.; Collaco-Moraes, Y.; Ward, K.; Hindley, R.G.; Freeman, A.; et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): A paired validating confirmatory study. Lancet 2017, 389, 815–822. [Google Scholar] [CrossRef]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging—Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef] [PubMed]
- Bill-Axelson, A.; Holmberg, L.; Garmo, H.; Taari, K.; Busch, C.; Nordling, S.; Häggman, M.; Andersson, S.O.; Andrén, O.; Steineck, G.; et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer—29-Year Follow-up. N. Engl. J. Med. 2018, 379, 2319–2329. [Google Scholar] [CrossRef]
- Deutsche Krebsgesellschaft. Jahresbericht der Zertifizierten Prostatakrebszentren, Kennzahlenauswertung. 2022. Available online: https://www.krebsgesellschaft.de/jahresberichte.html (accessed on 1 January 2023).
- Cooperberg, M.; Meeks, W.; Fang, R.; Gaylis, F.; Catalona, W.; Makarov, D. MP43-03 Active Surveillance for low-risk prostate cancer: Time trends and variation in the AUA quality (AQUA) registry. J. Urol. 2022, 207 (Suppl. S5), e740. [Google Scholar] [CrossRef]
- Pattenden, T.A.; Samaranayke, D.; Morton, A.; Ong, W.L.; Murphy, D.G.; Pritchard, E.; Evans, S.; Millar, J.; Chalasani, V.; Rashid, P.; et al. Modern active surveillance in prostate cancer: A narrative review. Clin. Genitourin. Cancer 2022, 21, 115–123. [Google Scholar] [CrossRef]
- Diamand, R.; Oderda, M.; Al Hajj Obeid, W.; Albisinni, S.; Van Velthoven, R.; Fasolis, G.; Simone, G.; Ferriero, M.; Roche, J.B.; Piechaud, T.; et al. A multicentric study on accurate grading of prostate cancer with systematic and MRI/US fusion targeted biopsies: Comparison with final histopathology after radical prostatectomy. World J. Urol. 2019, 37, 2109–2117. [Google Scholar] [CrossRef]
- Lellig, E.; Gratzke, C.; Kretschmer, A.; Stief, C. Final pathohistology after radical prostatectomy in patients eligible for active surveillance (AS). World J. Urol. 2015, 33, 917–922. [Google Scholar] [CrossRef]
- Kayano, P.P.; Carneiro, A.; Castilho, T.M.L.; Sivaraman, A.; Claros, O.R.; Baroni, R.H.; Garcia, R.G.; Mariotti, G.C.; Smaletz, O.; Filippi, R.Z.; et al. Comparison of Gleason upgrading rates in transrectal ultrasound systematic random biopsies versus US-MRI fusion biopsies for prostate cancer. Int. Braz. J. Urol. 2018, 44, 1106–1113. [Google Scholar] [CrossRef]
- Rührup, J.; Preisser, F.; Theißen, L.; Wenzel, M.; Roos, F.C.; Becker, A.; Kluth, L.A.; Bodelle, B.; Köllermann, J.; Chun, F.K.H.; et al. MRI-Fusion Targeted vs. Systematic Prostate Biopsy-How Does the Biopsy Technique Affect Gleason Grade Concordance and Upgrading After Radical Prostatectomy? Front. Surg. 2019, 6, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apfelbeck, M.; Tritschler, S.; Clevert, D.A.; Buchner, A.; Chaloupka, M.; Kretschmer, A.; Herlemann, A.; Stief, C.; Schlenker, B. Postoperative change in Gleason score of prostate cancer in fusion targeted biopsy: A matched pair analysis. Scand. J. Urol. 2021, 55, 27–32. [Google Scholar] [CrossRef]
- Johnson, D.C.; Raman, S.S.; Mirak, S.A.; Kwan, L.; Bajgiran, A.M.; Hsu, W.; Maehara, C.K.; Ahuja, P.; Faiena, I.; Pooli, A.; et al. Detection of Individual Prostate Cancer Foci via Multiparametric Magnetic Resonance Imaging. Eur. Urol. 2019, 75, 712–720. [Google Scholar] [CrossRef]
