Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine
Abstract
:1. Introduction
2. Mathematical Models
2.1. Empirical Models
2.2. EoS-Based Models
- Van der Waals-1 parameter mixing rule (vdW1) (11), with one parameter, kij:
- Van der Waals-2 parameters mixing rule (vdW2) (12), with two parameters, kij and lij:
- Panagiotopoulos–Reid mixing rule (mrPR) (13), with two parameters, kij and kji:
- Mukhopadhyay–Rao mixing rule (MR) (14), with one parameter, mij:
3. AI Models
4. CFD Models
5. Challenges and Opportunities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Nomenclature | |
ai | the i-th adjustable parameter of empirical model |
AARD% | average absolute relative deviation |
b | volume parameter for EoS (m3 mol−1) |
c | parameter for PTV EoS (m3 mol−1) |
E | the total energy |
f2SCF | the fugacity of the solute in the SCF phase |
f2solid | the fugacity of the solute in the solid phase |
g | the gravity vector (m s−2) |
H | the total enthalpy |
k | Turbulent kinetic energy (m2 s−2) |
kij, kji, lij, mij | binary interaction parameters in the mixing rules |
mrPR | Panagiotopoulos–Reid mixing rule |
Max Error | mean absolute percentage error |
MAE | mean absolute percentage error |
MAPE | mean absolute percentage error |
MSE | mean squared error |
MR | Mukhopadhyay–Rao mixing rule |
N,n | number of experimental data |
o | bias |
P, p | pressure (bar) |
Pc | critical pressure of SCCO2 (MPa) |
Psub | sublimation pressure (Pa) |
Pref | reference pressure (MPa) |
PR | Peng–Robinson |
P2sub | the sublimation vapor pressure of the solid |
qeff | an effective heat flux |
R | universal gas constant, generally equal to 8.314 (J kg−1 K−1) |
R2 | Correlation coefficient |
RMSE | root mean squared error |
t | time (s) |
T | temperature (K) |
Tc | critical temperature |
Tr | reduced temperature |
v | velocity (m s−1) |
vdW1 | van der Waals mixing rule with one adjustable parameter |
vdW2 | van der Waals mixing rule with two adjustable parameter |
V | molar volume of the mixture/SCCO2/solute (m3 mol−1) |
Vs | the molar volume of the solid |
wT | the weight vector |
y | Mole fraction solubility (mol·mol−1) |
y2 | solubility of drugs in SCF (mol·mol−1) |
Greek symbols | |
(T) | energy parameter of the EoS (Nm4 mol−2) |
τeff | the effective tensor (Pa) |
ρ | density (kg m−3) |
ρ1 | SCF density (kg m−3) |
ρref | reference density |
ϕ(x) | a non-linear function that maps the input space to a higher-dimensional space |
the fugacity coefficient of the solid in the supercritical phase | |
rate of turbulent kinetic energy dissipation (m2 s−3) | |
μ | the molecular viscosity (Pa s) |
the turbulent viscosity (Pa s) | |
subscripts | |
1 | supercritical carbon dioxide |
2 | solid solute |
c | corrected |
i,j | component |
r | reduced |
superscripts | |
cal | calculated |
exp | experimental |
solid | the solid phase |
sub | sublimation |
SCF | the supercritical fluid phase |
References
- Fan, D.; Cao, Y.; Cao, M.; Wang, Y.; Cao, Y.; Gong, T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023, 8, 293. [Google Scholar] [CrossRef]
- Cheng, J.; Huang, H.; Chen, Y.; Wu, R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. Adv. Sci. 2023, 2304294. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Pérez, A.; Zhang, M.; Fitzpatrick, L.W.; Izquierdo-Lozano, C.; Albertazzi, L. Advanced optical imaging for the rational design of nanomedicines. Adv. Drug Deliv. Rev. 2023, 204, 115138. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Xia, H.; Xu, W.; Chen, B.; Wang, Y. The spatiotemporal journey of nanomedicines in solid tumors on their therapeutic efficacy. Adv. Drug Deliv. Rev. 2023, 203, 115137. Available online: https://api.semanticscholar.org/CorpusID:265120338 (accessed on 20 November 2023). [CrossRef]
- Puri, S.; Mazza, M.; Roy, G.; England, R.M.; Zhou, L.; Nourian, S.; Anand Subramony, J. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv. Drug Deliv. Rev. 2023, 200, 114962. [Google Scholar] [CrossRef] [PubMed]
- Fornaguera, C.; García-Celma, M.J. Personalized Nanomedicine: A Revolution at the Nanoscale. Pers. Med. 2017, 7, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Dai, Z.; Theivendran, S.; Gu, Z.; Zhao, L.; Song, H.; Yang, Y.; Yu, C. Nanotechnology enabled reactive species regulation in biosystems for boosting cancer immunotherapy. Nano Today 2021, 36, 101035. [Google Scholar] [CrossRef]
- Kankala, R.K.; Zhang, Y.S.; Wang, S.B.; Lee, C.H.; Chen, A.Z. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv. Healthc. Mater. 2017, 6, 1700433. [Google Scholar] [CrossRef]
- Sun, Y. Supercritical Fluid Particle Design of DPI Formulations (Review). Curr. Pharm. Des. 2015, 21, 2516–2542. [Google Scholar] [CrossRef]
- O’Sullivan, A.; Ryan, K.M.; Padrela, L. Production of biopharmaceutical dried-powders using supercritical CO2 technology. J. Supercrit. Fluids 2022, 187, 105645. [Google Scholar] [CrossRef]
- He, P.; Ren, E.; Chen, B.; Chen, H.; Cheng, H.; Gao, X.; Liang, X.; Liu, H.; Li, J.; Li, B.; et al. A super-stable homogeneous Lipiodol-hydrophilic chemodrug formulation for treatment of hepatocellular carcinoma. Theranostics 2022, 12, 1769–1782. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, H.; Chen, H.; Xu, P.; Ren, E.; Jiang, Y.; Li, D.; Gao, X.; Zheng, Y.; He, P.; et al. A pure nanoICG-based homogeneous lipiodol formulation: Toward precise surgical navigation of primary liver cancer after long-term transcatheter arterial embolization. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 2605–2617. [Google Scholar] [CrossRef]
