De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates
Abstract
:1. Introduction
2. Methodology
2.1. Deep Learning Framework
2.2. Proposed FDA-CNN Architecture
2.3. Dense Block
2.4. Attention Gate
3. Deep Learning Implementation
3.1. Datasets and Under-Sampling Masks
3.2. Loss Function
3.3. Performance Evaluations Metrics
3.4. Experimental Setup
4. Result and Discussion
4.1. BraTs 2020-T1 Dataset
4.2. FastMRI and IXI Datasets
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
1D | One-dimensional |
1DG-US | 1D Gaussian under-sampling |
2D | Two-dimensional |
2DG-US | 2D Gaussian under-sampling |
AG | Attention gate |
CNN | Convolutional neural network |
CS | Compressed sensing |
CT | Computed tomography |
DB | Dense block |
DC | Dense connectivity |
DL | Deep learning |
DRL | Deep residual learning |
FDA-CNN | Fully dense attention CNN |
FFT | Fast Fourier transform |
GAN | Generative adversarial network |
IFFT | Inverse fast Fourier transform |
LAE | Lightweight autoencoder |
MCP-US | Mixed center and periphery under-sampling |
MRI | Magnetic resonance imaging |
MSE | Mean square error |
NRMSE | Normalized root mean squared error |
PAT | Photoacoustic tomography |
PBCU | Projection-based cascade Unet |
PI | Parallel imaging |
PSNR | Peak signal-to-noise ratio |
ReLU | Rectified linear unit |
SSIM | Structural similarity index measure |
TV | Total variation |
VIFP | Pixel visual information fidelity |
References
- Brown, R.W.; Cheng, Y.-C.N.; Haacke, E.M.; Thompson, M.R.; Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design, 2nd ed.; John Wiley & Sons Ltd: Hoboken, NJ, USA, 2014; ISBN 978-1-11863-395-3. [Google Scholar]
- Cercignani, M.; Dowell, N.G.; Paul, S. Tofts Quantitative MRI of the Brain: Principles of Physical Measurement; CRC Press: Boca Raton, FL, USA, 2018; Volume 15, ISBN 978-1-31536-357-8. [Google Scholar]
- Muckley, M.J.; Riemenschneider, B.; Radmanesh, A.; Kim, S.; Jeong, G.; Ko, J.; Jun, Y.; Shin, H.; Hwang, D.; Mostapha, M.; et al. Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans. Med. Imaging 2021, 40, 2306–2317. [Google Scholar] [CrossRef] [PubMed]
- Por, E.; van Kooten, M.; Sarkovic, V. Nyquist–Shannon Sampling Theorem; Leiden University: Leiden, The Netherlands, 2019. [Google Scholar]
- Schoenberg, S.O.; Dietrich, O.; Reiser, M.F. Parallel Imaging in Clinical MR Applications; Medical Radiology; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-54023-102-8. [Google Scholar]
- Deshmane, A.; Gulani, V.; Griswold, M.A.; Seiberlich, N. Parallel MR imaging. J. Magn. Reson. Imaging 2012, 36, 55–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustig, M.; Donoho, D.; Pauly, J.M. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007, 58, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Lustig, M.; Donoho, D. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [Google Scholar] [CrossRef]
- Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Alley, M.; Li, Z.; Datta, K.; Wen, Z.; Sandino, C.; Syed, A.; Ren, H.; Xing, L.; Lustig, M.; et al. Deep learning-based water-fat separation from dual-echo chemical shift-encoded imaging. Bioengineering 2022, 9, 579. [Google Scholar] [CrossRef]
- Ahishakiye, E.; Van Gijzen, M.B.; Tumwiine, J.; Wario, R.; Obungoloch, J. A survey on deep learning in medical image reconstruction. Intell. Med. 2021, 1, 118–127. [Google Scholar] [CrossRef]
- Amer, R.; Nassar, J.; Trabelsi, A.; Bendahan, D.; Greenspan, H.; Ben-Eliezer, N. Quantification of intra-muscular adipose infiltration in calf/thigh MRI using fully and weakly supervised semantic segmentation. Bioengineering 2022, 9, 315. [Google Scholar] [CrossRef]
- Lin, D.J.; Johnson, P.M.; Knoll, F.; Lui, Y.W. Artificial intelligence for MR image reconstruction: An Overview for Clinicians. J. Magn. Reson. Imaging 2021, 53, 1015–1028. [Google Scholar] [CrossRef]
