Teeth Microcracks Research: Towards Multi-Modal Imaging
Abstract
:Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-Dimensional |
3D | Three-Dimensional |
AFM | Atomic Force Microscopy/Microscope |
ATR | Attenuated Total Reflection |
COP | Confocal Optical Profilometry/Profilometer |
CNN | Convolutional Neural Network |
DEJ | Dentin–Enamel Junction |
DL | Deep Learning |
HAP | HydroxyAPatite |
MC | MicroCrack |
ML | Machine Learning |
OCT | Optical Coherence Tomography |
OS | Optical StereoMicroscopy/StereoMicroscope |
PL | PhotoLuminescence Spectroscopy |
SEM | Scanning Electron Microscopy/Microscope |
CT | Micro-Computed Tomography |
-/n-RS | Micro-/Nano-Raman Spectroscopy |
References
- Ellis, S.G. Incomplete tooth fracture–proposal for a new definition. Br. Dent. J. 2001, 190, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Dumbryte, I.; Jonavicius, T.; Linkeviciene, L.; Linkevicius, T.; Peciuliene, V.; Malinauskas, M. Enamel cracks evaluation—A method to predict tooth surface damage during the debonding. Dent. Mater. J. 2015, 34, 828–834. [Google Scholar] [CrossRef]
- Dumbryte, I.; Vebriene, J.; Linkeviciene, L.; Malinauskas, M. Enamel microcracks in the form of tooth damage during orthodontic debonding: A systematic review and meta-analysis of in vitro studies. Eur. J. Orthod. 2018, 40, 636–648. [Google Scholar] [CrossRef]
- Shahabi, M.; Heravi, F.; Mokhber, N.; Karamad, R.; Bishara, S.E. Effects on shear bond strength and the enamel surface with an enamel bonding agent. Am. J. Orthod. Dentofac. Orthop. 2010, 137, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.; Nik, T.H.; Hooshmand, T. Comparison of debonding characteristics of metal and ceramic orthodontic brackets to enamel: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 675–679. [Google Scholar] [CrossRef]
- Kitahara-Céia, F.M.F.; Mucha, J.N.; dos Santos, P.A.M. Assessment of enamel damage after removal of ceramic brackets. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Sorel, O.; El Alam, R.; Chagneau, F.; Cathelineau, G. Comparison of bond strength between simple foil mesh and laser-structured base retention brackets. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 260–266. [Google Scholar] [CrossRef]
- Dumbryte, I. Evaluation of Enamel Microcracks’ Characteristics before and after Removal of Metal and Ceramic Brackets for Teeth from Younger- and Older-Age Groups: An In Vitro Study. Ph.D. Thesis, Vilnius University, Vilnius, Lithuania, 2020. [Google Scholar] [CrossRef]
- Versiani, M.A.; Cavalcante, D.M.; Belladonna, F.G.; Silva, E.J.N.L.; Souza, E.M.; De-Deus, G. A critical analysis of research methods and experimental models to study dentinal microcracks. Int. Endod. J. 2022, 55, 178–226. [Google Scholar] [CrossRef]
- De-Deus, G.; Cavalcante, D.M.; Belladonna, F.G.; Carvalhal, J.; Souza, E.M.; Lopes, R.T.; Versiani, M.A.; Silva, E.J.N.L.; Dummer, P.M.H. Root dentinal microcracks: A post-extraction experimental phenomenon? Int. Endod. J. 2019, 52, 857–865. [Google Scholar] [CrossRef]
- Shemesh, H.; Lindtner, T.; Portoles, C.A.; Zaslansky, P. Dehydration Induces Cracking in Root Dentin Irrespective of Instrumentation: A Two-dimensional and Three-dimensional Study. J. Endod. 2018, 44, 120–125. [Google Scholar] [CrossRef]
- Dumbryte, I.; Linkeviciene, L.; Malinauskas, M.; Linkevicius, T.; Peciuliene, V.; Tikuisis, K. Evaluation of enamel micro-cracks characteristics after removal of metal brackets in adult patients. Eur. J. Orthod. 2013, 35, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.S.; Hsu, M.L.; Chang, K.D.; Kuang, S.H.; Chen, P.T.; Gung, Y.W. Failure analysis: Enamel fracture after debonding orthodontic brackets. Angle Orthod. 2008, 78, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Zachrisson, B.U.; Buyukyilmaz, T. Bonding in orthodontics. In Orthodontics: Current Principles and Techniques, 4th ed.; Graber, T.M., Vanarsdall, R.L., Vig, K.W.L., Eds.; Elsevier-Mosby: St Louis, MO, USA, 2005; pp. 612–619. [Google Scholar]