- He, P.; Xiong, Y.; Ye, J.; Chen, B.; Cheng, H.; Liu, H.; Zheng, Y.; Chu, C.; Mao, J.; Chen, A.; et al. A clinical trial of super-stable homogeneous lipiodol-nanoICG formulation-guided precise fluorescent laparoscopic hepatocellular carcinoma resection. J. Nanobiotechnol. 2022, 20, 250. [Google Scholar] [CrossRef]
- Padrela, L.; Rodrigues, M.A.; Duarte, A.; Dias, A.M.; Braga, M.E.; de Sousa, H.C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals–a comprehensive review. Adv. Drug Deliv. Rev. 2018, 131, 22–78. [Google Scholar] [CrossRef]
- Kaga, K.; Honda, M.; Adachi, T.; Honjo, M.; Kanda, H.; Goto, M. Nanoparticle formation of PVP/astaxanthin inclusion complex by solution-enhanced dispersion by supercritical fluids (SEDS): Effect of PVP and astaxanthin Z-isomer content. J. Supercrit. Fluids 2018, 136, 44–51. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A.; Daneshyan, S. Preparation of Aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC). J. Supercrit. Fluids 2018, 140, 72–84. [Google Scholar] [CrossRef]
- Ciou, J.M.; Wang, B.C.; Su, C.S.; Liu, J.J.; Sheu, M.T. Measurement of solid solubility of warfarin in supercritical carbon dioxide and recrystallization study using supercritical antisolvent process. Adv. Powder Technol. 2018, 29, 479–487. [Google Scholar] [CrossRef]
- López-Iglesias, C.; López, E.R.; Fernández, J.; Landin, M.; García-González, C.A. Modeling of the production of lipid microparticles using PGSS® technique. Molecules 2020, 25, 4927. [Google Scholar] [CrossRef]
- Majrashi, M.; Al-Shati, A.S.; Grishina, M.; Sarkar, S.M.; Nguyen-Le, M.T.; Shirazian, S. Experimental measurement and thermodynamic modeling of Chlorothiazide solubility in supercritical carbon dioxide. Case Stud. Therm. Eng. 2023, 41, 102621. [Google Scholar] [CrossRef]
- Ardestani, N.S.; Amani, M.; Grishina, M.; Shirazian, S. Theoretical and experimental study on Chloroquine drug solubility in supercritical carbon dioxide via the thermodynamic, multi-layer perceptron neural network (MLPNN), and molecular modeling. Arab. J. Chem. 2022, 15, 104371. [Google Scholar] [CrossRef]
- Alshahrani, S.M.; Alshetaili, A.S.; Alfadhel, M.M.; Belal, A.; Abourehab, M.A.; Al Saqr, A.; Almutairy, B.K.; Venkatesan, K.; Alsubaiyel, A.M.; Pishnamazi, M. Optimization of tamoxifen solubility in carbon dioxide supercritical fluid and investigating other molecular targets using advanced artificial intelligence models. Sci. Rep. 2023, 13, 1313. [Google Scholar] [CrossRef]
- Cardoso, F.; Rezende, R.; Almeida, R.; Meier, H.; Cardozo-Filho, L. Effect of precipitation chamber geometry on the production of microparticles by antisolvent process. J. Supercrit. Fluids 2018, 133, 357–366. [Google Scholar] [CrossRef]
- Foster, N.R.; Gurdial, G.S.; Yun, J.S.; Liong, K.K.; Tilly, K.D.; Ting, S.S.; Singh, H.; Lee, J.H. Significance of the crossover pressure in solid-supercritical fluid phase equilibria. Ind. Eng. Chem. Res. 1991, 30, 1955–1964. [Google Scholar] [CrossRef]
- Alshahrani, S.M.; Alsubaiyel, A.M.; Abduljabbar, M.H.; Abourehab, M.A. Measurement of metoprolol solubility in supercritical carbon dioxide; experimental and modeling study. Case Stud. Therm. Eng. 2023, 42, 102764. [Google Scholar] [CrossRef]
- Pishnamazi, M.; Zabihi, S.; Jamshidian, S.; Borousan, F.; Hezave, A.Z.; Shirazian, S. Thermodynamic modelling and experimental validation of pharmaceutical solubility in supercritical solvent. J. Mol. Liq. 2020, 319, 114120. [Google Scholar] [CrossRef]
- Kutílek, M.; Jendele, L.; Krejča, M. Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils. J. Contam. Hydrol. 2009, 104, 84–89. [Google Scholar] [CrossRef]
- Pishnamazi, M.; Zabihi, S.; Jamshidian, S.; Hezaveh, H.Z.; Hezave, A.Z.; Shirazian, S. Measuring solubility of a chemotherapy-anti cancer drug (busulfan) in supercritical carbon dioxide. J. Mol. Liq. 2020, 317, 113954. [Google Scholar] [CrossRef]
- Abourehab, M.A.; Alshehri, S.; Alzhrani, R.M.; Algarni, M.A.; Almalki, A.H.; Alqarni, M.; Alsubaiyel, A.M.; Abduljabbar, M.H.; AboRas, K.M. Experimental evaluation and thermodynamic analysis of Febuxostat solubility in supercritical solvent. J. Mol. Liq. 2022, 364, 120040. [Google Scholar] [CrossRef]
- Chrastil, J. Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 1982, 86, 3016–3021. [Google Scholar] [CrossRef]
- Bartle, K.; Clifford, A.; Jafar, S.; Shilstone, G. Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. J. Phys. Chem. Ref. Data 1991, 20, 713–756. [Google Scholar] [CrossRef]
- Sung, H.D.; Shim, J.J. Solubility of CI disperse red 60 and CI disperse blue 60 in supercritical carbon dioxide. J. Chem. Eng. Data 1999, 44, 985–989. [Google Scholar] [CrossRef]
- Hozhabr, S.B.; Mazloumi, S.H.; Sargolzaei, J. Correlation of solute solubility in supercritical carbon dioxide using a new empirical equation. Chem. Eng. Res. Des. 2014, 92, 2734–2739. [Google Scholar] [CrossRef]
- Méndez-Santiago, J.; Teja, A.S. The solubility of solids in supercritical fluids. Fluid Phase Equilibria 1999, 158, 501–510. [Google Scholar] [CrossRef]
- Adachi, Y.; Lu, B.C.Y. Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilibria 1983, 14, 147–156. [Google Scholar] [CrossRef]
- Keshmiri, K.; Vatanara, A.; Yamini, Y. Development and evaluation of a new semi-empirical model for correlation of drug solubility in supercritical CO2. Fluid Phase Equilibria 2014, 363, 18–26. [Google Scholar] [CrossRef]
- Alharby, T.N.; Algahtani, M.M.; Alanazi, J.; Alanazi, M. Advancing nanomedicine production via green thermal supercritical processing: Laboratory measurement and thermodynamic modeling. J. Mol. Liq. 2023, 383, 122042. [Google Scholar] [CrossRef]
