Evaluating the Response of Hydrological Stress Indices Using the CHyM Model over a Wide Area in Central Italy
Abstract
:1. Introduction
- (i)
- hydraulic and hydrological risk, related to river phenomena, such as floods and flash floods
- (ii)
- hydro-geological risk due to slope instability which may be related to heavy precipitation (e.g., mud flows, debris flows, or shallow landslides).
- (i)
- rainfall distribution. FF is generally distinguished from FL, with the former associated with highly localized and intense rainfall, concentrated in a short timeframe. Therefore, FF is often defined as intense runoff generated locally by short and intense rainfall. However, a numerical evaluation of the indicative spatial extent or precipitation duration associated with an FF has not yet been proposed or evaluated.
- (ii)
- relationship between rainfall peak and discharge peak. The lag time between rainfall maxima and the consequent river stage maxima is the lead variable discriminating an FL from an FF. According to the WMO official definition [15], an FF event is generated by river overflow that occurs within 6 h after the maximum rainfall rate. An earlier definition [16]) extends this temporal limit to 12 h. It is worth mentioning that similar precipitation patterns, but different hydrological antecedent conditions, may influence flood occurrence and severity, as well as catchment response during weather events that appear similar [17]
- (iii)
- early warning capacity. Classification criteria based on early warning capacity deviate from the scientific definition, which is linked to the dynamics of the phenomenon. These criteria, instead, emphasize the relationship between humans and nature. From this perspective, FFs are less predictable, or not predictable at all, compared to FLs, as they are triggered by very localized and sudden rainfall and are, therefore, difficult to forecast. In particular, Italian civil protection regulations stress that flood predictability is challenging over catchments characterized by drainage areas of less than 400 km2 (DPCM, 2004). In this context, the application of nowcasting techniques is required, together with monitoring using in situ instrumentation, which is not always available on small tributaries.
2. Methods
Description of the Study Area
3. Data
4. Hydrological Simulation
5. Stress Indices
6. Statistical Analysis
7. Case Study Description
8. Results and Discussion
9. Conclusions
- The BDD index is responsive to fluvial floods, generated over basins with extension greater than ~1000 km2;
- The CAI index is more responsive to rapid flood phenomena, typical of smallest basins (flash floods);
- The BDD and CAI timing with respect to fluvial and pluvial floods are accurate upstream, while the shift between the observed and simulated discharge peak increases downstream;
- The LAI index is more responsive in the prediction in an urban context.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Llasat, M.C.; Llasat-Botija, M.; Prat, M.A.; Porcú, F.; Price, C.; Mugnai, A.; Lagouvardos, K.; Kotroni, V.; Katsanos, D.; Michaelides, S.; et al. High-impact floods and flash floods in Mediterranean countries: The FLASH preliminary database. Adv. Geosci. 2010, 23, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Paliaga, G.; Faccini, F.; Luino, F.; Roccati, A.; Turconi, L. A clustering classification of catchment anthropogenic modification and relationships with floods. Sci. Tot. Env. 2020, 740, 139915. [Google Scholar] [CrossRef]
- Tarasova, L.; Merz, R.A.; Kiss, A.; Basso, S.; Blöschl, G.; Merz, B.; Viglione, A.; Plötner, S.; Guse, B.; Schumann, A.; et al. Causative classification of river flood events. WIREs Water 2019, 6, e1353. [Google Scholar] [CrossRef] [Green Version]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2013, 12, 14–29. [Google Scholar] [CrossRef] [Green Version]
- Seong, C.; Heejun, C. Recent research approaches to urban flood vulnerability, 2006–2016. Nat. Hazards 2022, 88, 1–17. [Google Scholar]
- Zhong, Q.; Wang, L.; Chen, S.; Shan, Z.; Shan, Q.; Ren, Q.; Mei, S.; Jiang, J.; Hu, L.; Liu, J. Breaches of embankment and landslide dams - State of the art review. Earth-Sci. Rev. 2021, 2016, 103597. [Google Scholar] [CrossRef]
- Moramarco, T.; Barbetta, S.; Pandolfo, C.; Tarpanelli, A.; Berni, N.; Morbidelli, R. Spillway collapse of the Montedoglio Dam on the Tiber River, Central Italy: Data collection and event analysis. J. Hydrol. Eng. 2014, 19, 1264–1270. [Google Scholar] [CrossRef]
- Manfreda, S.; Miglino, D.; Albertini, C. Impact of detention dams on the probability distribution of floods. Hydrol. Earth Syst. Sci. 2021, 25, 4231–4242. [Google Scholar] [CrossRef]
- Ridolfi, E.; Di Francesco, S.; Pandolfo, C.; Berni, N.; Biscarini, C.; Manciola, P. Coping with Extreme Events: Effect of Different Reservoir Operation Strategies on Flood Inundation Maps. Water 2019, 11, 982. [Google Scholar] [CrossRef] [Green Version]
- ISPRA. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori di Rischio (Hydrogeological Instability in Italy: Danger and Risk Indicators); Report No. 287; ISPRA: Roma, Italy, 2018; ISBN 978-88-448-0901-0. Available online: https://www.isprambiente.gov.it/files2018/pubblicazioni/rapporti/rapporto-dissesto- (accessed on 29 June 2022).