- Porpiglia, F.; DE Luca, S.; Passera, R.; Manfredi, M.; Mele, F.; Bollito, E.; DE Pascle, A.; Cossu, M.; Aimar, R.; Veltri, A. Multiparametric-Magnetic Resonance/Ultrasound Fusion Targeted Prostate Biopsy Improves Agreement Between Biopsy and Radical Prostatectomy Gleason Score. Anticancer. Res 2016, 36, 4833–4839. [Google Scholar] [CrossRef]
- Stabile, A.; Giganti, F.; Kasivisvanathan, V.; Giannarini, G.; Moore, C.M.; Padhani, A.R.; Panebianco, V.; Rosenkrantz, A.B.; Salomon, G.; Turkbey, B. Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review. Eur. Urol. Oncol. 2020, 3, 145–167. [Google Scholar] [CrossRef]
- Kasabwala, K.; Patel, N.; Cricco-Lizza, E.; Shimpi, A.A.; Weng, S.; Buchmann, R.M.; Motanagh, S.; Wu, Y.; Banerjee, S.; Khani, F.; et al. The Learning Curve for Magnetic Resonance Imaging/Ultrasound Fusion-guided Prostate Biopsy. Eur. Urol. Oncol. 2019, 2, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Halstuch, D.; Baniel, J.; Lifshitz, D.; Sela, S.; Ber, Y.; Margel, D. Characterizing the learning curve of MRI-US fusion prostate biopsies. Prostate Cancer Prostatic. Dis. 2019, 22, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.; Ward, K.C.; Osunkoya, A.O.; Datta, M.W.; Luthringer, D.; Young, A.N.; Marks, K.; Cohen, V.; Kennedy, J.C.; Haber, M.J.; et al. Frequency and determinants of disagreement and error in gleason scores: A population-based study of prostate cancer. Prostate 2012, 72, 1389–1398. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Mamawala, M.; Epstein, J.I.; Landis, P.; Macura, K.J.; Simopoulos, D.N. Carter HB, Gorin MA. Active Surveillance of Grade Group 1 Prostate Cancer: Long-term Outcomes from a Large Prospective Cohort. Eur. Urol. 2020, 77, 675–682. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- Xie, J.; Jin, C.; Liu, M.; Sun, K.; Jin, Z.; Ding, Z.; Gong, X. MRI/Transrectal Ultrasound Fusion-Guided Targeted Biopsy and Transrectal Ultrasound-Guided Systematic Biopsy for Diagnosis of Prostate Cancer: A Systematic Review and Meta-analysis. Front. Oncol. 2022, 12, 880336. [Google Scholar] [CrossRef]
- Bullock, N.; Simpkin, A.; Fowler, S.; Varma, M.; Kynaston, H.; Narahari, K. Pathological upgrading in prostate cancer treated with surgery in the United Kingdom: Trends and risk factors from the British Association of Urological Surgeons Radical Prostatectomy Registry. BMC Urol. 2019, 19, 94. [Google Scholar] [CrossRef] [PubMed]
- Altok, M.; Troncoso, P.; Achim, M.F.; Matin, S.F.; Gonzalez, G.N.; Davis, J.W. Prostate cancer upgrading or downgrading of biopsy Gleason scores at radical prostatectomy: Prediction of “regression to the mean” using routine clinical features with correlating biochemical relapse rates. Asian J. Androl. 2019, 21, 598–604. [Google Scholar] [PubMed]