- Venkatesan, K.; Alshahrani, S.M.; Alsubaiyel, A.M.; Abduljabbar, M.H.; Alosaimi, M.E.; Grishina, M.; Shirazian, S. Experimental- Theoretical approach for determination of Metformin solubility in supercritical carbon dioxide: Thermodynamic modeling. Case Stud. Therm. Eng. 2023, 41, 102649. [Google Scholar] [CrossRef]
- Hani, U.; Alosaimi, H.E.; Huwaimel, B.; Alharby, T.N.; Alanazi, J.; Alanazi, M. Study of hyoscine solubility in scCO2: Experimental measurement and thermodynamic modeling. J. Mol. Liq. 2023, 381, 121821. [Google Scholar] [CrossRef]
- Sodeifian, G.; Alwi, R.S.; Razmimanesh, F.; Abadian, M. Solubility of Dasatinib monohydrate (anticancer drug) in supercritical CO2: Experimental and thermodynamic modeling. J. Mol. Liq. 2022, 346, 117899. [Google Scholar] [CrossRef]
- Sajadian, S.A.; Amani, M.; Ardestani, N.S.; Shirazian, S. Experimental analysis and thermodynamic modelling of lenalidomide solubility in supercritical carbon dioxide. Arab. J. Chem. 2022, 15, 103821. [Google Scholar] [CrossRef]
- Esfandiari, N.; Sajadian, S.A. Solubility of Lacosamide in supercritical carbon Dioxide: An experimental analysis and thermody- namic modeling. J. Mol. Liq. 2022, 360, 119467. [Google Scholar] [CrossRef]
- Sodeifian, G.; Garlapati, C.; Razmimanesh, F.; Sodeifian, F. The solubility of Sulfabenzamide (an antibacterial drug) in supercritical carbon dioxide: Evaluation of a new thermodynamic model. J. Mol. Liq. 2021, 335, 116446. [Google Scholar] [CrossRef]
- Obaidullah, A.J. Thermodynamic and experimental analysis of drug nanoparticles preparation using supercritical thermal processing: Solubility of Chlorothiazide in different Co-solvents. Case Stud. Therm. Eng. 2023, 49, 103212. [Google Scholar] [CrossRef]
- Dhamodharan, D.; Park, C.W.; Ghoderao, P.N.; Byun, H.S. Experimental and computational investigation of two-component mixtures for the alkyl (ethyl, propyl and butyl) oleate in supercritical carbon dioxide. J. Ind. Eng. Chem. 2022, 110, 367–374. [Google Scholar] [CrossRef]
- Budkov, Y.; Kolesnikov, A.; Ivlev, D.; Kalikin, N.; Kiselev, M. Possibility of pressure crossover prediction by classical dft for sparingly dissolved compounds in scCO2. J. Mol. Liq. 2019, 276, 801–805. [Google Scholar] [CrossRef]
- Shi, K.; Feng, L.; He, L.; Li, H. Thermodynamic modeling of the supercritical CO2 impregnation process for the preparation ibuprofen/polymethylmethacrylate composite. J. Taiwan. Inst. Chem. Eng. 2017, 78, 471–476. [Google Scholar] [CrossRef]
- Tamura, K.; Alwi, R.S. Solubility of anthraquinone derivatives in supercritical carbon dioxide. Dye. Pigment. 2015, 113, 351–356. [Google Scholar] [CrossRef]
- Ardestani, N.S.; Majd, N.Y.; Amani, M. Experimental Measurement and Thermodynamic Modeling of Capecitabine (an Anticancer Drug) Solubility in Supercritical Carbon Dioxide in a Ternary System: Effect of Different Cosolvents. J. Chem. Eng. Data 2020, 65, 4762–4779. [Google Scholar] [CrossRef]
- Khamda, M.; Hosseini, M.H.; Rezaee, M. Measurement and correlation solubility of cefixime trihydrate and oxymetholone in supercritical carbon dioxide (CO2). J. Supercrit. Fluids 2013, 73, 130–137. [Google Scholar] [CrossRef]
- Housaindokht, M.R.; Bozorgmehr, M. Calculation of solubility of methimazole, phenazopyridine and propranolol in supercritical carbon dioxide. J. Supercrit. Fluids 2008, 43, 390–397. [Google Scholar] [CrossRef]
- Huang, C.C.; Tang, M.; Tao, W.H.; Chen, Y.P. Calculation of the solid solubilities in supercritical carbon dioxide using a modified mixing model. Fluid Phase Equilibria 2001, 179, 67–84. [Google Scholar] [CrossRef]
- Coimbra, P.; Duarte, C.; De Sousa, H. Cubic equation-of-state correlation of the solubility of some anti-inflammatory drugs in supercritical carbon dioxide. Fluid Phase Equilibria 2006, 239, 188–199. [Google Scholar] [CrossRef]
- Sodeifian, G.; Hazaveie, S.M.; Sajadian, S.A.; Razmimanesh, F. Experimental investigation and modeling of the solubility of oxcarbazepine (an anticonvulsant agent) in supercritical carbon dioxide. Fluid Phase Equilibria 2019, 493, 160–173. [Google Scholar] [CrossRef]
- Sodeifian, G.; Ardestani, N.S.; Sajadian, S.A.; Panah, H.S. Measurement, correlation and thermodynamic modeling of the solubility of Ketotifen fumarate (KTF) in supercritical carbon dioxide: Evaluation of PCP-SAFT equation of state. Fluid Phase Equilibria 2018, 458, 102–114. [Google Scholar] [CrossRef]
- Salas-Guerrero, L.F.; Buendia-Atencio, C.; Orozco, G.A. Thermodynamics and transport properties of CBD and ∆9-THC: A first attempt using molecular dynamics. J. Mol. Liq. 2022, 371, 121048. [Google Scholar] [CrossRef]
- Yang, X.; Duan, C.; Xu, J.; Liu, Y.; Cao, B. A numerical study on the thermal conductivity of H2O/CO2/H2 mixtures in supercritical regions of water for coal supercritical water gasification system. Int. J. Heat. Mass. Transf. 2019, 135, 413–424. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Gao, Y.; Cui, J.; Cao, B. Molecular dynamics study on viscosities of sub/supercritical n-decane, n-undecane and n-dodecane. J. Mol. Liq. 2021, 335, 116180. [Google Scholar] [CrossRef]
- Santos, C.; Ribeiro, A.C.F.; Shevtsova, V. Binary Diffusion Coefficients for Short Chain Alcohols in Supercritical Carbon Dioxide-Experimental and Predictive Correlations. Molecules 2023, 28, 782. [Google Scholar] [CrossRef]
- Xia, J.; Wang, J.; Wang, H.; Dai, Y. Three-dimensional performance analysis of a radial-inflow turbine for an organic Rankine cycle driven by low grade heat source. Energy Convers. Manag. 2018, 169, 22–33. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, J.; Xia, J.; Guo, Y.; Zhao, P.; Dai, Y. Design and performance analysis of a supercritical CO2 radial inflow turbine. Appl. Therm. Eng. 2020, 167, 114757. [Google Scholar] [CrossRef]