- Marchesini, I.; Ardizzone, F.; Alvioli, M.; Rossi, M.; Guzzetti, F. Non-susceptible landslide areas in Italy and in the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2014, 12, 2215–2231. [Google Scholar] [CrossRef] [Green Version]
- Kobiyama, M.; Goerl, R.F. Quantitative method to distinguish flood and flash flood as disasters. Hydrol. Res. Lett. 2007, 1, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Wohl, E. The complexity of the real world in the context of the field tradition in geomorphology. Geomorphology 2013, 200, 50–58. [Google Scholar] [CrossRef]
- Smith, P.J.; Brown, S.; Dugar, S. Community Based Early Warning Systems for flood risk mitigationin Nepal. Nat. Hazards Earth Syst. Sci. 2017, 17, 423–437. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization–WMO. Management of Flash Floods, Integrated Management Tools Series no.16, Issue 16, May 2012. 2014. Available online: https://library.wmo.int/doc_num.php?explnum_id=7337 (accessed on 20 December 2021).
- Georgakakos, K.P. On the design of natural, real-time warning systems with capability for site-specific, flashflood forecasts. Bull. Am. Meteorol. Soc. 1986, 67, 1233–1239. [Google Scholar] [CrossRef]
- Turkington, T.; Breinl, K.; Ettema, J.; Alkema, D.; Jetten, V. A new flood type classification method for use in climate change impact studies. Weather. Clim. Extrem. 2016, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef] [Green Version]
- Endo, T. Probable Distribution of the Amount of Rainfall Causing Landslides; Annual Report, Hokkaido Branch, 1970; Govern Forest Experiment Station: Sapporo, Japan, 1970; pp. 123–136. [Google Scholar]
- Oakley, N.S.; Lancaster, J.T.; Hatchett, B.J.; Stock, J.; Ralph, F.M.; Roj, S.; Lukashov, S. A 22-Year Climatology of Cool Season Hourly Precipitation Thresholds Conducive to Shallow Landslides in California. Earth Interact. 2018, 22, 1–35. [Google Scholar] [CrossRef]
- Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267. [Google Scholar] [CrossRef]
- Segoni, S.; Piciullo, L.; Gariano, S.L. Preface: Landslide early warning systems: Monitoring systems, rainfall thresholds, warning models, performance evaluation and risk perception. Nat. Hazards Earth Syst. Sci. 2018, 18, 3179–3186. [Google Scholar] [CrossRef]
- Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early warning systems. Earth-Sci. Rev. 2020, 200, 102973. [Google Scholar] [CrossRef]
- Arredi, F. Brevi richiami alle caratteristiche del Tevere (Short notes on the Tiber characteristics). In Idrotecnica 1; Gentile-Feb.: Roma, Italy, 1974. [Google Scholar]
- Raparelli, E.; Tuccella, P.; Colaiuda, V.; Marzano, F.S. Snow cover prediction in the Italian Central Apennines using weather forecast and snowpack numerical model. Cryosphere Discuss. 2021, 285. [Google Scholar]
- Alessi, D.; Bozzano, F.; Di Lisa, A.; Esposito, C.; Fantini, A.; Loffredo, A.; Martino, S.; Mele, F.; Moretto, S.; Noviello, A.; et al. Geological risk in large cities: The landslides triggered in the city of Rome (Italy) by the rainfall of 31 January–2 February 2014. Ital. J. Eng. Geol. Environ. 2014, 1, 15–34. [Google Scholar]