- Dumbryte, I.; Linkeviciene, L.; Linkevicius, T.; Malinauskas, M. Does orthodontic debonding lead to tooth sensitivity? Comparison of teeth with and without visible enamel microcracks. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 284–291. [Google Scholar] [CrossRef]
- Clark, D.J.; Sheets, C.G.; Paquette, J.M. Definitive diagnosis of early enamel and dentin cracks based on microscopic evaluation. J. Esthet. Restor. Dent. 2003, 15, 391–401, discussion 401. [Google Scholar] [CrossRef]
- Rix, D.; Foley, T.F.; Mamandras, A. Comparison of bond strength of three adhesives: Composite resin, hybrid GIC, and glass-filled GIC. Am. J. Orthod. Dentofac. Orthop. 2001, 119, 36–42. [Google Scholar] [CrossRef]
- Baherimoghadam, T.; Akbarian, S.; Rasouli, R.; Naseri, N. Evaluation of enamel damages following orthodontic bracket debonding in fluorosed teeth bonded with adhesion promoter. Eur. J. Dent. 2016, 10, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Dumbryte, I.; Linkeviciene, L.; Linkevicius, T.; Malinauskas, M. Enamel microcracks in terms of orthodontic treatment: A novel method for their detection and evaluation. Dent. Mater. J. 2017, 36, 438–446. [Google Scholar] [CrossRef]
- Dumbryte, I.; Jonavicius, T.; Linkeviciene, L.; Linkevicius, T.; Peciuliene, V.; Malinauskas, M. The prognostic value of visually assessing enamel microcracks: Do debonding and adhesive removal contribute to their increase? Angle Orthod. 2016, 86, 437–447. [Google Scholar] [CrossRef]
- Ahrari, F.; Heravi, F.; Fekrazad, R.; Farzanegan, F.; Nakhaei, S. Does ultra-pulse CO2 laser reduce the risk of enamel damage during debonding of ceramic brackets? Lasers Med. Sci. 2012, 27, 567–574. [Google Scholar] [CrossRef]
- Heravi, F.; Rashed, R.; Raziee, L. The effects of bracket removal on enamel. Aust. Orthod. J. 2008, 24, 110–115. [Google Scholar]
- Salehi, P.; Pakshir, H.; Naseri, N.; Baherimoghaddam, T. The effects of composite resin types and debonding pliers on the amount of adhesive remnants and enamel damages: A stereomicroscopic evaluation. J. Dent. Res. Dent. Clin. Dent. Prospects 2013, 7, 199–205. [Google Scholar] [PubMed]
- Heravi, F.; Shafaee, H.; Abdollahi, M.; Rashed, R. How is the enamel affected by different orthodontic bonding agents and polishing techniques? J. Dent. 2015, 12, 188–194. [Google Scholar]
- Culjat, M.O.; Singh, R.S.; Brown, E.R.; Neurgaonkar, R.R.; Yoon, D.C.; White, S.N. Ultrasound crack detection in a simulated human tooth. Dentomaxillofac. Radiol. 2005, 34, 80–85. [Google Scholar] [CrossRef]
- Al Shamsi, A.H.; Cunningham, J.L.; Lamey, P.J.; Lynch, E. Three-dimensional measurement of residual adhesive and enamel loss on teeth after debonding of orthodontic brackets: An in-vitro study. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 301.e9–301.e15. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.S.; Ho, Y.C.; Lee, S.Y.; Chuang, C.C.; Tsai, J.C.; Lin, K.F.; Sun, C.W. Dental optical coherence tomography. Sensors 2013, 13, 8928–8949. [Google Scholar] [CrossRef]
- Leão Filho, J.C.; Braz, A.K.; de Araujo, R.E.; Tanaka, O.M.; Pithon, M.M. Enamel quality after debonding: Evaluation by optical coherence tomography. Braz. Dent. J. 2015, 26, 384–389. [Google Scholar] [CrossRef]
- Imai, K.; Shimada, Y.; Sadr, A.; Sumi, Y.; Tagami, J. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro. J. Endod. 2012, 38, 1269–1274. [Google Scholar] [CrossRef]