- Pal, A.; Rathi, Y. A review and experimental evaluation of deep learning methods for MRI reconstruction. Mach. Learn. Biomed. Imaging 2022, 2022, 1–58. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, M.; Wang, Y.; Wei, B.; Li, Y.; Wang, P.; Menpes-Smith, W.; Niu, Z.; Yang, G. SARA-GAN: Self-attention and relative average discriminator based generative adversarial networks for fast compressed sensing MRI reconstruction. Front. Neuroinform. 2020, 14, 611666. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Wu, Y.; Shi, J.; Gee, J. Enhanced generative adversarial network for 3d brain MRI super-resolution. In Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 3616–3625. [Google Scholar] [CrossRef]
- Jiang, M.; Zhi, M.; Wei, L.; Yang, X.; Zhang, J.; Li, Y.; Wang, P.; Huang, J.; Yang, G. FA-GAN: Fused attentive generative adversarial networks for MRI image super-resolution. Comput. Med. Imaging Graph. 2021, 92, 101969. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, H.; Philbrick, K.; Conte, G.M.; Sobek, J.D.; Rouzrokh, P.; Erickson, B.J. SOUP-GAN: Super-resolution MRI using generative adversarial networks. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 3896–3905. [Google Scholar] [CrossRef]
- Pineda, L.; Basu, S.; Romero, A.; Calandra, R.; Drozdzal, M. Active MR k-space sampling with reinforcement learning. Lect. Notes Comput. Sci. 2020, 12262, 23–33. [Google Scholar] [CrossRef]
- Han, Y.; Sunwoo, L.; Ye, J.C. K-Space deep learning for accelerated MRI. IEEE Trans. Med. Imaging 2020, 39, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Du, T.; Zhang, H.; Li, Y.; Pickup, S.; Rosen, M.; Zhou, R.; Song, H.K.; Fan, Y. Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation. Med. Image Anal. 2021, 72, 102098. [Google Scholar] [CrossRef]
- Arefeen, Y.; Beker, O.; Cho, J.; Yu, H.; Adalsteinsson, E.; Bilgic, B. Scan-specific artifact reduction in k-space (SPARK) neural networks synergize with physics-based reconstruction to accelerate MRI. Magn. Reson. Med. 2022, 87, 764–780. [Google Scholar] [CrossRef]
- Eo, T.; Jun, Y.; Kim, T.; Jang, J.; Lee, H.J.; Hwang, D. KIKI-Net: Cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magn. Reson. Med. 2018, 80, 2188–2201. [Google Scholar] [CrossRef]
- Zou, J.; Li, C.; Jia, S.; Wu, R.; Pei, T.; Zheng, H.; Wang, S. SelfCoLearn: Self-supervised collaborative learning for accelerating dynamic MR imaging. Bioengineering 2022, 9, 650. [Google Scholar] [CrossRef]
- Souza, R.; Lebel, R.M.; Frayne, R. A hybrid, dual domain, cascade of convolutional neural networks for magnetic resonance image reconstruction. Proc. Mach. Learn. Res. 2019, 102, 437–446. [Google Scholar]
- Sun, L.; Wu, Y.; Shu, B.; Ding, X.; Cai, C.; Huang, Y.; Paisley, J. A Dual-domain deep lattice network for rapid MRI reconstruction. Neurocomputing 2020, 397, 94–107. [Google Scholar] [CrossRef]
- Souza, R.; Bento, M.; Nogovitsyn, N.; Chung, K.J.; Loos, W.; Lebel, R.M.; Frayne, R. Dual-domain cascade of u-nets for multi-channel magnetic resonance image reconstruction. Magn. Reson. Imaging 2020, 71, 140–153. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, H.; Du, H.; Xu, J.; Qiu, B. IKWI-Net: A cross-domain convolutional neural network for undersampled magnetic resonance image reconstruction. Magn. Reson. Imaging 2020, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- El-Rewaidy, H.; Fahmy, A.S.; Pashakhanloo, F.; Cai, X.; Kucukseymen, S.; Csecs, I.; Neisius, U.; Haji-Valizadeh, H.; Menze, B.; Nezafat, R. Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI. Magn. Reson. Med. 2021, 85, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pang, Y.; Tong, C. DSMENet: Detail and structure mutually enhancing network for under-sampled MRI reconstruction. Comput. Biol. Med. 2022, 106204. [Google Scholar] [CrossRef]
