Deep Learning for Detecting COVID-19 Using Medical Images
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Etienne, E.E.; Nunna, B.B.; Talukder, N.; Wang, Y.D.; Lee, E.S. COVID-19 biomarkers and advanced sensing technologies for point-of-care (POC) diagnosis. Bioengineering 2021, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Shaffaf, T.; Ghafar-Zadeh, E. COVID-19 diagnostic strategies. Part I: Nucleic acid-based technologies. Bioengineering 2021, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning. Med. Image Anal. 2020, 65, 101794. [Google Scholar] [CrossRef] [PubMed]
- Al-Waisy, A.S.; Al-Fahdawi, S.; Mohammed, M.A.; Abdulkareem, K.H.; Mostafa, S.A.; Maashi, M.S.; Arif, M.; Garcia-Zapirain, B. COVID-CheXNet: Hybrid deep learning framework for identifying COVID-19 virus in chest X-rays images. Soft Comput. 2020, 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Varela-Santos, S.; Melin, P. A new approach for classifying coronavirus COVID-19 based on its manifestation on chest X-rays using texture features and neural networks. Inf. Sci. 2021, 545, 403–414. [Google Scholar] [CrossRef]
- Ieracitano, C.; Mammone, N.; Versaci, M.; Varone, G.; Ali, A.R.; Armentano, A.; Calabrese, G.; Ferrarelli, A.; Turano, L.; Tebala, C.; et al. A fuzzy-enhanced deep learning approach for early detection of COVID-19 pneumonia from portable chest X-ray images. Neurocomputing. 2022, 481, 202–215. [Google Scholar] [CrossRef]
- Lin, Z.J.; He, Z.S.; Xie, S.L.; Wang, X.; Tan, J.; Lu, J.; Tan, B.H. AANet: Adaptive attention network for COVID-19 detection from chest X-ray images. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4781–4792. [Google Scholar] [CrossRef]
- Park, S.; Kim, G.; Oh, Y.; Seo, J.B.; Lee, S.M.; Kim, J.H.; Moon, S.J.; Lim, J.K.; Ye, J.C. Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification. Med. Image Anal. 2022, 75, 102299. [Google Scholar] [CrossRef]
- Oh, Y.J.; Park, S.J.; Ye, J.C. Deep learning COVID-19 features on CXR using limited training data sets. IEEE Trans. Med. Imaging 2020, 39, 2688–2700. [Google Scholar] [CrossRef]
- Subramanian, N.; Elharrouss, O.; Al-Maadeed, S.; Chowdhury, M. A review of deep learning-based detection methods for COVID-19. Comput Biol Med. 2022, 143, 105233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Xie, Y.T.; Pang, G.S.; Liao, Z.B.; Verjans, J.; Li, W.X.; Sun, Z.J.; He, J.; Li, Y.; Shen, C.H.; et al. Viral pneumonia screening on chest X-rays using confidence-aware anomaly detection. IEEE Trans. Med. Imaging 2021, 40, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Qi, J.; Chen, W.; Nian, Y.J. Multi-branch fusion auxiliary learning for the detection of pneumonia from chest X-ray images. Comput. Biol. Med. 2022, 147, 105732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, B.; Luo, Y. A deep ensemble dynamic learning network for corona virus disease 2019 Diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–15. [Google Scholar] [CrossRef]
- Pathak, Y.; Shukla, P.K.; Tiwari, A.; Stalin, S.; Singh, S.; Shukla, P.K. Deep transfer learning based classification model for COVID-19 disease. Ing. Rech. Biomed. 2020, 43, 87–92. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.; Dou, Q. Contrastive cross-site learning with redesigned net for COVID-19 CT classification. IEEE J. Biomed. Health 2020, 24, 2806–2813. [Google Scholar] [CrossRef]
- Qian, X.L.; Fu, H.Z.; Shi, W.Y.; Chen, T.; Fu, Y.W.; Shan, F.; Xue, X.Y. M3Lung-Sys: A deep learning system for multi-class lung pneumonia screening from CT imaging. IEEE J. Biomed. Health 2020, 24, 3539–3550. [Google Scholar] [CrossRef]
- Xiao, B.; Yang, Z.Y.; Qiu, X.M.; Xiao, J.J.; Wang, G.Y.; Zeng, W.B.; Li, W.S.; Nian, Y.J.; Chen, W. PAM-DenseNet: A deep convolutional neural network for computer-aided COVID-19 diagnosis. IEEE Trans. Cybern. 2022, 52, 12163–12174. [Google Scholar] [CrossRef]
- Ouyang, X.; Huo, J.Y.; Xia, L.M.; Shan, F.; Liu, J.; Mo, Z.H.; Yan, F.H.; Ding, Z.X.; Yang, Q.; Song, B.; et al. Dual-sampling attention network for diagnosis of COVID-19 from community acquired pneumonia. IEEE Trans. Med. Imaging 2020, 39, 2595–2605. [Google Scholar] [CrossRef]
- Wang, J.; Bao, Y.M.; Wen, Y.F.; Lu, H.B.; Luo, H.; Xiang, Y.F.; Li, X.M.; Liu, C.; Qian, D.H. Prior-attention residual learning for more discriminative COVID-19 screening in CT Images. IEEE Trans. Med. Imaging 2020, 3, 2572–2583. [Google Scholar] [CrossRef]
- Chikontwe, P.; Luna, M.; Kang, M.; Hong, K.S.; Ahn, J.H.; Park, S.H. Dual attention multiple instance learning with unsupervised complementary loss for COVID-19 screening. Med. Image Anal. 2021, 72, 102105. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, C.; Zhong, M.; Wang, J.J.; Shi, J. COVID-AL: The diagnosis of COVID-19 with deep active learning. Med. Image Anal. 2020, 68, 101913. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Y.; Wei, B.Z.; Hong, Y.F.; Li, T.Y.; Cong, J.Y.; Zhu, X.; Wei, H.F.; Zhang, W. Accurate screening of COVID-19 using attention-based deep 3D multiple instance learning. IEEE Trans. Med. Imaging 2020, 39, 2584–2594. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Deng, X.B.; Fu, Q.; Zhou, Q.; Feng, J.P.; Ma, H.; Liu, W.Y.; Zheng, C.S. A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging. 2020, 39, 2615–2625. [Google Scholar] [CrossRef]
- Zaffino, P.; Marzullo, A.; Moccia, S.; Calimeri, F.; Momi, E.D.; Bertucci, B.; Arcuri, P.P.; Spadea, M.F. An open-source COVID-19 CT dataset with automatic lung tissue classification for radiomics. Bioengineering 2021, 8, 26. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Qi, J.; Chen, W.; Wu, Y.; Nian, Y. Deep Learning for Detecting COVID-19 Using Medical Images. Bioengineering 2023, 10, 19. https://doi.org/10.3390/bioengineering10010019
Liu J, Qi J, Chen W, Wu Y, Nian Y. Deep Learning for Detecting COVID-19 Using Medical Images. Bioengineering. 2023; 10(1):19. https://doi.org/10.3390/bioengineering10010019
Chicago/Turabian StyleLiu, Jia, Jing Qi, Wei Chen, Yi Wu, and Yongjian Nian. 2023. "Deep Learning for Detecting COVID-19 Using Medical Images" Bioengineering 10, no. 1: 19. https://doi.org/10.3390/bioengineering10010019
APA StyleLiu, J., Qi, J., Chen, W., Wu, Y., & Nian, Y. (2023). Deep Learning for Detecting COVID-19 Using Medical Images. Bioengineering, 10(1), 19. https://doi.org/10.3390/bioengineering10010019