- Ryf, S.; Flury, S.; Palaniappan, S.; Lussi, A.; van Meerbeek, B.; Zimmerli, B. Enamel loss and adhesive remnants following bracket removal and various clean-up procedures in vitro. Eur. J. Orthod. 2012, 34, 25–32. [Google Scholar] [CrossRef]
- Swain, M.V.; Xue, J. State of the art of micro-CT applications in dental research. Int. J. Oral Sci. 2009, 1, 177–188. [Google Scholar] [CrossRef]
- Sun, K.; Yuan, L.; Shen, Z.; Xu, Z.; Zhu, Q.; Ni, X.; Lu, J. Scanning laser-line source technique for nondestructive evaluation of cracks in human teeth. Appl. Opt. 2014, 53, 2366–2374. [Google Scholar] [CrossRef]
- Li, Z.; Holamoge, Y.V.; Li, Z.; Zaid, W.; Osborn, M.L.; Ramos, A.; Miller, J.T.; Li, Y.; Yao, S.; Xu, J. Detection and analysis of enamel cracks by ICG-NIR fluorescence dental imaging. Ann. N. Y. Acad. Sci. 2020, 1475, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Jamleh, A.; Mansour, A.; Taqi, D.; Moussa, H.; Tamimi, F. Microcomputed tomography assessment of microcracks following temporary filling placement. Clin. Oral Investig. 2019, 24, 1387–1393. [Google Scholar] [CrossRef] [PubMed]
- Alsolaihim, A.N.; Alsolaihim, A.A.; Alowais, L.O. In vivo and in vitro diagnosis of cracked teeth: A review. J. Int. Oral Health 2019, 11, 329–333. [Google Scholar] [CrossRef]
- Hamba, H.; Nakamura, K.; Nikaido, T.; Muramatsu, T.; Furusawa, M.; Tagami, J. Examination of micro-cracks and demineralization in human premolars using micro-CT. Jpn. J. Conserv. Dent. 2017, 60, 89–95. [Google Scholar] [CrossRef]
- Dumbryte, I.; Vailionis, A.; Skliutas, E.; Juodkazis, S.; Malinauskas, M. Three-dimensional non-destructive visualization of teeth enamel microcracks using X-ray micro-computed tomography. Sci. Rep. 2021, 11, 14810. [Google Scholar] [CrossRef] [PubMed]
- Dumbryte, I.; Narbutis, D.; Vailionis, A.; Juodkazis, S.; Malinauskas, M. Revelation of microcracks as tooth structural element by X-ray tomography and machine learning. Sci. Rep. 2022, 12, 22489. [Google Scholar] [CrossRef]
- Segarra, M.; Shimada, Y.; Sadr, A.; Sumi, Y.; Tagami, J. Three-Dimensional Analysis of Enamel Crack Behavior Using Optical Coherence Tomography. J. Dent. Res. 2017, 96, 308–314. [Google Scholar] [CrossRef]
- Zhou, J.; Fu, J.; Xiao, M.; Qiao, F.; Fu, T.; Lv, Y.; Wu, F.; Sun, C.; Li, P.; Wu, L. New technique for detecting cracked teeth and evaluating the crack depth by contrast-enhanced cone beam computed tomography: An in vitro study. BMC Oral Health 2022, 22, 1–10. [Google Scholar] [CrossRef]
- Bishara, S.E.; Ostby, A.W.; Laffoon, J.; Warren, J.J. Enamel cracks and ceramic bracket failure during debonding in vitro. Angle Orthod. 2008, 78, 1078–1083. [Google Scholar] [CrossRef]
- Huang, T.T.; Jones, A.S.; He, L.H.; Darendeliler, M.A.; Swain, M.V. Characterisation of enamel white spot lesions using X-ray micro-tomography. J. Dent. 2007, 35, 737–743. [Google Scholar] [CrossRef]
- Efeoglu, N.; Wood, D.J.; Efeoglu, C. Thirty-five percent carbamide peroxide application causes in vitro demineralization of enamel. Dent. Mater. 2007, 23, 900–904. [Google Scholar] [CrossRef] [PubMed]
- du Plessis, A.; Broeckhoven, C.; Guelpa, A.; le Roux, S.G. Laboratory x-ray micro-computed tomography: A user guideline for biological samples. GigaScience 2017, 6, 1–11. [Google Scholar] [CrossRef]
- Krasikov, S.; Tranter, A.; Bogdanov, A.; Kivshar, Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv. 2022, 5, 210147. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Joye, W.A.; Mandel, E. New Features of SAOImage DS9. In Proceedings of the Astronomical Data Analysis Software and Systems XII; Astronomical Society of the Pacific Conference Series; Payne, H.E., Jedrzejewski, R.I., Hook, R.N., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 295, p. 489. Available online: https://ui.adsabs.harvard.edu/abs/2003ASPC..295..489J (accessed on 6 November 2023).