- Huber, M.L.; Lemmon, E.W.; Bell, I.H.; McLinden, M.O. The NIST REFPROP Database for Highly Accurate Properties of Industrially Important Fluids. Ind. Eng. Chem. Res. 2022, 61, 15449–15472. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Najmi, M.; Ayari, M.A.; Sadeghsalehi, H.; Vaferi, B.; Khandakar, A.; Chowdhury, M.E.; Rahman, T.; Jawhar, Z.H. Estimating the Dissolution of Anticancer Drugs in Supercritical Carbon Dioxide with a Stacked Machine Learning Model. Pharmaceutics 2022, 14, 1632. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, T.; Nazarpour, V.; Shahini, N.; Bahmani, S.; Shahkar, A.; Abdihaji, M.; Ahmadi, S.; Shahdost, F.T. A universal methodology for reliable predicting the non-steroidal anti-inflammatory drug solubility in supercritical carbon dioxide. Sci. Rep. 2022, 12, 1043. [Google Scholar] [CrossRef]
- Abdelbasset, W.K.; Elkholi, S.M.; Ismail, K.A.; Alshehri, S.; Alobaida, A.; Huwaimel, B.; Alatawi, A.D.; Alsubaiyel, A.M.; Venkatesan, K.; Abourehab, M.A. Development a novel robust method to enhance the solubility of Oxaprozin as nonsteroidal anti-inflammatory drug based on machine-learning. Sci. Rep. 2022, 12, 13138. [Google Scholar] [CrossRef] [PubMed]
- Abdelbasset, W.K.; Elsayed, S.H.; Alshehri, S.; Huwaimel, B.; Alobaida, A.; Alsubaiyel, A.M.; Alqahtani, A.A.; El Hamd, M.A.; Venkatesan, K.; AboRas, K.M.; et al. Development of GBRT model as a novel and robust mathematical model to predict and optimize the solubility of decitabine as an anti-cancer drug. Molecules 2022, 27, 5676. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.; Namazi, N.I.; Alshehri, S.; Naguib, I.A.; Alsubaiyel, A.M.; Venkatesan, K.; Elmokadem, E.M.; Pishnamazi, M.; Abourehab, M.A. Solubility optimization of loxoprofen as a nonsteroidal anti-inflammatory drug: Statistical modeling and optimization. Molecules 2022, 27, 4357. [Google Scholar] [CrossRef]
- Alshahrani, S.M.; Almutairy, B.K.; Alfadhel, M.M.; Belal, A.; Abourehab, M.A.; Saqr, A.A.; Alshetaili, A.S.; Venkatesan, K.; Alsubaiyel, A.M.; Pishnamazi, M. Computational simulation and target prediction studies of solubility optimization of decitabine through supercritical solvent. Sci. Rep. 2022, 12, 18875. [Google Scholar] [CrossRef]
- Ghazwani, M.; Begum, M.Y. Computational intelligence modeling of hyoscine drug solubility and solvent density in supercritical processing: Gradient boosting, extra trees, and random forest models. Sci. Rep. 2023, 13, 10046. [Google Scholar] [CrossRef]
- Alshahrani, S.M.; Saqr, A.A.; Alfadhel, M.M.; Alshetaili, A.S.; Almutairy, B.K.; Alsubaiyel, A.M.; Almari, A.H.; Alamoudi, J.A.; Abourehab, M.A. Application of CO2 supercritical fluid to optimize the solubility of oxaprozin: Development of novel machine learning predictive models. Molecules 2022, 27, 5762. [Google Scholar] [CrossRef]
- Huwaimel, B.; Alobaida, A. Anti-cancer drug solubility development within a green solvent: Design of novel and robust mathematical models based on artificial intelligence. Molecules 2022, 27, 5140. [Google Scholar] [CrossRef] [PubMed]
- Obaidullah, A.J. Advanced AI modeling and optimization for determination of pharmaceutical solubility in supercritical processing for production of nanosized drug particles. Case Stud. Therm. Eng. 2023, 49, 103199. [Google Scholar] [CrossRef]
- Nayak, A.; Kayal, E.B.; Arya, M.; Culli, J.; Krishan, S.; Agarwal, S.; Mehndiratta, A. Computer-aided diagnosis of cirrhosis and hepatocellular carcinoma using multi-phase abdomen CT. Int. J. CARS 2019, 14, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Chen, Y.; Yue, X.; Ma, C.; Liu, X.; Yang, P.; Lu, J. Deep pancreas segmentation with uncertain regions of shadowed sets. Magn. Reson. Imaging 2020, 68, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Hectors, S.J.; Kennedy, P.; Huang, K.-H.; Stocker, D.; Carbonell, G.; Greenspan, H.; Friedman, S.; Taouli, B. Fully automated prediction of liver fibrosis using deep learning analysis of gadoxetic acid–enhanced MRI. Eur. Radiol. 2021, 31, 3805–3814. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef] [PubMed]
- Kadirvelu, B.; Gavriel, C.; Nageshwaran, S.; Chan, J.P.K.; Nethisinghe, S.; Athanasopoulos, S.; Ricotti, V.; Voit, T.; Giunti, P.; Festenstein, R.; et al. A wearable motion capture suit and machine learning predict disease progression in Friedreich’s ataxia. Nat. Med. 2023, 29, 86–94. [Google Scholar] [CrossRef]
- Govindan, B.; Sabri, M.A.; Hai, A.; Banat, F.; Haija, M.A. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023, 15, 868. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Sumner, J.; Ling, L.H.; Quek, R.H.C.; Tan, A.T.H.; Teng, G.G.; Seetharaman, S.K.; Gollamudi, S.P.K.; Ho, D.; Motani, M. Personalised Dosing Using the CURATE.AI Algorithm: Protocol for a Feasibility Study in Patients with Hypertension and Type II Diabetes Mellitus. Int. J. Environ. Res. Public Health 2022, 19, 8979. [Google Scholar] [CrossRef]
- Pawar, V.R.; Sobhansarbandi, S. CFD modeling of a thermal energy storage based heat pipe evacuated tube solar collector. J. Energy Storage 2020, 30, 101528. [Google Scholar] [CrossRef]
- Shourangiz-Haghighi, A.; Haghnegahdar, M.A.; Wang, L.; Mussetta, M.; Kolios, A.; Lander, M. State of the art in the optimisation of wind turbine performance using CFD. Arch. Comput. Methods Eng. 2020, 27, 413–431. [Google Scholar] [CrossRef]
- Bayat, M.; Aminian, J.; Bazmi, M.; Shahhosseini, S.; Sharifi, K. CFD modeling of fouling in crude oil pre-heaters. Energy Convers. Manag. 2012, 64, 344–350. [Google Scholar] [CrossRef]
- ANSYS. ANSYS Fluent [Computer Software]. 2023. Available online: https://www.ansys.com/products/fluids/ansys-fluent (accessed on 20 November 2023).
