Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Virulent Protein of Monkeypox Virus: A Molecular Modification Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification and Preparation of Virulent Protein
2.2. Prediction of Binding Pockets
2.3. Validation of Tertiary Structure of Virulent Protein
2.4. Identification of Compounds
2.5. Screening of Compounds
2.6. Chain Optimization of the Best-Screened Active Compounds
2.7. Interaction Analysis
2.8. Interpretation of Docking Results
2.9. Exploitation of Host–Pathogen Interaction Network
2.10. Molecular Dynamic Simulation
2.11. Pre-Clinical Testing
2.12. Validation of Lipinski’s Rule of Five
3. Results
3.1. Identification and Preparation of Virulent Protein
3.2. Binding Site Identification
3.3. Validation of Tertiary Structure of Virulent Protein
3.4. Screening of Compounds
3.5. Chain Optimization
3.6. Interaction Analysis
3.7. Host–Pathogen Interaction
3.8. Molecular Dymanics Simulation
3.9. Pre-Clinical Testing
3.10. Valuation of Lipinski’s Rule
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adalja, A.; Inglesby, T. A novel international monkeypox outbreak, American College of Physicians. Ann. Intern. Med. 2022.
- Alakunle, E.F.; Okeke, M.I. Monkeypox virus: A neglected zoonotic pathogen spreads globally. Nat. Rev. Microbiol. 2022, 20, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, A.; Aarons, E.; Astbury, J.; Brooks, T.; Chand, M.; Flegg, P.; Hardman, A.; Harper, N.; Jarvis, R.; Mawdsley, S.; et al. Human-to-Human Transmission of Monkeypox Virus, United Kingdom, October 2018. Emerg. Infect. Dis. 2020, 26, 782–785. [Google Scholar] [CrossRef]
- Anderson, M.G.; Frenkel, L.D.; Homann, S.; Guffey, J. A case of severe monkeypox virus disease in an American child: Emerging infections and changing professional values. Pediatr. Infect. Dis. J. 2003, 22, 1093–1096. [Google Scholar] [CrossRef]
- McCarthy, M.W. Therapeutic strategies to address monkeypox. In Expert Review of Anti-Infective Therapy; Taylor & Francis: Oxford, UK, 2022; Volume 20, pp. 1249–1252. [Google Scholar]
- Kumar, N.; Acharya, A.; Gendelman, H.E.; Byrareddy, S.N. The 2022 outbreak and the pathobiology of the monkeypox virus. J Autoimmun. 2022, 131, 102855. [Google Scholar] [CrossRef] [PubMed]
- Macneil, A.; Reynolds, M.G.; Braden, Z.; Carroll, D.S.; Bostik, V.; Karem, K.; Smith, S.K.; Davidson, W.; Li, Y.; Moundeli, A.; et al. Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clin. Infect. Dis. 2009, 48, e6–e8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, S.K.; Ansari, S.; Maurya, V.K.; Kumar, S.; Jain, A.; Paweska, J.T.; Tripathi, A.K.; Abdel-Moneim, A.S. Re-emerging human monkeypox: A major public-health debacle. J. Med. Virol. 2022, 95, e27902. [Google Scholar] [CrossRef]
- Pastula, D.M.; Tyler, K.L. An overview of monkeypox virus and its neuroinvasive potential. Ann. Neurol. 2022, 92, 527–531. [Google Scholar] [CrossRef]
- Haider, M.; Chauhan, A.; Tariq, S.; Pathak, D.P.; Siddiqui, N.; Ali, S.; Pottoo, F.H.; Ali, R. Application of In silico Methods in the Design of Drugs for Neurodegenerative Diseases. Curr. Top. Med. Chem. 2021, 21, 995–1011. [Google Scholar] [CrossRef]
- Makhouri, F.R.; Ghasemi, J.B. In Silico Studies in Drug Research Against Neurodegenerative Diseases. Curr. Neuropharmacol. 2018, 16, 664–725. [Google Scholar] [CrossRef]
- Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Feng, X.; Guo, W.; Bao, X.; Ren, N. Long-term medium chain carboxylic acids production from liquor-making wastewater: Parameters optimization and toxicity mitigation. Chem. Eng. J. 2020, 388, 124218. [Google Scholar] [CrossRef]
- Huey, R.; Morris, G.M.; Forli, S. Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial; The Scripps Research Institute Molecular Graphics Laboratory: La Jolla, CA, USA, 2012; Volume 10550, p. 92037. [Google Scholar]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Naveed, M.; ul-Ain, N.; Shabbir, M.A. Computational Drug Shifting towards Drug-Drug Conjugates and Monoclonal Antibody Conjugates in the Contradictory Excursion of Asthma. Lett. Drug Des. Discov. 2020, 19. [Google Scholar] [CrossRef]
- Naveed, M.; Makhdoom, S.I.; Ali, U.; Jabeen, K.; Aziz, T.; Khan, A.A.; Jamil, S.; Shahzad, M.; Alharbi, M.; Alshammari, A. Immunoinformatics Approach to Design Multi-Epitope-Based Vaccine against Machupo Virus Taking Viral Nucleocapsid as a Potential Candidate. Vaccines 2022, 10, 1732. [Google Scholar] [CrossRef]
- Naveed, M.; Sheraz, M.; Amin, A.; Waseem, M.; Aziz, T.; Khan, A.A.; Ghani, M.; Shahzad, M.; Alruways, M.W.; Dablool, A.S.; et al. Designing a Novel Peptide-Based Multi-Epitope Vaccine to Evoke a Robust Immune Response against Pathogenic Multidrug-Resistant Providencia heimbachae. Vaccines 2022, 10, 1300. [Google Scholar] [CrossRef]
- Lopéz-Blanco, J.R.; Garzón, J.I.; Chacón, P. iMod: Multipurpose normal mode analysis in internal coordinates. Bioinformatics 2011, 27, 2843–2850. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Chagas, C.M.; Moss, S.; Alisaraie, L. Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. Int. J. Pharm. 2018, 549, 133–149. [Google Scholar] [CrossRef]
- Rao, A.K.; Schulte, J.; Chen, T.H.; Hughes, C.M.; Davidson, W.; Neff, J.M.; Markarian, M.; Delea, K.C.; Wada, S.; Liddell, A.; et al. Monkeypox in a Traveler Returning from Nigeria—Dallas, Texas, July 2021. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Rizk, J.G.; Lippi, G.; Henry, B.M.; Forthal, D.N.; Rizk, Y. Prevention and Treatment of Monkeypox. Drugs 2022, 82, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Fahrni, M.L.; Priyanka; Sharma, A.; Choudhary, O.P. Monkeypox: Prioritizing public health through early intervention and treatment. Int. J. Surg. 2022, 104, 106774. [Google Scholar] [CrossRef] [PubMed]
- Melamed, S.; Israely, T.; Paran, N. Challenges and Achievements in Prevention and Treatment of Smallpox. Vaccines 2018, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Adler, H.; Gould, S.; Hine, P.; Snell, L.B.; Wong, W.; Houlihan, C.F.; Osborne, J.C.; Rampling, T.; Beadsworth, M.B.J.; Duncan, C.J.A.; et al. Clinical features and management of human monkeypox: A retrospective observational study in the UK. Lancet Infect. Dis. 2022, 22, 1153–1162. [Google Scholar] [CrossRef]
- Hutson, C.L.; Kondas, A.V.; Mauldin, M.R.; Doty, J.B.; Grossi, I.M.; Morgan, C.N.; Ostergaard, S.D.; Hughes, C.M.; Nakazawa, Y.; Kling, C.; et al. Pharmacokinetics and Efficacy of a Potential Smallpox Therapeutic, Brincidofovir, in a Lethal Monkeypox Virus Animal Model. MSphere 2021, 6, e00927-20. [Google Scholar] [CrossRef]
- Radosa, S.; Hillmann, F. Host-pathogen interactions: Lessons from phagocytic predation on fungi. Curr. Opin. Microbiol. 2021, 62, 38–44. [Google Scholar] [CrossRef]
