Vascular Relaxation and Blood Pressure Lowering Effects of Prunus mume in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material and Extraction
2.3. Animals
2.4. Measurement of Vasorelaxant Activity
2.4.1. Preparation of Rat Aortic Rings
2.4.2. Vasorelaxant Effects of Prunus mume Extract on Isolated Aortic Rings
2.4.3. Effect of PBaE on Endothelium-Intact and Endothelium-Denuded Aortic Rings
2.4.4. Effect of PBaE on Endothelium-Intact Aortic Rings Pre-Incubated with L-NAME, Indomethacin, or Combination of L-NAME and Indomethacin
2.4.5. Effect of PbaE on Endothelium-Intact Aortic Rings Pre-Incubated with ODQ or MB
2.4.6. Effect of PbaE on Endothelium-Intact Aortic Rings Pre-Incubated with TEA, Glibenclamide, 4-AP, or BaCl2
2.4.7. Effects of PbaE on Extracellular Ca2+-Induced Contraction
2.4.8. Inhibitory Effect of PBaE Pre-Treatment on Ang II-Induced Contraction
2.5. Blood Pressure Measurement
2.6. Data Analysis
3. Results
3.1. Vasorelaxant Effects of PFrW and PFrE
3.2. Vasorelaxant Effect of PFlW and PFlE
3.3. Vasorelaxant Effects of PLW and PLE
3.4. Vasorelaxant Effects of PBrW and PBaW
3.5. Vasorelaxant Effects of PBrE and PBaE
3.6. Vasorelaxant Mechanism of PBaE
3.6.1. Vasorelaxant Effects of PBaE on Endothelium-Intact or Endothelium-Denuded Aortic Rings
3.6.2. Vasorelaxant Effect of PBaE on Endothelium-Intact Aortic Rings Pre-Incubated with L-NAME, Indomethacin, or L-NAME and Indomethacin Combined
3.6.3. Vasorelaxant Effect of PBaE on Endothelium-Intact Aortic Rings Pre-Incubated with ODQ or MB
3.6.4. Vasorelaxant Effect of PBaE on Endothelium-Intact Aortic Rings Pre-Incubated with TEA, Glibenclamide, 4-AP, or BaCl2
3.6.5. Vasorelaxant Effect of PBaE on Extracellular Ca2+-Induced Contraction
3.6.6. Inhibitory Effect of PBaE Pre-Treatment on Ang II-Induced Contraction
3.7. Hypotensive Effect of PBaE on Blood Pressure in SHR
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/hypertension (accessed on 16 December 2022).
- World Health Organization. Guideline for the Pharmacological Treatment of Hypertension in Adults: Web Annex A: Summary of Evidence; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Ajebli, M.; Eddouks, M. Phytotherapy of hypertension: An updated overview. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 812–839. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Chen, W.; Sun, L.; Zhao, F.; Huang, B.; Yang, W.; Tao, Y.; Wang, J.; Yuan, Z.; Fan, G. The genome of Prunus mume. Nat. Commun. 2012, 3, 1318. [Google Scholar] [CrossRef] [Green Version]
- Jo, C.; Kim, B.; Lee, S.; Ham, I.; Lee, K.; Choi, H.Y. Vasorelaxant Effect of Prunus mume (Siebold) Siebold & Zucc. Branch through the endothelium-dependent pathway. Molecules 2019, 24, 3340. [Google Scholar]
- Shi, J.; Gong, J.; Liu, J.; Wu, X.; Zhang, Y. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. LWT Food Sci. Technol. 2009, 42, 477–482. [Google Scholar] [CrossRef]
- Kim, J.H.; Won, Y.S.; Cho, H.D.; Hong, S.M.; Moon, K.D.; Seo, K.I. Protective Effect of Prunus mume Fermented with Mixed lactic acid Bacteria in dextran sodium sulfate-Induced Colitis. Foods 2020, 10, 58. [Google Scholar] [CrossRef]
