The Effect of Cerclage Banding Distally to a Clamshell Fracture Pattern in Total Hip Arthroplasty—A Biomechanical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens and Preparation
2.2. Biomechanical Testing
2.3. Data Acquisition and Evaluation
3. Results
3.1. Cycles and Load at Stem Loosening
3.2. Cycles and Load at Catastrophic Failure
3.3. Multiple of Body Weight at Stem Loosening
3.4. Multiple of Body Weight at Catastrophic Failure
3.5. Modes of Failure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel, M.P.; Cottino, U.; Mabry, T.M. Management of periprosthetic femoral fractures following total hip arthroplasty: A review. Int. Orthop. 2015, 39, 2005–2010. [Google Scholar] [CrossRef]
- Khan, T.; Grindlay, D.; Ollivere, B.J.; Scammell, B.E.; Manktelow, A.R.J.; Pearson, R.G. A systematic review of Vancouver B2 and B3 periprosthetic femoral fractures. Bone Jt. J. 2017, 99-B, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhuo, Q.; Chai, W.; Ni, M.; Li, H.; Chen, J. Clinical characteristics and risk factors of periprosthetic femoral fractures associated with hip arthroplasty: A retrospective study. Medicine 2016, 95, e4751. [Google Scholar] [CrossRef]
- Drew, J.M.; Griffin, W.L.; Odum, S.M.; Van Doren, B.; Weston, B.T.; Stryker, L.S. Survivorship After Periprosthetic Femur Fracture: Factors Affecting Outcome. J. Arthroplast. 2016, 31, 1283–1288. [Google Scholar] [CrossRef]
- Bellova, P.; Baecker, H.; Lotzien, S.; Brandt, M.; Schildhauer, T.A.; Gessmann, J. Risk analysis and clinical outcomes of intraoperative periprosthetic fractures: A retrospective study of 481 bipolar hemiarthroplasties. J. Orthop. Surg. Res. 2019, 14, 432. [Google Scholar] [CrossRef]
- Berry, D.J. Epidemiology: Hip and Knee. Orthop. Clin. N. Am. 1999, 30, 183–190. [Google Scholar] [CrossRef]
- Kavanagh, B.F. Femoral Fractures Associated with Total Hip Arthroplasty. Orthop. Clin. N. Am. 1992, 23, 249–257. [Google Scholar] [CrossRef]
- Lamb, J.N.; Matharu, G.S.; Redmond, A.; Judge, A.; West, R.M.; Pandit, H.G. Risk Factors for Intraoperative Periprosthetic Femoral Fractures During Primary Total Hip Arthroplasty. An Analysis from the National Joint Registry for England and Wales and the Isle of Man. J. Arthroplast. 2019, 34, 3065–3073.e1. [Google Scholar] [CrossRef]
- Issack, P.S.; Guerin, J.; Butler, A.; Marwin, S.E.; Bourne, R.B.; Rorabeck, C.H.; Barrack, R.L.; Di Cesare, P.E. Intraoperative complications of revision hip arthroplasty using a porous-coated, distally slotted, fluted femoral stem. Clin. Orthop. Relat. Res. 2004, 425, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Frisch, N.B.; Charters, M.A.; Sikora-Klak, J.; Banglmaier, R.F.; Oravec, D.J.; Silverton, C.D. Intraoperative Periprosthetic Femur Fracture: A Biomechanical Analysis of Cerclage Fixation. J. Arthroplast. 2015, 30, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Miettinen, S.S.; Mäkinen, T.J.; Kostensalo, I.; Mäkelä, K.; Huhtala, H.; Kettunen, J.S.; Remes, V. Risk factors for intraoperative calcar fracture in cementless total hip arthroplasty. Acta Orthop. 2016, 87, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Egan, K.J.; Di Cesare, P.E. Intraoperative complications of revision hip arthroplasty using a fully porous-coated straight cobalt-chrome femoral stem. J. Arthroplast. 1995, 10, S45–S51. [Google Scholar] [CrossRef]