- Italian Civil Protection Department; CIMA Research Foundation. The Dewetra Platform: A Multi-perspective Architecture for Risk Management during Emergencies. In Information Systems for Crisis Response and Management in Mediterranean Countries; Hanachi, C., Bénaben, F., Charoy, F., Eds.; ISCRAM-med 2014, Lecture Notes in Business Information Processing; Springer: Cham, Switzerland, 2014; pp. 165–177. [Google Scholar]
- Verdecchia, M.; Coppola, E.; Tomassetti, B.; Visconti, G. Cetemps Hydrological Model (CHyM), a Distributed Grid-Based Model Assimilating Different Rainfall Data Sources. In Hydrological Modelling and the Water Cycle; Sorooshian, S., Hsu, K.L., Coppola, E., Tomassetti, B., Verdecchia, M., Visconti, G., Eds.; Water Sciences Technol. Library; Springer: Berlin/Heidelberg, Germany, 2008; Volume 63, pp. 165–201. [Google Scholar]
- Lombardi, A.; Colaiuda, V.; Verdecchia, M.; Tomassetti, B. User-oriented hydrological indices for early warning systems with validation using post-event surveys: Flood case studies in the Central Apennine District. Hydrol. Earth Syst. Sci. 2021, 25, 1969–1992. [Google Scholar] [CrossRef]
- Ferretti, R.; Lombardi, A.; Tomassetti, B.; Sangelantoni, L.; Colaiuda, V.; Mazzarella, V.; Maiello, I.; Verdecchia, M.; Redaelli, G. A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy. Hydrol. Earth Syst. Sci. 2020, 24, 3135–3156. [Google Scholar] [CrossRef]
- Colaiuda, V.; Lombardi, A.; Verdecchia, M.; Mazzarella, V.; Ricchi, A.; Ferretti, R.; Tomassetti, B. Flood Prediction: Operational Hydrological Forecast with the Cetemps Hydrological Model (CHyM). Int. J. Environ. Sci. Nat. Resour. 2020, 24, 556137. [Google Scholar] [CrossRef]
- Taraglio, S.; Chiesa, S.; La Porta, L.; Pollino, M.; Verdecchia, M.; Tomassetti, B.; Colaiuda, V.; Lombardi, A. DSS for smart urban management: Resilience against natural phenomena and aerial environmental assessment. Int. J. Sustain. Energy Plan. Manag. 2019, 24, 135–146. [Google Scholar]
- Sangelantoni, L.; Tomassetti, B.; Colaiuda, V.; Lombardi, A.; Verdecchia, M.; Ferretti, R.; Redaelli, G. On the use of original and bias-corrected climate simulations in regional-scale hydrological scenarios in the Mediterranean basin. Atmosphere 2019, 10, 799. [Google Scholar] [CrossRef] [Green Version]
- Coppola, E.; Verdecchia, M.; Giorgi, F.; Colaiuda, V.; Tomassetti, B.; Lombardi, A. Changing hydrological conditions in the Po basin under global warming. Sci. Total Environ. 2014, 493, 1183–1196. [Google Scholar] [CrossRef]
- Lombardi, A.; Colaiuda, V.; Manzi, M.P.; Di Giacinto, F.; Tomassetti, B.; Papa, M.; Ippoliti, C.; Giansante, C.; Ferri, N.; Marzano, F.S. Coastal water quality: Hydrometeorological impact of river overflow and high- resolution mapping from Sentinel-2 satellite. In Engineering Problems–Uncertainties, Constraints and Optimization Techniques; Tsuzuki Gueraa, M.S., Ed.; Intechopen: London, UK, 2022. [Google Scholar]