- Yingsakmongkon, S.; Miyamoto, D.; Sriwilaijaroen, N.; Fujita, K.; Matsumoto, K.; Jampangern, W.; Hiramatsu, H.; Guo, C.T.; Sawada, T.; Takahashi, T.; et al. In vitro inhibition of human influenza A virus infection by fruit-juice concentrate of Japanese plum (Prunus mume SIEB. et ZUCC). Biol. Pharm. Bull. 2008, 31, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.-H.; Kim, K.-J.; Kim, S.-M.; Lee, W.-J.; Lee, S.-J. Development of the functional beverage containing the Prunus mume extracts. Korean J. Food Sci. Technol. 2000, 32, 713–719. [Google Scholar]
- Kim, J.-H.; Cho, H.-D.; Won, Y.-S.; Hong, S.-M.; Moon, K.-D.; Seo, K.-I. Anti-fatigue effect of Prunus mume vinegar in high-intensity exercised rats. Nutrients 2020, 12, 1205. [Google Scholar] [CrossRef]
- Park, L.-Y.; Chae, M.-H.; Lee, S.-H. Effect of ratio of maesil (Prunus mume) and alcohol on quality changes of maesil liqueur during leaching and ripening. Korean J. Food Preserv. 2007, 14, 645–649. [Google Scholar]
- Kim, N.-Y.; Eom, M.-N.; Do, Y.-S.; Kim, J.-B.; Kang, S.-H.; Yoon, M.-H.; Lee, J.-B. Determination of ethyl carbamate in maesil wine by alcohol content and ratio of maesil (Prunus mume) during ripening period. Korean J. Food Preserv. 2013, 20, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Mun, K.-H.; Lee, H.-C.; Jo, A.-H.; Lee, S.-H.; Kim, N.-Y.-S.; Park, E.-J.; Kang, J.-Y.; Kim, J.-B. Effect of sugared sweeteners on quality characteristics of Prunus mume fruit syrup. Korean J. Food Nutr. 2019, 32, 161–166. [Google Scholar]
- Kim, Y.-D.; Jeong, M.-H.; Koo, I.-R.; Cho, I.-K.; Kwak, S.-H.; Na, R.; Kim, K.-J. Analysis of volatile compounds of Prunus mume flower and optimum extraction conditions of Prunus mume flower tea. Korean J. Food Preserv. 2006, 13, 180–185. [Google Scholar]
- Gong, X.-P.; Tang, Y.; Song, Y.-Y.; Du, G.; Li, J. Comprehensive Review of Phytochemical Constituents, Pharmacological Properties, and Clinical Applications of Prunus mume. Front. Pharmacol. 2021, 12, 679378. [Google Scholar] [CrossRef] [PubMed]
- Imahori, Y.; Takemura, M.; Bai, J. Chilling-induced oxidative stress and antioxidant responses in mume (Prunus mume) fruit during low temperature storage. Postharvest Biol. Technol. 2008, 49, 54–60. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Ham, J.-W.; Nam, S.-H. The antioxidant activity of maesil (Prunus mume). Korean J. Food Sci. Technol. 2004, 36, 461–464. [Google Scholar]
- Jin, H.-L.; Lee, B.-R.; Lim, K.-J.; Debnath, T.; Shin, H.-M.; Lim, B.-O. Anti-inflammatory effects of Prunus mume mixture in colitis induced by dextran sodium sulfate. Korean J. Med. Crop Sci. 2011, 19, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.T.; Moon, J.H.; Park, K.H.; Shin, C.S. Isolation and characterization of a new compound from Prunus mume fruit that inhibits cancer cells. J. Agric. Food Chem. 2006, 54, 2123–2128. [Google Scholar] [CrossRef]
- Bailly, C. Anticancer properties of Prunus mume extracts (Chinese plum, Japanese apricot). J. Ethnopharmacol. 2020, 246, 112215. [Google Scholar] [CrossRef]
- Yan, X.T.; Lee, S.H.; Li, W.; Sun, Y.N.; Yang, S.Y.; Jang, H.D.; Kim, Y.H. Evaluation of the antioxidant and anti-osteoporosis activities of chemical constituents of the fruits of Prunus mume. Food Chem. 2014, 156, 408–415. [Google Scholar] [CrossRef]
- Xia, D.; Wu, X.; Yang, Q.; Gong, J.; Zhang, Y. Anti-obesity and hypolipidemic effects of a functional formula containing Prumus mume in mice fed high-fat diet. Afr. J. Biotechnol. 2010, 9, 2463–2467. [Google Scholar]