- Ginsburg, K.B.; Curtis, G.L.; Timar, R.E.; George, A.K.; Cher, M.L. Delayed Radical Prostatectomy is Not Associated with Adverse Oncologic Outcomes: Implications for Men Experiencing Surgical Delay Due to the COVID-19 Pandemic. J. Urol. 2020, 204, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Björnebo, L.; Olsson, H.; Nordström, T.; Jäderling, F.; Grönberg, H.; Eklund, M.; Lantz, A. Predictors of adverse pathology on radical prostatectomy specimen in men initially enrolled in active surveillance for low-risk prostate cancer. World J. Urol. 2021, 39, 1797–1804. [Google Scholar] [CrossRef]
- Beck, V.; Schlenker, B.; Herlemann, A.; Apfelbeck, M.; Buchner, A.; Gratzke, C.; Stief, C.G.; Tritschler, S. The increase of stage, grading, and metastases in patients undergoing radical prostatectomy during the last decade. World J. Urol. 2019, 37, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Eggener, S.E.; Berlin, A.; Vickers, A.J.; Paner, G.P.; Wolinsky, H.; Cooperberg, M.R. Low-Grade Prostate Cancer: Time to Stop Calling It Cancer. J. Clin. Oncol. 2022, 40, 3110–3114. [Google Scholar] [CrossRef]
- Thaxton, C.S.; Loeb, S.; Roehl, K.A.; Kan, D.; Catalona, W.J. Treatment outcomes of radical prostatectomy in potential candidates for 3 published active surveillance protocols. Urology 2010, 75, 414–418. [Google Scholar] [CrossRef]
- Verep, S.; Erdem, S.; Ozluk, Y.; Kilicaslan, I.; Sanli, O.; Ozcan, F. The pathological upgrading after radical prostatectomy in low-risk prostate cancer patients who are eligible for active surveillance: How safe is it to depend on bioptic pathology? Prostate 2019, 79, 1523–1529. [Google Scholar] [CrossRef]
- Porten, S.P.; Whitson, J.M.; Cowan, J.E.; Cooperberg, M.R.; Shinohara, K.; Perez, N.; Greene, K.L.; Meng, M.V.; Carroll, P.R. Changes in prostate cancer grade on serial biopsy in men undergoing active surveillance. J. Clin. Oncol. 2011, 29, 2795–2800. [Google Scholar] [CrossRef]
- Ferro, M.; de Cobelli, O.; Musi, D.; Del Giudice, F.; Carrieri, G.; Busetto, M.G.; Falagario, U.G.; Sciarra, A.; Maggi, M.; Crocetto, F. Radiomics in prostate cancer: An up-to-date review. Ther. Adv. Urol. 2022, 14, 17562872221109020. [Google Scholar] [CrossRef]
Patient Characteristics | All FBx Patients (n = 492) |
---|---|
Age (years) | 67.0 ± 8.0 |
Number of positive biopsy cores (n) | 5 ± 3 |
Number of biopsy cores obtained (n) | 13 ± 1 |
Highest infiltration of biopsy cores (%) | 49 ± 24 |
iPSA (ng/mL) | 11.9 ± 19.8 |
Detection rate of PCa (%) | 82 (401/492) |
Prior biopsy (%) | 28 (117/412) |
Number of mpMRI targets per patient (n) | 1 ± 0.5 |
Highest PI-RADS score | 4 ± 0.7 |
Prostate volume (mL) | 50.5 ± 29.8 |
PSA Density (ng/mL/ccm) | 0.26 ± 0.31 |
Positive DRE (%) | 54 (126/233) |
Time between FBx and RP (days) | 65.0 ± 101.4 |
Propensity Score Matching | Overall, n = 984 | SBx, n = 492 | FBx, n = 492 | p-Value |
---|---|---|---|---|
Gleason score after RP | 0.35 | |||
Downgrading from biopsy | 181 (18%) | 89 (18%) | 92 (19%) | |
Concordance with biopsy | 533 (54%) | 277 (56%) | 256 (52%) | |
Upgrading from biopsy | 270 (27%) | 126 (26%) | 144 (29%) | |
Age [years] | 67.1 ± 7.8 | 67.2 ± 7.7 | 67.0 ± 8.0 | 0.74 |
Number of positive biopsy cores [n] | 5.3 ± 3.1 | 5.3 ± 3.2 | 5.2 ± 3.0 | 0.59 |
iPSA [ng/mL] | 12.1 ± 19.3 | 12.4 ± 18.9 | 11.9 ± 19.8 | 0.67 |
GS 6 after biopsy | 220 (22%) | 88 (18%) | 132 (27%) | 0.001 |
AS eligible after biopsy | 59 (6.0%) | 30 (6.1%) | 29 (5.9%) | >0.99 |