- OpenFOAM Foundation. OpenFOAM—The Open Source CFD Toolbox [Computer Software]. 2023. Available online: https://www.openfoam.com/ (accessed on 20 November 2023).
- Franceschi, E.; De Cesaro, A.M.; Feiten, M.; Ferreira, S.R.; Dariva, C.; Kunita, M.H.; Rubira, A.F.; Muniz, E.C.; Corazza, M.L.; Oliveira, J.V. Precipitation of β-carotene and PHBV and co-precipitation from SEDS technique using supercritical CO2. J. Supercrit. Fluids 2008, 47, 259–269. [Google Scholar] [CrossRef]
- Jaouhari, T.; Zhang, F.; Tassaing, T.; Fery-Forgues, S.; Aymonier, C.; Marre, S.; Erriguible, A. Process intensification for the synthesis of ultra-small organic nanoparticles with supercritical CO2 in a microfluidic system. Chem. Eng. J. 2020, 397, 125333. [Google Scholar] [CrossRef]
- Cardoso, F.A.R.; Rezende, R.V.P.; Almeida, R.A.; Cabral, V.F.; Zanoelo, E.F.; Noriler, D.; Meier, H.F.; Cardozo-Filho, L. A model for precipitation of sub-micrometric particles of PHBV poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by supercritical assisted-atomization. J. Supercrit. Fluids 2015, 97, 88–99. [Google Scholar] [CrossRef]
- Ferreira, V.O.; El Geitani, T.; Junior, D.S.; Blais, B.; Lopes, G.C. In-depth validation of unresolved CFD-DEM simulations of liquid fluidized beds. Powder Technol. 2023, 426, 118652. [Google Scholar] [CrossRef]
- Tirapelle, M.; Santomaso, A.C.; Mazzei, L. CFD-PBE coupled model for size-driven segregation in polydisperse granular flows. Chem. Eng. Sci. 2022, 247, 117065. [Google Scholar] [CrossRef]
- Cardoso, F.; Rezende, R.; Almeida, R.; Mezzomo, N.; Ferreira, S.; Meier, H.; Cardozo-Filho, L. CFD-based modeling of precipitation by supercritical anti-solvent process of microparticles from grape pomace extract with population balance approach. J. Supercrit. Fluids 2018, 133, 519–527. [Google Scholar] [CrossRef]
- Kawasaki, S.I.; Sue, K.; Ookawara, R.; Wakashima, Y.; Suzuki, A.; Hakuta, Y.; Arai, K. Engineering study of continuous supercritical hydrothermal method using a T-shaped mixer: Experimental synthesis of NiO nanoparticles and CFD simulation. J. Supercrit. Fluids 2010, 54, 96–102. [Google Scholar] [CrossRef]
- Lestari, S.D.; Machmudah, S.; Winardi, S.; Nurtono, T.; Kanda, H.; Goto, M. Effect of solvent selection and nozzle geometry on Curcuma mangga micronization process using supercritical antisolvent: Experiment and CFD simulation. Food Bioprod. Process. 2020, 123, 367–377. [Google Scholar] [CrossRef]
- Cui, Y.; Zhong, W.; Liu, X.; Xiang, J. Study on scale-up characteristics in supercritical CO2 circulating fluidized bed boiler by 3D CFD simulation. Powder Technol. 2021, 394, 103–119. [Google Scholar] [CrossRef]
- Li, Z.; Tong, Z.; Zhang, H.; Chu, K.; Li, R.; Miao, H.; Zhao, J.; Yu, A. CFD-DEM simulation of the supercritical water-solid flow in cyclone. Powder Technol. 2023, 418, 118261. [Google Scholar] [CrossRef]
- Li, A.; Jiménez, F.H.; Pleite, E.C.; Wang, Z.; Zhu, L. Numerical comparison of thermal energy performance between spouted, fluidized and fixed beds using supercritical CO2 as fluidizing agent. Case Stud. Therm. Eng. 2022, 39, 102469. [Google Scholar] [CrossRef]
- Lebedev, A.E.; Lovskaya, D.D.; Menshutina, N.V. Modeling and scale-up of supercritical fluid processes. Part II: Supercritical drying of gel particles. J. Supercrit. Fluids 2021, 174, 105238. [Google Scholar] [CrossRef]
- Wang, J.; Gong, J.; Kang, X.; Zhao, C.; Hooman, K. Assessment of RANS turbulence models on predicting supercritical heat transfer in highly buoyant horizontal flows. Case Stud. Therm. Eng. 2022, 34, 102057. [Google Scholar] [CrossRef]
- Winkler, E.; Wu, D.; Gil, E.; McCoy, D.; Narsinh, K.; Sun, Z.; Mueller, K.; Ross, J.; Kim, H.; Weinsheimer, S.; et al. Endoluminal Biopsy for Molecular Profiling of Human Brain Vascular Malformations. Neurology 2022, 98, e1637–e1647. [Google Scholar] [CrossRef] [PubMed]
- Farooq, U.; Hassan, A.; Fatima, N.; Imran, M.; Alqurashi, M.S.; Noreen, S.; Akgül, A.; Bariq, A. A computational fluid dynamics analysis on Fe3O4–H2O based nanofluid axisymmetric flow over a rotating disk with heat transfer enhancement. Sci. Rep. 2023, 13, 4679. [Google Scholar] [CrossRef]
- Henriquez, F.; Celentano, D.; Vega, M.; Pincheira, G.; Morales-Ferreiro, J.O. Modeling of Microneedle Arrays in Transdermal Drug Delivery Applications. Pharmaceutics 2023, 15, 358. [Google Scholar] [CrossRef]
- Zheng, Y.; Huang, Y.; Luo, J.; Peng, X.; Gui, X.; Liu, G.; Zhang, Y. Supercritical fluid technology: A game-changer for biomacromolecular nanomedicine preparation and biomedical application. Chin. Chem. Lett. 2023, 109169. [Google Scholar] [CrossRef]
- Massias, T.; de Paiva Lacerda, S.; de Azevedo, J.R.; Letourneau, J.J.; Bolzinger, M.A.; Espitalier, F. Supercritical carbon dioxide solubility measurement and modelling for effective size reduction of nifedipine particles for transdermal application. Int. J. Pharm. 2023, 630, 122425. [Google Scholar] [CrossRef]
- Pitzer, K.S. Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 1973, 77, 268–277. Available online: https://pubs.acs.org/doi/10.1021/j100621a026 (accessed on 20 November 2023).