- Babarikina, A.; Nikolajeva, V.; Babarykin, D. Anti-Helicobacter activity of certain food plant extracts and juices and their composition in vitro. Food Nutr. Sci. 2011, 2, 7889. [Google Scholar]
- Chuda, Y.; Ono, H.; Ohnishi-Kameyama, M.; Matsumoto, K.; Nagata, T.; Kikuchi, Y. Citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot. J. Agric. Food Chem. 1999, 47, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Kono, R.; Nakamura, M.; Nomura, S.; Kitano, N.; Kagiya, T.; Okuno, Y.; Inada, K.I.; Tokuda, A.; Utsunomiya, H.; Ueno, M. Biological and epidemiological evidence of anti-allergic effects of traditional Japanese food ume (Prunus mume). Sci. Rep. 2018, 8, 11638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.; Pan, J.H.; Cho, S.; Lee, S.; Kim, Y.J.; Park, Y.H. Investigation of the hepatoprotective effect of Prunus mume Sieb. et Zucc extract in a mouse model of alcoholic liver injury through high-resolution metabolomics. J. Med. Food 2017, 20, 734–743. [Google Scholar] [CrossRef]
- Jung, B.G.; Ko, J.H.; Cho, S.J.; Koh, H.B.; Yoon, S.R.; Han, D.U.; Lee, B.J. Immune-enhancing effect of fermented maesil (Prunus mume Siebold & Zucc.) with probiotics against Bordetella bronchiseptica in mice. J. Vet. Med. Sci. 2010, 72, 1195–1202. [Google Scholar] [CrossRef] [Green Version]
- Takemura, S.; Yoshimasu, K.; Fukumoto, J.; Mure, K.; Nishio, N.; Kishida, K.; Yano, F.; Mitani, T.; Takeshita, T.; Miyashita, K. Safety and adherence of Umezu polyphenols in the Japanese plum (Prunus mume) in a 12-week double-blind randomized placebo-controlled pilot trial to evaluate antihypertensive effects. Environ. Health Prev. Med. 2014, 19, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Jo, C.; Choi, H.Y.; Lee, K. Vasorelaxant and hypotensive effects of Cheonwangbosimdan in SD and SHR rats. Evid. Based Complement. Altern. Med. 2018, 2018, 6128604. [Google Scholar] [CrossRef] [Green Version]
- Furchgott, R.F.; Vanhoutte, P.M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989, 3, 2007–2018. [Google Scholar] [CrossRef]
- Vanhoutte, P.M. Endothelium and control of vascular function. State of the Art lecture. Hypertension 1989, 13, 658–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moncada, S.; Gryglewski, R.; Bunting, S.; Vane, J.R. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 1976, 263, 663–665. [Google Scholar] [CrossRef]
- Hongo, K.; Nakagomi, T.; Kassell, N.F.; Sasaki, T.; Lehman, M.; Vollmer, D.G.; Tsukahara, T.; Ogawa, H.; Torner, J. Effects of aging and hypertension on endothelium-dependent vascular relaxation in rat carotid artery. Stroke 1988, 19, 892–897. [Google Scholar] [CrossRef] [Green Version]
- Di Wang, H.D.; Pagano, P.J.; Du, Y.; Cayatte, A.J.; Quinn, M.T.; Brecher, P.; Cohen, R.A. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ. Res. 1998, 82, 810–818. [Google Scholar] [CrossRef] [Green Version]
- Archer, S.L.; Huang, J.M.; Hampl, V.; Nelson, D.P.; Shultz, P.J.; Weir, E.K. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Proc. Natl Acad. Sci. USA 1994, 91, 7583–7587. [Google Scholar] [CrossRef] [Green Version]
- Rapoport, R.M.; Murad, F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ. Res. 1983, 52, 352–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Xu, Z.; Lin, C.; Li, H.; Sun, J.; Chen, J.; Wang, C. Schisantherin A causes endothelium-dependent and -independent vasorelaxation in isolated rat thoracic aorta. Life Sci. 2020, 245, 117357. [Google Scholar] [CrossRef]