- Colaiuda, V.; Di Giacinto, F.; Lombardi, A.; Ippoliti, C.; Giansante, C.; Latini, M.; Mascilongo, G.; Di Renzo, L.; Berti, M.; Conte, A.; et al. Evaluating the impact of hydrometeorological conditions on E. coli concentration in farmed mussels and clams: Experience in Central Italy. J. Water Health 2021, 19, 512–533. [Google Scholar] [CrossRef]
- Coppola, E.; Tomassetti, B.; Mariotti, L.; Verdecchia, M.; Visconti, G. Cellular automata algorithms for drainage network extraction and rainfall data assimilation. Hydrol. Sci. J. 2007, 52, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Bersani, P.; Bencivenga, M. Le Piene del Tevere a Roma dal V Secolo a.C. All’anno 2000 (The Tiber River floods in Rome from the 5th Century b.C. to 2000); Presidenza del Consiglio Dei Ministri, Dipartimento per i Servizi Tecnici Nazionali: Roma, Italy, 2001. [Google Scholar]
- Tomassetti, B.; Colaiuda, V.; Boscaino, G.; Tuccella, P.; Lidori, R.; Di Antonio, L.; Rossi, F.L.; Memmo, A.; Liberatore, S.; Lombardi, A. Hydro-geological risk prediction: The operational activity in Abruzzo Region for the rainfall-induced landslides forecasting. Plinius Conf. Abstr. 2022, 17, 17–61. [Google Scholar]
- Donnini, M.; Modica, M.; Salvati, P.; Marchesini, I.; Rossi, M.; Guzzetti, F.; Zoboli, R. Economic landslide susceptibility under a socio-economic perspective: An application to Umbria Region (Central Italy). Reiew Reg. Res. 2020, 40, 159–188. [Google Scholar] [CrossRef]
- Samia, J.; Temme, A.; Bregt, A.; Wallinga, J.; Guzzetti, F. Dynamic path-dependent landslide susceptibility modelling. Nat. Hazards Earth Syst. Sci. 2020, 20, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Santangelo, M.; Marchesini, I.; Bucci, F.; Cardinali, M.; Cavalli, M.; Crema, S. Exposure to landslides in rural areas in Central Italy. J. Maps 2020, 17, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Loche, M.; Alvioli, M.; Marchesini, I.; Bakka, H.; Lombardo, L. Landslide susceptibility maps of Italy: Lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth-Sci. Rev. 2022, 232, 104125. [Google Scholar] [CrossRef]
- Rabuffetti, D.; Ravazzani, G.; Corbari, C.; Mancini, M. Verification of operational Quantitative Discharge Forecast (QDF) for a regional warning system—The AMPHORE case studies in the upper Po River. Nat. Hazards Earth Syst. Sci. 2008, 8, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Benesty, J.; Chen, J.; Huang, Y. Time-delay estimation via linear interpolation and cross correlation. IEEE Trans. Speech Audio Processing 2004, 12, 509–519. [Google Scholar] [CrossRef]
- Di Muzio, E.; Riemer, M.; Fink, A.H.; Maier-Gerber, M. Assessing the predictability of Medicanes in ECMWF ensemble forecasts using an object-based approach. Quart. J. R. Meteorol. Soc. 2019, 145, 1202–1217. [Google Scholar] [CrossRef] [Green Version]
- Lazio Region Functional Center. Rapporto di Evento del 31 Gennario–4 febbraio 2014 (Weather Report of 31 January–4 February 2014). 2014. Available online: https://paperzz.com/doc/5231087/rapporto-evento-31-gennaio---04-febbraio-14 (accessed on 20 December 2021).