- Liu, Q.; Ding, X.; Du, B. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review. Crit. Rev. Anal. Chem. 2017, 47, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Nateghi, H.; Sodeifian, G.; Razmimanesh, F.; Mohebbi Najm Abad, J. A machine learning approach for thermodynamic modeling of the statically measured solubility of nilotinib hydrochloride monohydrate (anti-cancer drug) in supercritical CO2. Sci. Rep. 2023, 13, 12906. [Google Scholar] [CrossRef] [PubMed]
- Shilpa, S.; Kashyap, G.; Sunoj, R.B. Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions. J. Phys. Chem. A 2023, 127, 8253–8271. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.C. The Current Limitations and Advanced Analysis of Hemodynamic Study of Cerebral Aneurysms. Neurointervention 2023, 18, 107–113. [Google Scholar] [CrossRef] [PubMed]
- D’Bastiani, C.; Kennedy, D.; Reynolds, A. CFD Simulation of Anaerobic Granular Sludge Reactors: A Review. Water Res. 2023, 242, 120220. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Z.; Wang, X. CFD–PBM Simulation for Continuous Hydrothermal Flow Synthesis of Zirconia Nanoparticles in a Confined Impinging Jet Reactor. Materials 2023, 16, 3421. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, H.; Hashemipour, H.; Mirzaie, M. Investigation on hydrodynamic and formation of nano particle by RESS process: The numerical study. J. Mol. Liq. 2019, 281, 490–505. [Google Scholar] [CrossRef]
- Mohamed, S.; Shatilla, Y.; Zhang, T. CFD-based design and simulation of hydrocarbon ejector for cooling. Energy 2019, 167, 346–358. [Google Scholar] [CrossRef]
- Cardoso, M.A.T.; Cabral, J.M.S.; Palavra, A.M.F.; Geraldes, V. CFD analysis of supercritical antisolvent (SAS) micronization of minocycline hydrochloride. J. Supercrit. Fluids 2008, 47, 247–258. [Google Scholar] [CrossRef]
- Bałdyga, J.; Kubicki, D.; Shekunov, B.Y.; Smith, K.B. Mixing effects on particle formation in supercritical fluids. Chem. Eng. Res. Des. 2010, 88, 1131–1141. [Google Scholar] [CrossRef]
- Weber, M.; Russell, L.M.; Debenedetti, P.G. Mathematical modeling of nucleation and growth of particles formed by the rapid expansion of a supercritical solution under subsonic conditions. J. Supercrit. Fluids 2002, 23, 65–80. [Google Scholar] [CrossRef]
- Sierra-Pallares, J.; Alonso, E.; Montequi, I.; Cocero, M.J. Particle diameter prediction in supercritical nanoparticle synthesis using three-dimensional CFD simulations. Validation for anatase titanium dioxide production. Chem. Eng. Sci. 2009, 64, 3051–3059. [Google Scholar] [CrossRef]
- Ren, J.; Cao, S.J. Development of self-adaptive low-dimension ventilation models using OpenFOAM: Towards the application of AI based on CFD data. Build. Environ. 2020, 171, 106671. [Google Scholar] [CrossRef]
- Babanezhad, M.; Behroyan, I.; Nakhjiri, A.T.; Rezakazemi, M.; Marjani, A.; Shirazian, S. Prediction of turbulence eddy dissipation of water flow in a heated metal foam tube. Sci. Rep. 2020, 10, 19280. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, J. Application of Artificial Intelligence in Computational Fluid Dynamics. Ind. Eng. Chem. Res. 2021, 60, 2772–2790. [Google Scholar] [CrossRef]
- Babanezhad, M.; Behroyan, I.; Marjani, A.; Shirazian, S. Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results. Sci. Rep. 2021, 11, 1209. [Google Scholar] [CrossRef]
- Lira, J.O.; Riella, H.G.; Padoin, N.; Soares, C. Computational fluid dynamics (CFD), artificial neural network (ANN) and genetic algorithm (GA) as a hybrid method for the analysis and optimization of micro-photocatalytic reactors: NOx abatement as a case study. Chem. Eng. J. 2022, 431, 133771. [Google Scholar] [CrossRef]
- He, L.; Tafti, D.K. A supervised machine learning approach for predicting variable drag forces on spherical particles in suspension. Powder Technol. 2019, 345, 379–389. [Google Scholar] [CrossRef]
Disease Models | Drug | Variable | Parameters Constant | Ref. |
---|---|---|---|---|
Stahl | Lenalidomide | 2 | [40] | |
Andonova–Garlapati | Dasatinib monohydrate, Lenalidomide | T, | 3 | [39,40] |
Alwi–Garlapati | Dasatinib monohydrate, Lenalidomide | T, | 3 | [39,40] |
Chrastil | Chlorothiazide, Chloroquine, Tamoxifen, Febuxostat, Chlorpromazine, Metformin, Hyoscine, Dasatinib monohydrate, Lenalidomide, Lacosamide, Sulfabenzamide | T, | 3 | [19,20,25,28,36,37,38,39,40,41,42] |
Kumar-Johnston (K-J) | Chlorothiazide, Chloroquine, Metoprolol, Tamoxifen, Hyoscine, Lenalidomide, Lacosamide | T, | 3 | [19,20,24,25,38,40,41] |
Del Valle–Aguilera | Dasatinib monohydrate, Lenalidomide | T, | 4 | [39,40] |
Li | Chlorothiazide | T, | 4 | [43] |
Sung and Shim | Metoprolol, Febuxostat, Chlorpromazine, Metformin, Dasatinib monohydrate, Lenalidomide | T, | 4 | [24,28,36,37,39,40] |
Garlapati-Madras | Chlorothiazide, Chloroquine, Tamoxifen, Dasatinib monohydrate, Lenalidomide, Sulfabenzamide | T, | 4 | [19,20,25,39,40,42] |
Gonz’alez | Chlorothiazide | T, | 4 | [43] |
Adachi and Lu | Metoprolol, Febuxostat, Metformin, Dasatinib monohydrate, Lenalidomide | T, | 5 | [24,28,37,39,40] |
Bian | Dasatinib monohydrate, Lenalidomide, Sulfabenzamide | T, | 5 | [39,40,42] |
Sparks | Metoprolol, Lenalidomide | T, | 6 | [24,40] |
Si-Moussa | Metformin, Lenalidomide | T, | 6 | [37,40] |
Belghait | Lenalidomide | T, | 8 | [40] |
Amooey | Lenalidomide | T, | 9 | [40] |
Bartle | Chlorothiazide, Chloroquine, Metoprolol, tamoxifen, Febuxostat, Chlorpromazine, Metformin, Hyoscine, Dasatinib monohydrate, Lenalidomide, Lacosamide, Sulfabenzamide | T, P, | 3 | [19,20,24,25,28,36,37,38,39,40,41,42] |