- Silversmith, W. cc3d: Connected Components on Multilabel 3D and 2D Images. Available online: https://zenodo.org/record/5535251 (accessed on 11 November 2023).
- Dragonfly 2022.2 [Computer Software]. Comet Technologies Canada Inc. Available online: https://www.theobjects.com/dragonfly (accessed on 11 November 2023).
- Developers. TensorFlow. Available online: https://zenodo.org/records/6574269 (accessed on 11 November 2023).
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. arXiv 2018, arXiv:1802.02611. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar] [CrossRef]
- Fondriest, J.F. The Optical Characteristics of Natural Teeth. Insid. Dent. 2012, 8, 1–5. Available online: https://www.aegisdentalnetwork.com/id/2012/11/the-optical-characteristics-of-natural-teeth (accessed on 6 November 2023).
- Lee, Y.K. Fluorescence properties of human teeth and dental calculus for clinical applications. J. Biomed. Opt. 2015, 20, 040901. [Google Scholar] [CrossRef]
- Ko, C.C.; Yi, D.H.; Lee, D.J.; Kwon, J.; Garcia-Godoy, F.; Kwon, Y.H. Diagnosis and staging of caries using spectral factors derived from the blue laser-induced autofluorescence spectrum. J. Dent. 2017, 67, 77–83. [Google Scholar] [CrossRef]
- Marouf, A.A.S.; Khairallah, Y.A. Photoluminescence spectra of sound tooth and those of different carious stages. J. Biol. Ser. 2019, 2, 071–075. [Google Scholar]
- Caneppele, T.M.F.; Rocha Gomes Torres, C.; Bresciani, E. Analysis of the color and fluorescence alterations of enamel and dentin treated with hydrogen peroxide. Braz. Dental J. 2015, 26, 514–518. [Google Scholar] [CrossRef]
- Thomas, S.; Narayanan, S. Spectroscopic Investigation of Tooth Caries and Demineralization. 2023. Available online: https://www.researchgate.net/publication/48410785_Spectroscopic_Investigation_of_Tooth_Caries_and_Demineralization (accessed on 6 November 2023).
- Xia, F.; Youcef-Toumi, K. Review: Advanced Atomic Force Microscopy Modes for Biomedical Research. Biosensors 2022, 12, 1116. [Google Scholar] [CrossRef]
- Gonzalez-Hernandez, D.; Varapnickas, S.; Bertoncini, A.; Liberale, C.; Malinauskas, M. Micro-Optics 3D Printed via Multi-Photon Laser Lithography. Adv. Optical Mater. 2023, 11, 2201701. [Google Scholar] [CrossRef]
- Li, J.; Thiele, S.; Quirk, B.C.; Kirk, R.W.; Verjans, J.W.; Akers, E.; Bursill, C.A.; Nicholls, S.J.; Herkommer, A.M.; Giessen, H.; et al. Ultrathin monolithic 3D printed optical coherence tomography endoscopy for preclinical and clinical use. Light Sci. Appl. 2020, 9, 124. [Google Scholar] [CrossRef]
- Marini, M.; Nardini, A.; Martínez Vázquez, R.; Conci, C.; Bouzin, M.; Collini, M.; Osellame, R.; Cerullo, G.; Kariman, B.S.; Farsari, M.; et al. Microlenses Fabricated by Two-Photon Laser Polymerization for Cell Imaging with Non-Linear Excitation Microscopy. Adv. Funct. Mater. 2023, 33, 2213926. [Google Scholar] [CrossRef]
- Besnard, C.; Harper, R.A.; Moxham, T.E.; James, J.D.; Storm, M.; Salvati, E.; Landini, G.; Shelton, R.M.; Korsunsky, A.M. 3D analysis of enamel demineralisation in human dental caries using high-resolution, large field of view synchrotron X-ray micro-computed tomography. Mater. Today Commun. 2021, 27, 102418. [Google Scholar] [CrossRef]
- Besnard, C.; Marie, A.; Sasidharan, S.; Harper, R.A.; Marathe, S.; Moffat, J.; Shelton, R.M.; Landini, G.; Korsunsky, A.M. Time-Lapse In Situ 3D Imaging Analysis of Human Enamel Demineralisation Using X-ray Synchrotron Tomography. Dent. J. 2023, 11, 130. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia. Synchrotron Light Source. Available online: https://en.wikipedia.org/wiki/Synchrotron_light_source (accessed on 11 November 2023).