- Alfieri, L.; Thielen, J.A. A European precipitation index for extreme rain-storm and flash flood early warning. Meteorol. Appl. 2015, 22, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Corral, C.; Berenguer, M.; Sempere-Torres, D.; Poletti, L.; Silvestro, F.; Rebora, N. Comparison of two early warning systems for regional flash flood hazard forecasting. J. Hydrol. 2019, 572, 603–619. [Google Scholar] [CrossRef] [Green Version]
Physical Process | Calculation Method |
---|---|
Surface runoff | Kinematic wave approximation of the shallow water (Lighthill and Whitam, 1955) |
Evapotranspiration | Function of the reference evapotranspiration according to Thornthwaite and Mather, 1957) |
Melting | Temperature index (Pellicciotti et al., 2005) |
Infiltration and percolation | Conceptual model from Overton (1964) |
OS | MS | HS | |
---|---|---|---|
BDD | 3 mm/h | 6 mm/h | 11 mm/h |
CAI | 30 mm/day | 60 mm/day | 110 mm/day |
LAI | 190 mm/day | 360 mm/day | 540 mm/day |
Score | Unit of Measure | Description |
---|---|---|
Lag Time Peak (LTP) | hours | It compares two timeseries of two different variables (signals) and investigates the synchronicity of the absolute maximum. |
Relative Lag Time Peak (RLTP) | / | It is the LTP divided by the concentration time in the river section where the score is calculated [44] |
Correlation Time Delay (CTD) | hours | It represents the value of the lag time (hours) needed to shift one timeseries toward the other, in order to maximize their correlation [45] |
Derivative Dynamic Time Warping (DDTW) | / | It estimates the deformation (stretch or compress) needed to be applied to one timeseries, respect to a reference one, in order to maximize their fit. The calculation is applied to the local derivative of the two timeseries [46]. |
BDD INDEX | CAI INDEX | ||||||
---|---|---|---|---|---|---|---|
A | POD | FAR | A | POD | FAR | ||
TIBER RIVER BASIN | 0.90 | 0.48 | 0.06 | 0.81 | 0.03 | 0.05 | |
Upper course | 0.98 | 0.83 | 0.22 | 0.96 | 0.19 | 0.09 | |
Middle course | 0.94 | 0.57 | 0.00 | 0.88 | 0.04 | 0.00 | |
Lower course | 0.74 | 0.40 | 0.08 | 0.52 | 0.01 | 0.00 | |
NORTHERN LAZIO BASINS | 0.92 | 1.00 | 0.00 | 0.96 | 1.00 | 0.80 | |
LIRI-GARIGLIANO BASIN | 0.92 | 0.00 | 0.00 | 0.93 | 1.00 | 0.00 |
Bdd Index | Cai Index | ||||||
---|---|---|---|---|---|---|---|
LTP | RLTP | CTD | LTP | RLTP | CTD | ||
TIBER RIVER BASIN | −4.0 | −0.7 | 1.4 | −10.6 | −1.2 | 1.0 | |
Upper course | −1.2 | −0.4 | 1.8 | −7.4 | −0.9 | 1.1 | |
Middle course | −11.6 | −1.5 | 1.1 | −16.5 | −2.1 | 1.1 | |
Lower course | 0.6 | −0.2 | 1.2 | −8.1 | −0.6 | 1.0 | |
NORTHERN LAZIO BASINS | 4.8 | 0.5 | 0.8 | −0.5 | 0.0 | 0.8 | |
LIRI-GARIGLIANO BASIN | 1.6 | 0.4 | 0.8 | −7.1 | −0.5 | 0.8 |
BDD | CAI | ||
---|---|---|---|
TIBER RIVER BASIN | 0.12 | 0.16 | |
Upper course | 0.20 | 0.25 | |
Middle course | 0.13 | 0.22 | |
Lower course | 0.04 | 0.01 | |
NORTHERN LAZIO BASINS | 0.19 | 0.15 | |
LIRI-GARIGLIANO BASIN | 0.01 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, A.; Gallicchio, D.; Tomassetti, B.; Raparelli, E.; Tuccella, P.; Lidori, R.; Verdecchia, M.; Colaiuda, V. Evaluating the Response of Hydrological Stress Indices Using the CHyM Model over a Wide Area in Central Italy. Hydrology 2022, 9, 139. https://doi.org/10.3390/hydrology9080139
Lombardi A, Gallicchio D, Tomassetti B, Raparelli E, Tuccella P, Lidori R, Verdecchia M, Colaiuda V. Evaluating the Response of Hydrological Stress Indices Using the CHyM Model over a Wide Area in Central Italy. Hydrology. 2022; 9(8):139. https://doi.org/10.3390/hydrology9080139
Chicago/Turabian StyleLombardi, Annalina, Davide Gallicchio, Barbara Tomassetti, Edoardo Raparelli, Paolo Tuccella, Raffaele Lidori, Marco Verdecchia, and Valentina Colaiuda. 2022. "Evaluating the Response of Hydrological Stress Indices Using the CHyM Model over a Wide Area in Central Italy" Hydrology 9, no. 8: 139. https://doi.org/10.3390/hydrology9080139
APA StyleLombardi, A., Gallicchio, D., Tomassetti, B., Raparelli, E., Tuccella, P., Lidori, R., Verdecchia, M., & Colaiuda, V. (2022). Evaluating the Response of Hydrological Stress Indices Using the CHyM Model over a Wide Area in Central Italy. Hydrology, 9(8), 139. https://doi.org/10.3390/hydrology9080139