Mendez-Santiago and Teja (MST) | Chlorothiazide, Chloroquine, Tamoxifen, Hyoscine, Dasatinib monohydrate, Lenalidomide, Lacosamide, Chlorothiazide, Sulfabenzamide | T, P, | 3 | [19,20,25,38,39,40,41,42] |
Ch and Madras | Lenalidomide | T, P, | 4 | [40] |
Hozhabr | Metoprolol, Febuxostat, Dasatinib monohydrate, Lenalidomide | T, P, | 4 | [24,28,39,40] |
Jafari | Chlorpromazine, Metformin, Dasatinib monohydrate, Lenalidomide | T, P, | 4 | [36,37,39,40] |
Keshmiri | Febuxostat, Chlorpromazine, Metformin, Dasatinib monohydrate, Lenalidomide | T, P, | 5 | [28,36,37,39,40] |
Khansary | Metoprolol, Chlorpromazine, Dasatinib monohydrate, Lenalidomide | T, P, | 5 | [24,36,39,40] |
Soltani–Mazloumi | Chlorothiazide | T, P, | 5 | [43] |
Jouyban | Metoprolol, Metformin, Dasatinib monohydrate, Lenalidomide, Chlorothiazide | T, P, | 6 | [24,37,39,40,43] |
Sodeifian | Dasatinib monohydrate, Lenalidomide, Sulfabenzamide | T, P, | 6 | [39,40,42] |
Reddy | Dasatinib monohydrate, Lenalidomide | T, P | 5 | [39,40] |
Mitra–Wilson | Dasatinib monohydrate, Lenalidomide | T, P | 5 | [39,40] |
Reddy–Garlapati | Dasatinib monohydrate, Lenalidomide, Sulfabenzamide | T, P | 6 | [39,40,42] |
Yu | Dasatinib monohydrate, Lenalidomide | T, P | 6 | [39,40] |
Gordillo | Lenalidomide | T, P | 6 | [40] |
Haghbakhsh | Lenalidomide | P, | 10 | [40] |
Diseasemodels | Drug | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Metoprolol | Tamoxifen | Dasatinibmonohydrate | Chlorpromazine | Chlorothiazide | Lenalidomide | Febuxostat | Chloroquine | Sulfabenzamide | Metformin | Hyoscine | Lacosamide | |
Chrastil | / | 16.5 | 27.9 | 1.865 | 4.8 | 15.093 | 15.738 | 13.3 | 27.3 | 8.46 | 4.143 | 16.5 |
K-J | 15.71 | 11.1 | / | / | 3.15 | 9. 076 | / | 12.3 | / | / | 5.402 | 9.3 |
Sung and Shim | 18.18 | / | 27.7 | 1.838 | / | 11.268 | 15.506 | / | / | 7.44 | / | / |
Garlapati-Madras | / | 16.4 | 22.2 | / | 4.8 | 8.037 | / | 13.6 | 27.3 | / | / | / |
Adachi and Lu | 13.07 | / | 18.7 | / | / | 7.789 | 13.304 | / | / | 5.02 | / | / |
Bartle | 21.49 | 16.1 | 29.4 | 7.329 | 7.8 | 16.409 | 17.54 | 13 | 23.3 | 10.58 | 5.507 | 14.33 |
MST | / | 16 | 28.3 | / | 11.2 | 11.867 | / | 12 | 30.22 | / | 2.942 | 11 |
Keshmiri | / | / | 21.6 | 1.344 | / | 8.535 | 10.63 | / | / | 4.73 | / | / |
Jouyban | 16.82 | / | 20.2 | / | / | 11.836 | / | / | / | 6.1 | / | / |
Model | Equation of State | a(T) | b | c |
---|---|---|---|---|
Peng Robinson (PR) | / | |||
Soave–Redlich–Kwong (SRK) | / | |||
Patel–Teja–V alderrama (PTV) | ||||
MPR | / | |||
Pazuki | / |
Metrics | Definition | Ref. |
---|---|---|
R2 | [62,63,64,65,66,67,68,69,70] | |
MSE | [63,64,69,70] | |
RMSE | [21,67] | |
MAE | [21,63,65,67,68,69] | |
MAPE | [21,65,66,70] | |
Max Error | [70] |
Drugs | Instances | Inputs (Temperature/K, Pressure/bar, CO2 Density/kg·m−3) | Outputs (Density/kg·m−3, Solubility/Mole Fraction) | Ref. |
---|---|---|---|---|
Hyoscine | 45 | Temperature (308–348), Pressure (170–410) | Density (544.13–976.43), Solubility (7.9 × 10−5–2.83 × 10−4) | [70] |
Oxaprozin | 32 | Temperature (308–338), Pressure (120–400) | Solubility (3.31 × 10−5–1.24 × 10−3) | [65,70] |
Tamoxifen | 32 | Temperature (308–338), Pressure (120–400) | Solubility (1.05 × 10−6–7.03 × 10−5) | [21,63,71] |
Loxoprofen | 32 | Temperature (308–338), Pressure (120–400) | Solubility (1.4 × 10−5–1.28 × 10−3) | [64,67] |
Fenoprofen | 32 | Temperature (308–338), Pressure (120–400) | Solubility (2.0 × 10−5–4.2 × 10−3) | [64] |
Flurbiprofen | 27 | Temperature (303–323), Pressure (89–245) | Solubility (1.7 × 10−5–1.97 × 10−4) | [64] |
Ibuprofen | 9 | Temperature (313.15–313.15), Pressure (121.2–231) | Solubility (2.1 × 10−3–7.7 × 10−3) | [64] |
Ketoprofen | 10 | Temperature (312.5–331.5), Pressure (100–220) | Solubility (1.3 × 10−5–1.55 × 10−4) | [64] |
Nabumetone | 21 | Temperature (308.2–328.2), Pressure (100–220) | Solubility (3.9 × 10−5–2.68 × 10−3) | [64] |
Naproxen | 9 | Temperature (313.15–313.15), Pressure (121.1–279.8) | Solubility (1.0 × 10−5–4.2 × 10−5) | [64] |
Nimesulide | 8 | Temperature (313.1–333.1), Pressure (130–220) | Solubility (1.9 × 10−5–9.9 × 10−5) | [64] |
Phenylbutazone | 21 | Temperature (308.2–328.2), Pressure (100–220) | Solubility (2.0 × 10−5–2.65 × 10−3) | [64] |
Piroxicam | 37 | Temperature (308.15–338.15), Pressure (130–400) | Solubility (1.2 × 10−5–5.12 × 10−4) | [64] |
Salicylamide | 21 | Temperature (308.2–328.2), Pressure (101–220) | Solubility (2.8 × 10−5–2.1 × 10−4) | [64] |
Tolmetin | 32 | Temperature (308–338), Pressure (120–400) | Solubility (1.9 × 10−5–2.59 × 10−3) | [64] |
Sunitinib malate | 24 | Temperature (308–338), Pressure (120–270), CO2 Density (388–914) | Solubility (5.0 × 10−6–8.56 × 10−5) | [63] |
Busulfan | 32 | Temperature (308–338), Pressure (120–400), CO2 Density (383–971) | Solubility (3.27 × 10−5–8.65 × 10−4) | [63] |
Tamsulosin | 24 | Temperature (308–338), Pressure (120–270), CO2 Density (384–914) | Solubility (1.8 × 10−7–1.01 × 10−5) | [63] |
Azathioprine | 24 | Temperature (308–338), Pressure (120–270), CO2 Density (388–914) | Solubility (2.7 × 10−6–1.83 × 10−5) | [63] |
Paclitaxel | 21 | Temperature (308–328), Pressure (100–275), CO2 Density (654–915) | Solubility (1.2 × 10−6–6.2 × 10−6) | [63] |
5-Fluorouracil | 18 | Temperature (308–328), Pressure (125–250), CO2 Density (541–901) | Solubility (3.8 × 10−6–1.46 × 10−5) | [63] |
Thymidine | 25 | Temperature (308–328), Pressure (100–300), CO2 Density (325–928) | Solubility (1.2 × 10−6–8.0 × 10−6) | [63] |