- Jackson, W.F. Ion channels and vascular tone. Hypertension 2000, 35, 173–178. [Google Scholar] [CrossRef]
- Nelson, M.T.; Quayle, J.M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. 1995, 268, C799–C822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griendling, K.K.; Murphy, T.J.; Alexander, R.W. Molecular biology of the renin-angiotensin system. Circulation 1993, 87, 1816–1828. [Google Scholar] [CrossRef] [Green Version]
- Burnier, M.; Brunner, H. Angiotensin II receptor antagonists. Lancet 2000, 355, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Clozel, M.; Kuhn, H.; Hefti, F. Effects of angiotensin converting enzyme inhibitors and of hydralazine on endothelial function in hypertensive rats. Hypertension 1990, 16, 532–540. [Google Scholar] [CrossRef] [PubMed]
Plant Part | Collection Date | Extracts | Yield (%) | Abbreviation |
---|---|---|---|---|
Fruit | June 2020 | Water | 21.5 | PFrW |
Fruit | June 2020 | 70% Ethanol | 31.5 | PFrE |
Flower | March 2020 | Water | 25.0 | PFlW |
Flower | March 2020 | 70% Ethanol | 9.3 | PFlE |
Leaf | June 2020 | Water | 31.0 | PLW |
Leaf | June 2020 | 70% Ethanol | 23.0 | PLE |
Branch | February 2020 | Water | 8.4 | PBrW |
Branch | February 2020 | 70% Ethanol | 9.3 | PBrE |
Bark | February 2020 | Water | 23.0 | PBaW |
Bark | February 2020 | 70% Ethanol | 20.0 | PBaE |
Samples | Rmax (%) | EC50 (μg/mL) |
---|---|---|
PFrW | 6.5 ± 2.9 | - |
PFrE | 37.0 ± 6.5 ** | 363.8 ± 20.8 |
PFlW | 4.0 ± 3.1 | - |
PFlE | 33.5 ± 10.1 ** | 96.5 ± 1.2 |
PLW | −12.0 ± 5.2 | - |
PLE | −14.0 ±4.6 | - |
PBrW | 55.0 ± 4.4 ** | 78.4 ± 1.5 |
PBrE | 42.8 ± 3.4 ** | 4.0 ± 1.1 |
PBaW | 48.8 ± 4.1 ** | 28.9 ±1.0 |
PBaE | 81.5 ± 2.7 ** | 3.2 ± 1.0 |
Time (h) | |||||
---|---|---|---|---|---|
0 | 1 | 2 | 4 | 8 | |
Systolic blood pressure (mmHg) | |||||
Control | 206.6 ± 2.8 | 204.9 ± 3.7 | 207.1 ± 3.0 | 211.1 ± 1.7 | 208.1 ± 4.6 |
PBaE 100 mg/kg | 203.1 ± 1.7 | 199.2 ± 1.3 | 202.6 ± 2.5 | 203.5 ± 2.0 | 207.0 ± 3.4 |
PBaE 300 mg/kg | 210.0 ± 2.4 | 206.3 ± 5.7 | 197.2 ± 6.0 | 187.6 ± 8.7 ** | 199.1 ± 6.7 |
Diastolic blood pressure (mmHg) | |||||
Control | 159.2 ± 7.3 | 154.5 ± 8.4 | 153.7 ± 2.5 | 157.5 ± 7.5 | 153.8 ± 4.9 |
PBaE 100 mg/kg | 152.3 ± 1.9 | 148.3 ± 4.9 | 151.2 ± 4.6 | 149.6 ± 2.6 | 160.4 ± 5.9 |
PBaE 300 mg/kg | 164.1 ± 3.2 | 157.6 ± 6.9 | 145.4 ± 6.1 | 133.0 ± 5.8 * | 148.8 ± 6.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, C.; Kim, B.; Lee, K.; Choi, H.-Y. Vascular Relaxation and Blood Pressure Lowering Effects of Prunus mume in Rats. Bioengineering 2023, 10, 74. https://doi.org/10.3390/bioengineering10010074
Jo C, Kim B, Lee K, Choi H-Y. Vascular Relaxation and Blood Pressure Lowering Effects of Prunus mume in Rats. Bioengineering. 2023; 10(1):74. https://doi.org/10.3390/bioengineering10010074
Chicago/Turabian StyleJo, Cheolmin, Bumjung Kim, Kyungjin Lee, and Ho-Young Choi. 2023. "Vascular Relaxation and Blood Pressure Lowering Effects of Prunus mume in Rats" Bioengineering 10, no. 1: 74. https://doi.org/10.3390/bioengineering10010074
APA StyleJo, C., Kim, B., Lee, K., & Choi, H. -Y. (2023). Vascular Relaxation and Blood Pressure Lowering Effects of Prunus mume in Rats. Bioengineering, 10(1), 74. https://doi.org/10.3390/bioengineering10010074