- Konow, T.; Baetz, J.; Melsheimer, O.; Grimberg, A.; Morlock, M. Factors influencing periprosthetic femoral fracture risk. Bone Jt. J. 2021, 103, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Smitham, P.J.; Carbone, T.A.; Bolam, S.M.; Kim, Y.S.; Callary, S.A.; Costi, K.; Howie, D.W.; Munro, J.T.; Solomon, L.B. Vancouver B2 Peri-Prosthetic Fractures in Cemented Femoral Implants can be Treated with Open Reduction and Internal Fixation Alone Without Revision. J. Arthroplast. 2019, 34, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, H. Epidemiology of periprosthetic femur fracture around a total hip arthroplasty. Injury 2007, 38, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Pepke, W.; Nadorf, J.; Ewerbeck, V.; Streit, M.R.; Kinkel, S.; Gotterbarm, T.; Maier, M.W.; Kretzer, J.P. Primary stability of the Fitmore® stem: Biomechanical comparison. Int. Orthop. 2014, 38, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Ehrnthaller, C.; Olivier, A.C.; Gebhard, F.; Dürselen, L. The role of lesser trochanter fragment in unstable pertrochanteric A2 proximal femur fractures—Is refixation of the lesser trochanter worth the effort? Clin. Biomech. 2017, 42, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.M.; Zhang, Y.Q.; Ma, Z.; Li, Q.; Dargel, J.; Eysel, P. Fracture reduction with positive medial cortical support: A key element in stability reconstruction for the unstable pertrochanteric hip fractures. Arch. Orthop. Trauma Surg. 2015, 135, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.M.; Zhang, Y.Q.; Ma, Z.; Li, Q.; Dargel, J.; Eysel, P. The medial femoral wall can play a more important role in unstable intertrochanteric fractures compared with lateral femoral wall: A biomechanical study. J. Orthop. Surg. Res. 2017, 12, 197. [Google Scholar]
- Cho, M.R.; Lee, J.H.; Kwon, J.B.; Do, J.S.; Chae, S.B.; Choi, W.K. The Effect of Positive Medial Cortical Support in Reduction of Pertrochanteric Fractures with Posteromedial Wall Defect Using a Dynamic Hip Screw. Clin. Orthop. Surg. 2018, 10, 292. [Google Scholar] [CrossRef]
- Capello, W.N.; D’Antonio, J.A.; Naughton, M. Periprosthetic Fractures Around a Cementless Hydroxyapatite-coated Implant: A New Fracture Pattern Is Described. Clin. Orthop. Relat. Res. 2014, 472, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-F.; Jiang, X.-J.; Shen, J.-J.; Zhong, Y.; Tong, P.-J.; Fan, X.-H. Modification of the Unified Classification System for periprosthetic femoral fractures after hip arthroplasty. J. Orthop. Sci. 2018, 23, 982–986. [Google Scholar] [CrossRef] [PubMed]
- Duncan, C.P.; Haddad, F.S. The Unified Classification System (UCS): Improving our understanding of periprosthetic fractures. Bone Jt. J. 2014, 96, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-F.; Shen, J.-J.; Chen, J.-J.; Zheng, Y.; Du, W.-X.; Liu, F.-C.; Tong, P.-J. New fracture pattern focusing on implant fracture for periprosthetic femoral fractures. Int. Orthop. 2015, 39, 1765–1769. [Google Scholar] [CrossRef]
- Van Houwelingen, A.P.; Duncan, C.P. The pseudo A(LT) periprosthetic fracture: It’s really a B2. Orthopedics 2011, 34, e479–e481. [Google Scholar] [CrossRef] [PubMed]
- Cottino, U.; Dettoni, F.; Caputo, G.; Bonasia, D.E.; Rossi, P.; Rossi, R. Incidence and pattern of periprosthetic hip fractures around the stem in different stem geometry. Int. Orthop. 2020, 44, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Moazen, M.; Jones, A.C.; Jin, Z.; Wilcox, R.K.; Tsiridis, E. Periprosthetic fracture fixation of the femur following total hip arthroplasty: A review of biomechanical testing. Clin. Biomech. 2011, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- IV, A.C.W.; Owen, J.R.; Wayne, J.S.; Hess, S.R.; Golladay, G.J.; Jiranek, W.A. The Effect of Prophylactic Cerclage Wires in Primary Total Hip Arthroplasty: A Biomechanical Study. J. Arthroplast. 2017, 32, 2023–2027. [Google Scholar]
- Andriamananaivo, T.; Odri, G.A.; Ollivier, M.; Mattesi, L.; Renault, A.; Rongieras, F.; Pesenti, S.; Severyns, M. Contribution of the remaining attachment index in the management of Vancouver B1 periprosthetic hip fracture. Orthop. Traumatol. Surg. Res. 2020, 106, 1413–1417. [Google Scholar] [CrossRef]