Capecitabine | 35 | Temperature (308–348), Pressure (152–354), CO2 Density (477–955) | Solubility (2.7 × 10−6–1.59 × 10−4) | [63] |
Decitabine | 32 | Temperature (308–338), Pressure (120–400), CO2 Density (383–971) | Solubility (2.84 × 10−5–1.07 × 10−3) | [21,63,66] |
Letrozole | 20 | Temperature (318–348), Pressure (120–360), CO2 Density (319–922) | Solubility (1.6 × 10−6–8.51 × 10−5) | [63] |
Sorafenib tosylate | 24 | Temperature (308–338), Pressure (120–270), CO2 Density (388–914) | Solubility (6.8 × 10−7–1.26 × 10−5) | [63] |
Models | Description | Ref. |
---|---|---|
Gradient Boosting (GB) | An ML technique known as ensemble learning involves iteratively training a sequence of weak learners (typically decision trees) and continuously optimizing the predictive performance of the model using a gradient descent approach. | [63,66] |
Adaboost | An ensemble learning training approach involves iteratively training a series of weak learners and adjusting the weights of both the samples and the weak learners based on their accuracy. This process enables the final learner to make more accurate predictions for the samples. | [21,65] |
Decision Tree Regression | An algorithm based on tree structures, it constructs a tree-like structure by performing a series of splitting operations on input data. Each node in the tree represents a feature, each branch signifies a feature value, and the leaf nodes indicate the final prediction result. | [21,65,68,69] |
Extra Trees | In the context of decision tree-based ensemble algorithms, a random feature is chosen during node splitting. | [63,66] |
Random Forest | In the context of decision tree-based ensemble algorithms, the feature with the maximum information gain is chosen when the nodes are divided. | [63,66,69] |
Kernel Ridge Regression | A non-parametric regression method that combines ridge regression with kernel techniques is employed to establish a nonlinear relationship between input variables and output variables. | [68] |
Gaussian Process Regression | A non-parametric and nonlinear probabilistic model for regression analysis, suitable for various regression problems such as small sample sizes, high noise levels, and nonlinear relationships, while also capable of providing uncertainty estimates for prediction outcomes. | [65,66,68,70,71] |
Multi-layer Perceptron | A feedforward neural network composed of multiple neural network layers, with each layer consisting of multiple neurons. The basic structure of an MLP includes an input layer, hidden layers, and an output layer. The input layer receives raw data as input features, the hidden layers are responsible for nonlinear transformations and feature extraction from the input features, and the output layer generates the final prediction results. | [64,70] |
K-Nearest Neighbors (KNN) | Its fundamental idea is to make predictions by calculating the distances between samples. It selects the K closest training samples to the input sample and computes their target values, either by averaging or weighted averaging, to determine the prediction result. Weighted averaging can be adjusted based on the proximity of the samples, where closer samples receive higher weights. | [67,70,71] |
Theil-Sen Regression | It is a linear regression method used to estimate the slope and intercept of the linear relationship between variables. It is particularly useful when dealing with data containing outliers or subject to noise interference. | [71] |
Nu-SVR | By seeking a regression function based on support vectors to fit the data while minimizing the error between training samples and the regression function, SVR differs from traditional regression methods. SVR is capable of handling non-linear relationships and exhibits a certain degree of robustness against outliers, distinguishing it from conventional regression approaches. | [21,67] |
Models | Required Conditions | Obtained Results |
---|---|---|
Empirical models | Solubility experimental data are fewer than 10 points | Small-scale solubility prediction |
EoS-based models | Critical parameters, phase equilibrium parameters, and thermodynamic parameters were obtained for each component | Predicting solubility and density |
AI models | Solubility experimental data exceeds 20 points | Large-scale solubility prediction |
CFD models | Density, viscosity, thermal conductivity, and diffusion coefficient of each component were obtained during the experimental reactions | Visualizing experimental processes and optimizing instrument structures |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zheng, Y.; Lu, X.; Zhao, Y.; Zhou, D.; Zhang, Y.; Liu, G. Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine. Bioengineering 2023, 10, 1404. https://doi.org/10.3390/bioengineering10121404
Huang Y, Zheng Y, Lu X, Zhao Y, Zhou D, Zhang Y, Liu G. Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine. Bioengineering. 2023; 10(12):1404. https://doi.org/10.3390/bioengineering10121404
Chicago/Turabian StyleHuang, Yulan, Yating Zheng, Xiaowei Lu, Yang Zhao, Da Zhou, Yang Zhang, and Gang Liu. 2023. "Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine" Bioengineering 10, no. 12: 1404. https://doi.org/10.3390/bioengineering10121404
APA StyleHuang, Y., Zheng, Y., Lu, X., Zhao, Y., Zhou, D., Zhang, Y., & Liu, G. (2023). Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine. Bioengineering, 10(12), 1404. https://doi.org/10.3390/bioengineering10121404