Gleason Score 6 after Biopsy | Overall, n = 220 | SBx, n = 88 | FBx, n = 132 | p-Value |
---|---|---|---|---|
Gleason score after RP | 0.76 | |||
Concordance with biopsy | 101 (46%) | 42 (48%) | 59 (45%) | |
Upgrading from biopsy | 119 (54%) | 46 (52%) | 73 (55%) | |
Age [years] | 65.3 ± 7.6 | 64.3 ± 7.7 | 66.0 ± 7.5 | 0.10 |
Number of positive biopsy cores [n] | 3.6 ± 2.3 | 3.3 ± 2.2 | 3.8 ± 2.4 | 0.11 |
iPSA [ng/mL] | 9.0 ± 8.0 | 7.9 ± 3.9 | 9.7 ± 9.8 | 0.057 |
Active Surveillance Eligible after Biopsy | Overall, n = 59 | SBx, n = 30 | FBx, n = 29 | p-Value |
---|---|---|---|---|
Gleason score after RP | >0.99 | |||
Concordance with biopsy | 27 (46%) | 14 (47%) | 13 (45%) | |
Upgrading from biopsy | 32 (54%) | 16 (53%) | 16 (55%) | |
Age [years] | 64.2 ± 7.6 | 64.0 ± 7.8 | 64.5 ± 7.5 | 0.78 |
Number of positive biopsy cores [n] | 1.4 ± 0.5 | 1.3 ± 0.5 | 1.5 ± 0.5 | 0.093 |
iPSA [ng/mL] | 6.3 ± 1.8 | 6.5 ± 1.8 | 6.0 ± 1.8 | 0.31 |
Positive predictive value for AS eligibility (diagnosis of low risk PCa after biopsy and after RP) | 7 (12%) | 2 (6.7%) | 5 (17%) | 0.39 |
(A) | (C) | ||||||||||||||||
Baseline characteristics of all upgraded patients | Baseline characteristics of all downgraded patients | ||||||||||||||||
Baseline Characteristics | Upgrading, n = 144 | No upgrading, n = 348 | p-value | Baseline Characteristics | Downgrading, n = 92 | No downgrading, n = 400 | p-value | ||||||||||
Age (years) | 67.8 ± 7.2 | 66.7 ± 8.2 | 0.13 | Age (years) | 68.2 ± 7.9 | 66.8 ± 8.0 | 0.12 | ||||||||||
Number of positive biopsy cores (n) | 5.3 ± 3.1 | 5.2 ± 2.9 | 0.58 | Number of positive biopsy cores (n) | 6.2 ± 3.0 | 5.0 ± 2.9 | <0.001 | ||||||||||
Number of biopsy cores obtained (n) | 0.80 | Number of biopsy cores obtained (n) | 0.10 | ||||||||||||||
Highest infiltration of the obtained biopsy cores (%) | 50.3 ± 25.2 | 48.0 ± 23.6 | 0.36 | Highest infiltration of the obtained biopsy cores (%) | 50.7 ± 23.8 | 48.2 ± 24.1 | 0.38 | ||||||||||
iPSA (ng/mL) | 14.1 ± 32.8 | 10.9 ± 10.4 | 0.26 | iPSA (ng/mL) | 12.2 ± 13.3 | 11.8 ± 21.0 | 0.79 | ||||||||||
Prior biopsy (n) | 38 (30.9%) | 79 (27.3%) | 0.54 | Prior biopsy (n) | 23 (29.1%) | 94 (28.2%) | 0.99 | ||||||||||
Highest PI-RADS score | 0.086 | Highest PI-RADS score | 0.75 | ||||||||||||||
3 | 19 (13.2%) | 28 (8.0%) | 3 | 9 (9.8%) | 38 (9.5%) | ||||||||||||
4 | 54 (37.5%) | 161 (46.3%) | 4 | 37 (40.2%) | 178 (44.5%) | ||||||||||||
5 | 71 (49.3%) | 159 (45.7%) | 5 | 46 (50.0%) | 184 (46.0%) | ||||||||||||
Prostate volume (mL) | 50.2 ± 26.1 | 50.6 ± 31.1 | 0.91 | Prostate volume (mL) | 57.6 ± 36.1 | 48.8 ± 27.9 | 0.048 | ||||||||||
Positive DRE | 28 (50.9%) | 98 (55.1%) | 0.70 | Positive DRE | 38 (65.5%) | 88 (50.3%) | 0.062 | ||||||||||
Time between FBx and RP (days) | 84.7 ± 145.4 | 56.9 ± 75.0 | 0.031 | Time between FBx and RP (days) | 43.9 ± 34.7 | 69.9 ± 110.7 | <0.001 | ||||||||||
T Stage after RP | 0.012 | T Stage after RP | 0.059 | ||||||||||||||
2a | 4 (2.8%) | 20 (5.7%) | 2a | 2 (2.2%) | 22 (5.5%) | ||||||||||||
2b | 4 (2.8%) | 6 (1.7%) | 2b | 5 (5.4%) | 5 (1.2%) | ||||||||||||
2c | 66 (45.8%) | 208 (59.8%) | 2c | 47 (51.1%) | 227 (56.8%) | ||||||||||||
3a | 43 (29.9%) | 71 (20.4%) | 3a | 23 (25.0%) | 91 (22.8%) | ||||||||||||