- Meguya, R.; Ng, S.H.; Han, M.; Anand, V.; Katkus, T.; Vongsvivut, J.; Appadoo, D.; Nishijima, Y.; Juodkazis, S.; Morikawa, J. Polariscopy with optical near-fields. Nanoscale Horiz. 2022, 7, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Guang, M.; Zhou, J.; Qu, Y.; Xu, H.; Sun, Y.; Xiong, H.; Liu, S.; Chen, X.; Jin, J.; et al. Dental caries diagnosis using terahertz spectroscopy and birefringence. Opt. Express 2022, 30, 13134–13147. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, H.; Takeya, K.; Tripathi, S.R. Linear dichroism and birefringence spectra of bamboo and its use as a wave plate in the terahertz frequency region. Opt. Mater. Express 2023, 13, 966–981. [Google Scholar] [CrossRef]
- Hikima, Y.; Morikawa, J.; Hashimoto, T. FT-IR Image Processing Algorithms for In-Plane Orientation Function and Azimuth Angle of Uniaxially Drawn Polyethylene Composite Film. Macromolecules 2011, 44, 3950–3957. [Google Scholar] [CrossRef]
- Kamegaki, S.; Smith, D.; Ryu, M.; Ng, S.H.; Huang, H.H.; Maasoumi, P.; Vongsvivut, J.; Moraru, D.; Katkus, T.; Juodkazis, S.; et al. Four-Polarisation Camera for Anisotropy Mapping at Three Orientations: Micro-Grain of Olivine. Coatings 2023, 13, 1640. [Google Scholar] [CrossRef]
- Honda, R.; Ryu, M.; Moritake, M.; Balčytis, A.; Mizeikis, V.; Vongsvivut, J.; Tobin, M.J.; Appadoo, D.; Li, J.L.; Ng, S.H.; et al. Infrared Polariscopy Imaging of Linear Polymeric Patterns with a Focal Plane Array. Nanomaterials 2019, 9, 732. [Google Scholar] [CrossRef] [PubMed]
- Rapp, L.; Madden, S.; Brand, J.; Walsh, L.J.; Spallek, H.; Zuaiter, O.; Habeb, A.; Hirst, T.R.; Rode, A.V. Femtosecond laser dentistry for precise and efficient cavity preparation in teeth. Biomed. Opt. Express 2022, 13, 4559–4571. [Google Scholar] [CrossRef] [PubMed]
- Rapp, L.; Madden, S.; Brand, J.; Maximova, K.; Walsh, L.; Spallek, H.; Zuaiter, O.; Habeb, A.; Hirst, T.; Rode, A. Investigation of laser wavelength effect on the ablation of enamel and dentin using femtosecond laser pulses. Sci. Rep. 2023, 13, 20156. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Oh, S.; Jo, J.; Kang, S.; Shin, Y.; Park, J. Deep learning for early dental caries detection in bitewing radiographs. Sci. Rep. 2021, 11, 16807. [Google Scholar] [CrossRef] [PubMed]
- Felsch, M.; Meyer, O.; Schlickenrieder, A.; Engels, P.; Schönewolf, J.; Zöllner, F.; Heinrich-Weltzien, R.; Hesenius, M.; Hickel, R.; Gruhn, V.; et al. Detection and localization of caries and hypomineralization on dental photographs with a vision transformer model. Npj Digit. Med. 2023, 6, 198. [Google Scholar] [CrossRef]
- Farook, T.H.; Ahmed, S.; Jamayet, N.B.; Rashid, F.; Barman, A.; Sidhu, P.; Patil, P.; Lisan, A.M.; Eusufzai, S.Z.; Dudley, J.; et al. Computer-aided design and 3-dimensional artificial/convolutional neural network for digital partial dental crown synthesis and validation. Sci. Rep. 2023, 13, 1561. [Google Scholar] [CrossRef]
- Qayyum, A.; Tahir, A.; Butt, M.A.; Luke, A.; Abbas, H.T.; Qadir, J.; Arshad, K.; Assaleh, K.; Imran, M.A.; Abbasi, Q.H. Dental caries detection using a semi-supervised learning approach. Sci. Rep. 2023, 13, 749. [Google Scholar] [CrossRef]