- Kastner, P.; Zderic, I.; Gueorguiev, B.; Richards, G.; Schauer, B.; Hipmair, G.; Gotterbarm, T.; Schopper, C. Cementless femoral stem revision in total hip arthroplasty: The periprosthetic clamshell fracture. A biomechanical investigation. J. Orthop. Res. 2023, 41, 641–648. [Google Scholar] [CrossRef]
- Bergmann, G.; Graichen, F.; Rohlmann, A.; Bender, A.; Heinlein, B.; Duda, G.N.; Heller, M.O.; Morlock, M.M. Realistic loads for testing hip implants. Biomed. Mater. Eng. 2010, 20, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, K.; Zderic, I.; Gras, F.; Sommer, C.; Eberli, U.; Mueller, D.; Oswald, M.; Gueorguiev, B. Biomechanical Evaluation of the Femoral Neck System in Unstable Pauwels III Femoral Neck Fractures: A Comparison with the Dynamic Hip Screw and Cannulated Screws. J. Orthop. Trauma 2017, 31, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.; Bender, A.; Dymke, J.; Duda, G.; Damm, P. Standardized Loads Acting in Hip Implants. PLoS ONE 2016, 11, e0155612. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, G.; Deuretzbacher, G.; Heller, M.; Graichen, F.; Rohlmann, A.; Strauss, J.; Duda, G.N. Hip contact forces and gait patterns from routine activities. J. Biomech. 2001, 34, 859–871. [Google Scholar] [CrossRef]
- Gueorguiev, B.; Ockert, B.; Schwieger, K.; Wähnert, D.; Lawson-Smith, M.; Windolf, M.; Stoffel, K. Angular Stability Potentially Permits Fewer Locking Screws Compared with Conventional Locking in Intramedullary Nailed Distal Tibia Fractures: A Biomechanical Study. J. Orthop. Trauma 2011, 25, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Windolf, M.; Muths, R.; Braunstein, V.; Gueorguiev, B.; Hänni, M.; Schwieger, K. Quantification of cancellous bone-compaction due to DHS® Blade insertion and influence upon cut-out resistance. Clin. Biomech. 2009, 24, 53–58. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhao, F.; Guo, K.; Zha, G.; Zheng, X.; Pang, Y. Mid-term effectiveness of cerclage wires fixation in treatment of periprosthetic femoral fractures associated with primary hip arthroplasty. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi= Zhongguo Xiufu Chongjian Waike Zazhi= Chin. J. Reparative Reconstr. Surg. 2017, 31, 1291–1294. [Google Scholar]
- Berend, K.R.; Lombardi, A.V., Jr.; Mallory, T.H.; Chonko, D.J.; Dodds, K.L.; Adams, J.B. Cerclage wires or cables for the management of intraoperative fracture associated with a cementless, tapered femoral prosthesis: Results at 2 to 16 years. J. Arthroplast. 2004, 19, 17–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kastner, P.; Zderic, I.; Gueorguiev, B.; Pastor, T.; Luger, M.; Gotterbarm, T.; Schopper, C. The Effect of Cerclage Banding Distally to a Clamshell Fracture Pattern in Total Hip Arthroplasty—A Biomechanical Study. Bioengineering 2023, 10, 1397. https://doi.org/10.3390/bioengineering10121397
Kastner P, Zderic I, Gueorguiev B, Pastor T, Luger M, Gotterbarm T, Schopper C. The Effect of Cerclage Banding Distally to a Clamshell Fracture Pattern in Total Hip Arthroplasty—A Biomechanical Study. Bioengineering. 2023; 10(12):1397. https://doi.org/10.3390/bioengineering10121397
Chicago/Turabian StyleKastner, Philipp, Ivan Zderic, Boyko Gueorguiev, Torsten Pastor, Matthias Luger, Tobias Gotterbarm, and Clemens Schopper. 2023. "The Effect of Cerclage Banding Distally to a Clamshell Fracture Pattern in Total Hip Arthroplasty—A Biomechanical Study" Bioengineering 10, no. 12: 1397. https://doi.org/10.3390/bioengineering10121397
APA StyleKastner, P., Zderic, I., Gueorguiev, B., Pastor, T., Luger, M., Gotterbarm, T., & Schopper, C. (2023). The Effect of Cerclage Banding Distally to a Clamshell Fracture Pattern in Total Hip Arthroplasty—A Biomechanical Study. Bioengineering, 10(12), 1397. https://doi.org/10.3390/bioengineering10121397