3b | 27 (18.8%) | 43 (12.4%) | 3b | 15 (16.3%) | 55 (13.8%) | ||||||||||||
(B) | (D) | ||||||||||||||||
Baseline characteristics of all upgraded patients | Baseline characteristics of all downgraded patients | ||||||||||||||||
Characteristic | Univariate | Multivariable | Characteristic | Univariate | Multivariable | ||||||||||||
OR | 95% CI | p-value | OR | 95% CI | p-value | OR | 95% CI | p-value | OR | 95% CI | p-value | ||||||
Age | 1.02 | 0.99, 1.04 | 0.15 | 1.02 | 0.99, 1.04 | 0.20 | Age | 1.02 | 0.99, 1.05 | 0.12 | 1.02 | 0.99, 1.05 | 0.20 | ||||
Percent of positive biopsy cores | 1.12 | 0.47, 2.64 | 0.80 | 1.02 | 0.36, 2.78 | >0.9 | Percent of positive biopsy cores | 5.78 | 2.19, 15.3 | <0.001 | 6.14 | 1.99, 19.1 | <0.001 | ||||
Highest infiltration of the obtained biopsy cores | 1.00 | 1.00, 1.01 | 0.30 | 1.00 | 1.00, 1.01 | 0.30 | Highest infiltration of the obtained biopsy cores | 1.00 | 0.99, 1.01 | 0.40 | 0.99 | 0.98, 1.01 | 0.30 | ||||
iPSA | 1.01 | 1.00, 1.02 | 0.20 | 1.01 | 1.00, 1.02 | 0.20 | iPSA | 1.00 | 0.99, 1.01 | 0.80 | 1.00 | 0.98, 1.01 | 0.80 | ||||
Highest PI-RADS score | 0.96 | 0.72, 1.30 | 0.80 | 0.94 | 0.68, 1.30 | 0.70 | Highest PI-RADS score | 1.09 | 0.77, 1.56 | 0.60 | 0.88 | 0.60, 1.29 | 0.50 | ||||
Time between FBx and RP | 1.01 | 1.01, 1.01 | 0.01 | 1.01 | 1.01, 1.01 | 0.01 | Time between FBx and RP | 0.99 | 0.99, 0.99 | 0.03 | 0.99 | 0.99, 1.00 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebner, B.; Apfelbeck, M.; Pyrgidis, N.; Nellessen, T.; Ledderose, S.; Pfitzinger, P.L.; Volz, Y.; Berg, E.; Enzinger, B.; Rodler, S.; et al. Adverse Pathology after Radical Prostatectomy of Patients Eligible for Active Surveillance—A Summary 7 Years after Introducing mpMRI-Guided Biopsy in a Real-World Setting. Bioengineering 2023, 10, 247. https://doi.org/10.3390/bioengineering10020247
Ebner B, Apfelbeck M, Pyrgidis N, Nellessen T, Ledderose S, Pfitzinger PL, Volz Y, Berg E, Enzinger B, Rodler S, et al. Adverse Pathology after Radical Prostatectomy of Patients Eligible for Active Surveillance—A Summary 7 Years after Introducing mpMRI-Guided Biopsy in a Real-World Setting. Bioengineering. 2023; 10(2):247. https://doi.org/10.3390/bioengineering10020247
Chicago/Turabian StyleEbner, Benedikt, Maria Apfelbeck, Nikolaos Pyrgidis, Tobias Nellessen, Stephan Ledderose, Paulo Leonardo Pfitzinger, Yannic Volz, Elena Berg, Benazir Enzinger, Severin Rodler, and et al. 2023. "Adverse Pathology after Radical Prostatectomy of Patients Eligible for Active Surveillance—A Summary 7 Years after Introducing mpMRI-Guided Biopsy in a Real-World Setting" Bioengineering 10, no. 2: 247. https://doi.org/10.3390/bioengineering10020247
APA StyleEbner, B., Apfelbeck, M., Pyrgidis, N., Nellessen, T., Ledderose, S., Pfitzinger, P. L., Volz, Y., Berg, E., Enzinger, B., Rodler, S., Atzler, M., Ivanova, T., Clevert, D. -A., Stief, C. G., & Chaloupka, M. (2023). Adverse Pathology after Radical Prostatectomy of Patients Eligible for Active Surveillance—A Summary 7 Years after Introducing mpMRI-Guided Biopsy in a Real-World Setting. Bioengineering, 10(2), 247. https://doi.org/10.3390/bioengineering10020247