- Chang, H.J.; Lee, S.J.; Yong, T.H.; Shin, N.Y.; Jang, B.G.; Kim, J.E.; Huh, K.H.; Lee, S.S.; Heo, M.S.; Choi, S.C.; et al. Deep Learning Hybrid Method to Automatically Diagnose Periodontal Bone Loss and Stage Periodontitis. Sci. Rep. 2020, 10, 749. [Google Scholar] [CrossRef]
- Ryu, J.; Kim, Y.H.; Kim, T.W.; Jung, S.K. Evaluation of artificial intelligence model for crowding categorization and extraction diagnosis using intraoral photographs. Sci. Rep. 2023, 13, 5177. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.; Jung, W.; Oh, S.E. Variational autoencoder-based estimation of chronological age and changes in morphological features of teeth. Sci. Rep. 2023, 13, 704. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Porto, L.; Heng, D.; Murray, J.; Lygate, A.; Franco, R.; Bueno, J.; Sobania, M.; Costa, M.M.; Paranhos, L.R.; et al. Diagnostic performance of convolutional neural networks for dental sexual dimorphism. Sci. Rep. 2022, 12, 17279. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Fang, Y.; Mei, L.; Zhang, B.; Yu, B.; Liu, J.; Jiang, C.; Sun, Y.; Ma, L.; Huang, J.; et al. A fully automatic AI system for tooth and alveolar bone segmentation from cone-beam CT images. Nat. Commun. 2022, 13, 2096. [Google Scholar] [CrossRef]
- Liang, Y.; Huan, J.J.; Li, J.D.; Jiang, C.H.; Fang, C.Y.; Liu, Y.G. Use of artificial intelligence to recover mandibular morphology after disease. Sci. Rep. 2020, 10, 16431. [Google Scholar] [CrossRef]
- Tsutsumi, M.; Saito, N.; Koyabu, D.; Furusawa, C. A deep learning approach for morphological feature extraction based on variational auto-encoder: An application to mandible shape. npj Syst. Biol. Appl. 2023, 9, 30. [Google Scholar] [CrossRef]
- Taylor, M.B. TOPCAT & STIL: Starlink Table/VOTable Processing Software. In Proceedings of the Astronomical Data Analysis Software and Systems XIV; Astronomical Society of the Pacific Conference Series; Shopbell, P., Britton, M., Ebert, R., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 347, p. 29. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumbryte, I.; Narbutis, D.; Androulidaki, M.; Vailionis, A.; Juodkazis, S.; Malinauskas, M. Teeth Microcracks Research: Towards Multi-Modal Imaging. Bioengineering 2023, 10, 1354. https://doi.org/10.3390/bioengineering10121354
Dumbryte I, Narbutis D, Androulidaki M, Vailionis A, Juodkazis S, Malinauskas M. Teeth Microcracks Research: Towards Multi-Modal Imaging. Bioengineering. 2023; 10(12):1354. https://doi.org/10.3390/bioengineering10121354
Chicago/Turabian StyleDumbryte, Irma, Donatas Narbutis, Maria Androulidaki, Arturas Vailionis, Saulius Juodkazis, and Mangirdas Malinauskas. 2023. "Teeth Microcracks Research: Towards Multi-Modal Imaging" Bioengineering 10, no. 12: 1354. https://doi.org/10.3390/bioengineering10121354
APA StyleDumbryte, I., Narbutis, D., Androulidaki, M., Vailionis, A., Juodkazis, S., & Malinauskas, M. (2023). Teeth Microcracks Research: Towards Multi-Modal Imaging. Bioengineering, 10(12), 1354. https://doi.org/10.3390/bioengineering10121354