- Qin, C.; Schlemper, J.; Duan, J.; Seegoolam, G.; Price, A.; Hajnal, J.; Rueckert, D. K-t NEXT: Dynamic MR image reconstruction exploiting spatio-temporal correlations. Lect. Notes Comput. Sci. 2019, 11765, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Wang, H.; Ying, L.; Liang, D. Model learning: Primal dual networks for fast MR imaging. Lect. Notes Comput. Sci. 2019, 11766, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Bahadir, C.D.; Wang, A.Q.; Dalca, A.V.; Sabuncu, M.R. Deep-learning-based optimization of the under-sampling pattern in MRI. IEEE Trans. Comput. Imaging 2020, 6, 1139–1152. [Google Scholar] [CrossRef]
- Hosseini, S.A.H.; Yaman, B.; Moeller, S.; Hong, M.; Akcakaya, M. Dense recurrent neural networks for accelerated MRI: History-cognizant unrolling of optimization algorithms. IEEE J. Sel. Top. Signal Process. 2020, 14, 1280–1291. [Google Scholar] [CrossRef]
- Kwon, K.; Kim, D.; Park, H. A parallel MR imaging method using multilayer perceptron. Med. Phys. 2017, 44, 6209–6224. [Google Scholar] [CrossRef]
- Lee, D.; Yoo, J.; Tak, S.; Ye, J.C. Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 2018, 65, 1985–1995. [Google Scholar] [CrossRef] [Green Version]
- Nath, R.; Callahan, S.; Singam, N.; Stoddard, M.; Amini, A.A. Accelerated phase contrast magnetic resonance imaging via deep learning. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 834–838. [Google Scholar] [CrossRef]
- Yang, G.; Yu, S.; Dong, H.; Slabaugh, G.; Dragotti, P.L.; Ye, X.; Liu, F.; Arridge, S.; Keegan, J.; Guo, Y.; et al. DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1310–1321. [Google Scholar] [CrossRef] [Green Version]
- Quan, T.M.; Nguyen-Duc, T.; Jeong, W.K. Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans. Med. Imaging 2018, 37, 1488–1497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [Green Version]
- Ouchi, S.; Ito, S. Reconstruction of compressed-sensing MR imaging using deep residual learning in the image domain. Magn. Reson. Med. Sci. 2021, 20, 190–203. [Google Scholar] [CrossRef]
- Guan, S.; Khan, A.A.; Sikdar, S.; Chitnis, P.V. Fully dense unet for 2-D sparse photoacoustic tomography artifact removal. IEEE J. Biomed. Health Inform. 2020, 24, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Oktay, O.; Schlemper, J.; Le Folgoc, L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention u-net: Learning where to look for the pancreas. arXiv 2018, arXiv:1804.03999. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Santurkar, S.; Tsipras, D.; Ilyas, A.; Madry, A. How does batch normalization help optimization? In Proceedings of the Advances in Neural Information Processing Systems 31 (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018; pp. 2483–2493. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Lecture Notes in Computer Science, Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. ISBN 978-3-31924-573-7. [Google Scholar]
- Agarap, A.F. Deep learning using rectified linear units (ReLU). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Ottesen, J.A.; Caan, M.W.A.; Groote, I.R.; Bjørnerud, A. A densely interconnected network for deep learning accelerated MRI. Magn. Reson. Mater. Phys. Biol. Med. 2022, 1–19. [Google Scholar] [CrossRef]
- Schlemper, J.; Oktay, O.; Schaap, M.; Heinrich, M.; Kainz, B.; Glocker, B.; Rueckert, D. Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 2019, 53, 197–207. [Google Scholar] [CrossRef]
- CBICA. Multimodal Brain Tumor Segmentation Challenge 2020: Registration/Data Request. Available online: https://www.med.upenn.edu/cbica/brats2020/registration.html (accessed on 15 January 2022).
- Knoll, F.; Zbontar, J.; Sriram, A.; Muckley, M.J.; Bruno, M.; Defazio, A.; Parente, M.; Geras, K.J.; Katsnelson, J.; Chandarana, H.; et al. FastMRI: A publicly available raw k-space and dicom dataset of knee images for accelerated MR image reconstruction using machine learning. Radiol. Artif. Intell. 2020, 2, e190007. [Google Scholar] [CrossRef] [PubMed]
- Knoll, F.; Sodickson, D.K.; Recht, M.P.; Lui, Y.W. FastMRI Dataset. Available online: https://fastmri.med.nyu.edu/ (accessed on 10 June 2022).
- IXI Dataset. Available online: https://brain-development.org/ixi-dataset/ (accessed on 20 July 2022).