Bond Lengths | Predicted Conventional Bonds |
---|---|
3.66 Angstroms | Van der Waal forces (hydrophobic interaction) |
3.12 Angstroms | Hydrogen bond |
2.71 Angstroms | Hydrogen Bond |
2.42 Angstroms | Hydrogen Bond |
3.15 Angstroms | Hydrogen Bond |
3.37 Angstroms | Van der Waal (hydrophobic interaction) |
Parameters | p Value |
---|---|
Cellular roles of anthrax toxin | 0.0034583 |
Cytokine signaling in immune system | 0.037313 |
IL12 signaling mediated by STAT4 | 0.0054605 |
IL12-mediated signaling events | 0.020386 |
IL23-mediated signaling events | 0.012559 |
IL27-mediated signaling events | 0.0045504 |
ADMET Parameters | Parametric Values |
---|---|
Formula | C20H27F2N3O5 |
Molecular weight | 445.59 g/mol |
Num. heavy atoms | 30 |
Fraction Csp3 | 0.75 |
Num. rotatable bonds | 4 |
Num. H-bond acceptors | 7 |
Num. H-bond donors | 2 |
Molar refractivity | 111.68 |
TPSA (topological polar surface area) | 107.62 Ų |
Water solubility log S (ESOL) | −2.51 |
GI absorption | High |
Skin permeation (Log Kp) | −8.83 cm/s |
Bioavailability score | 0.55 |
Synthetic accessibility | 6.65 |
Drug-likeness (Ghose) | 1 violation i.e., #atoms > 70 |
Antiviral Active Compound | LogP | Molecular Weight | noN | Noh, NH |
---|---|---|---|---|
Chain-engineered dolutegravir | 2.12 | 445.59 g/mol | 5 | 4 |
No. | Parameter of Methods Used | Precise Values |
---|---|---|
1 | Bond lengths (in interaction analysis) | Hydrogen bond (2.7–3.4 Angstroms) Van der Waal force (1–2 Angstroms) |
2 | Molecular weight (in ADMET analysis) | Not more than 500 g/mol |
3 | Num. heavy atoms | Not more than 6 |
4 | Num. atom. low atoms | Not more than 5 |
5 | Num. rotatable bonds | Not more than 5 |
6 | Num. H-bond acceptors | Not more than 10 |
7 | Num. H-bond donors | Not more than 5 |
8 | Violation of Lipinski’s rule | Not more than 3 violations |
9 | LogP value | Less than 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveed, M.; Shabbir, M.A.; Ain, N.-u.; Javed, K.; Mahmood, S.; Aziz, T.; Khan, A.A.; Nabi, G.; Shahzad, M.; Alharbi, M.E.; et al. Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Virulent Protein of Monkeypox Virus: A Molecular Modification Approach. Bioengineering 2023, 10, 11. https://doi.org/10.3390/bioengineering10010011
Naveed M, Shabbir MA, Ain N-u, Javed K, Mahmood S, Aziz T, Khan AA, Nabi G, Shahzad M, Alharbi ME, et al. Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Virulent Protein of Monkeypox Virus: A Molecular Modification Approach. Bioengineering. 2023; 10(1):11. https://doi.org/10.3390/bioengineering10010011
Chicago/Turabian StyleNaveed, Muhammad, Muhammad Aqib Shabbir, Noor-ul Ain, Khushbakht Javed, Sarmad Mahmood, Tariq Aziz, Ayaz Ali Khan, Ghulam Nabi, Muhammad Shahzad, Mousa Essa Alharbi, and et al. 2023. "Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Virulent Protein of Monkeypox Virus: A Molecular Modification Approach" Bioengineering 10, no. 1: 11. https://doi.org/10.3390/bioengineering10010011
APA StyleNaveed, M., Shabbir, M. A., Ain, N. -u., Javed, K., Mahmood, S., Aziz, T., Khan, A. A., Nabi, G., Shahzad, M., Alharbi, M. E., Alharbi, M., & Alshammari, A. (2023). Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Virulent Protein of Monkeypox Virus: A Molecular Modification Approach. Bioengineering, 10(1), 11. https://doi.org/10.3390/bioengineering10010011