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, L.S.; Rajagopal, H.; Paramesran, R. Correlation between subjective and objective assessment of magnetic resonance (MR) images. Magn. Reson. Imaging 2016, 34, 820–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, L.; Liu, W.; Zhu, Y.; Pu, Z.; Magnin, I.E. Sparse representation based MRI denoising with total variation. In Proceedings of the 2008 9th International Conference on Signal Processing, Beijing, China, 26–29 October 2008; pp. 2154–2157. [Google Scholar] [CrossRef]
- Yang, X.; Fei, B. A wavelet multiscale denoising algorithm for magnetic resonance (MR) images. Meas. Sci. Technol. 2011, 22, 25803. [Google Scholar] [CrossRef] [Green Version]
- Andrew, J.; Mhatesh, T.S.R.; Sebastin, R.D.; Sagayam, K.M.; Eunice, J.; Pomplun, M.; Dang, H. Super-resolution reconstruction of brain magnetic resonance images via lightweight autoencoder. Inform. Med. Unlocked 2021, 26, 100713. [Google Scholar] [CrossRef]
- Aghabiglou, A.; Eksioglu, E.M. Projection-based cascaded u-net model for MR image reconstruction. Comput. Methods Programs Biomed. 2021, 207, 106151. [Google Scholar] [CrossRef]
- Souza, R.; Frayne, R. A hybrid frequency-domain/image-domain deep network for magnetic resonance image reconstruction. In Proceedings of the 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Rio de Janeiro, Brazil, 28–30 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 257–264. [Google Scholar]
Sampling | Metrics | Zero Filling | TV | Wavelet | LAE | Unet | Wnet | PBCU | DRL-Net | FDA-CNN |
---|---|---|---|---|---|---|---|---|---|---|
2DG-US | SSIM | 0.31 | 0.32 | 0.36 | 0.78 | 0.79 | 0.77 | 0.82 | 0.83 | 0.89 |
PSNR | 34.11 | 35.90 | 36.13 | 35.16 | 35.31 | 35.29 | 35.55 | 35.84 | 36.22 | |
NRMSE | 0.09 | 0.07 | 0.06 | 0.08 | 0.08 | 0.07 | 0.07 | 0.06 | 0.04 | |
VIFP | 0.60 | 0.50 | 0.65 | 0.87 | 0.92 | 0.93 | 0.90 | 0.80 | 0.94 | |
1DG-US | SSIM | 0.52 | 0.58 | 0.62 | 0.68 | 0.69 | 0.68 | 0.69 | 0.69 | 0.70 |
PSNR | 33.20 | 33.23 | 33.25 | 33.23 | 33.26 | 33.10 | 33.15 | 33.40 | 33.59 | |
NRMSE | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.10 | |
VIFP | 0.25 | 0.21 | 0.27 | 0.42 | 0.38 | 0.44 | 0.38 | 0.41 | 0.45 | |
MCP-US | SSIM | 0.76 | 0.77 | 0.76 | 0.96 | 0.95 | 0.96 | 0.96 | 0.95 | 0.97 |
PSNR | 36.70 | 36.47 | 36.73 | 38.92 | 38.78 | 38.97 | 38.74 | 38.97 | 40.55 | |
NRMSE | 0.05 | 0.06 | 0.06 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.02 | |
VIFP | 0.52 | 0.41 | 0.50 | 0.90 | 0.91 | 0.91 | 0.89 | 0.85 | 0.93 | |
Reconstruction time (seconds) | 0.97 | 0.5 | 0.30 | 0.30 | 0.39 | 0.33 | 0.31 | 0.30 |
Sampling | Metrics | Zero Filling | TV | Wavelet | LAE | Unet | Wnet | PBCU | DRL-Net | FDA-CNN |
---|---|---|---|---|---|---|---|---|---|---|
2DG-US | SSIM | 0.52 | 0.49 | 0.51 | 0.70 | 0.72 | 0.72 | 0.76 | 0.80 | 0.81 |
PSNR | 35.87 | 35.65 | 35.89 | 35.16 | 35.28 | 35.13 | 35.51 | 35.40 | 36.23 | |
NRMSE | 0.07 | 0.07 | 0.07 | 0.08 | 0.08 | 0.08 | 0.08 | 0.07 | 0.06 | |
VIFP | 0.78 | 0.56 | 0.79 | 0.84 | 0.80 | 0.85 | 0.82 | 0.81 | 0.88 | |
1DG-US | SSIM | 0.57 | 0.54 | 0.57 | 0.61 | 0.64 | 0.63 | 0.65 | 0.66 | 0.71 |
PSNR | 32.64 | 32.62 | 32.64 | 32.89 | 33.08 | 32.71 | 33.03 | 33.18 | 34.29 | |
NRMSE | 0.14 | 0.14 | 0.14 | 0.13 | 0.13 | 0.14 | 0.13 | 0.11 | 0.09 | |
VIFP | 0.43 | 0.29 | 0.42 | 0.64 | 0.62 | 0.69 | 0.64 | 0.56 | 0.64 | |
MCP-US | SSIM | 0.78 | 0.76 | 0.78 | 0.88 | 0.87 | 0.88 | 0.88 | 0.88 | 0.91 |
PSNR | 36.76 | 36.40 | 36.76 | 37.79 | 37.93 | 37.88 | 37.76 | 37.81 | 40.88 | |
NRMSE | 0.06 | 0.06 | 0.06 | 0.05 | 0.04 | 0.04 | 0.05 | 0.04 | 0.02 | |
VIFP | 0.56 | 0.40 | 0.54 | 0.75 | 0.77 | 0.82 | 0.80 | 0.73 | 0.75 | |
Reconstruction time (seconds) | 1.52 | 1.3 | 0.46 | 0.49 | 0.95 | 0.82 | 0.47 | 0.44 |
Sampling | Metrics | Zero Filling | TV | Wavelet | LAE | Unet | Wnet | PBCU | DRL-Net | FDA-CNN |
---|---|---|---|---|---|---|---|---|---|---|
2DG-US | SSIM | 0.46 | 0.48 | 0.50 | 0.67 | 0.70 | 0.71 | 0.73 | 0.76 | 0.77 |
PSNR | 33.97 | 33.46 | 33.98 | 34.25 | 34.85 | 34.71 | 35.02 | 34.75 | 35.47 | |
NRMSE | 0.15 | 0.07 | 0.07 | 0.10 | 0.08 | 0.08 | 0.08 | 0.07 | 0.06 | |
VIFP | 0.69 | 0.70 | 0.67 | 0.89 | 0.86 | 0.90 | 0.86 | 0.75 | 0.97 | |
1DG-US | SSIM | 0.50 | 0.52 | 0.56 | 0.64 | 0.66 | 0.66 | 0.68 | 0.71 | 0.79 |
PSNR | 33.38 | 33.47 | 33.67 | 33.43 | 33.63 | 33.34 | 33.64 | 34.14 | 35.02 | |
NRMSE | 0.12 | 0.12 | 0.12 | 0.12 | 0.11 | 0.12 | 0.11 | 0.09 | 0.07 | |
VIFP | 0.35 | 0.19 | 0.32 | 0.58 | 0.57 | 0.60 | 0.55 | 0.56 | 0.51 | |
MCP-US | SSIM | 0.70 | 0.72 | 0.72 | 0.82 | 0.81 | 0.82 | 0.83 | 0.83 | 0.89 |
PSNR | 35.74 | 35.40 | 35.40 | 36.36 | 36.58 | 36.44 | 36.52 | 36.65 | 37.70 | |
NRMSE | 0.07 | 0.08 | 0.08 | 0.06 | 0.06 | 0.06 | 0.06 | 0.05 | 0.04 | |
VIFP | 0.44 | 0.25 | 0.25 | 0.71 | 0.73 | 0.77 | 0.73 | 0.68 | 0.68 | |
Reconstruction time (seconds) | 0.9 | 0.91 | 0.33 | 0.33 | 0.43 | 0.33 | 0.32 | 0.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.B.; Kwon, K.-C.; Imtiaz, S.M.; Nam, O.-S.; Jeon, S.-H.; Kim, N. De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates. Bioengineering 2023, 10, 22. https://doi.org/10.3390/bioengineering10010022
Hossain MB, Kwon K-C, Imtiaz SM, Nam O-S, Jeon S-H, Kim N. De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates. Bioengineering. 2023; 10(1):22. https://doi.org/10.3390/bioengineering10010022
Chicago/Turabian StyleHossain, Md. Biddut, Ki-Chul Kwon, Shariar Md Imtiaz, Oh-Seung Nam, Seok-Hee Jeon, and Nam Kim. 2023. "De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates" Bioengineering 10, no. 1: 22. https://doi.org/10.3390/bioengineering10010022
APA StyleHossain, M. B., Kwon, K.-C., Imtiaz, S. M., Nam, O.-S., Jeon, S.-H., & Kim, N. (2023). De-Aliasing and Accelerated Sparse Magnetic Resonance Image Reconstruction Using Fully Dense CNN with Attention Gates. Bioengineering, 10(1), 22. https://doi.org/10.3390/bioengineering10010022