Evaluating the Performance of Water Quality Indices: Application in Surface Water of Lake Union, Washington State-USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area Studied
2.2. Primary Data and Data Analysis
2.3. WQI Implementation
3. Results and Discussion
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adelagun, R.O.A.; Etim, E.E.; Godwin, O.E. Application of Water Quality Index for the Assessment of Water from Different Sources in Nigeria. In Promising Techniques for Wastewater Treatment and Water Quality Assessment; Ahmed Moujdin, I., Kevin Summers, J., Eds.; IntechOpen: London, UK, 2021; ISBN 978-1-83881-900-2. [Google Scholar]
- Alexakis, D.; Gamvroula, D.; Theofili, E. Environmental Availability of Potentially Toxic Elements in an Agricultural Mediterranean Site. Environ. Eng. Geosci. 2019, 25, 169–178. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land Suitability Mapping Using Geochemical and Spatial Analysis Methods. Appl. Sci. 2021, 11, 5404. [Google Scholar] [CrossRef]
- Kelepertsis, A.; Alexakis, D. The Impact of Mining·and Metallurgical Activity of the Lavrion Sulfide Deposits οn the Geochemistry of Bottom Sea Sediments East of the Lavreotiki Peninsula, Greece. Res. J. Chem. Environ. 2004, 8, 40–46. [Google Scholar]
- Alexakis, D.E. The Relationship between the Chemical Composition of Groundwater and the Geological Environment in the East Attiki Area, Greece. Miner. Wealth 1998, 109, 12. [Google Scholar]
- Yu, H.; Yang, Z.; Li, B. Sustainability Assessment of Water Resources in Beijing. Water 2020, 12, 1999. [Google Scholar] [CrossRef]
- Bekas, G.K.; Alexakis, D.E.; Gamvroula, D.E. Forecasting Discharge Rate and Chloride Content of Karstic Spring Water by Applying the Levenberg–Marquardt Algorithm. Environ. Earth Sci. 2021, 80, 404. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Kiskira, K.; Gamvroula, D.; Emmanouil, C.; Psomopoulos, C.S. Evaluating Toxic Element Contamination Sources in Groundwater Bodies of Two Mediterranean Sites. Environ. Sci. Pollut. Res. 2021, 28, 34400–34409. [Google Scholar] [CrossRef]
- Alexakis, D.E. Linking DPSIR Model and Water Quality Indices to Achieve Sustainable Development Goals in Groundwater Resources. Hydrology 2021, 8, 90. [Google Scholar] [CrossRef]
- Sorokina, T.Y. A National System of Biological Monitoring in the Russian Arctic as a Tool for the Implementation of the Stockholm Convention. Int. Environ. Agreem. Polit. Law Econ. 2019, 19, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Panneerselvam, B.; Muniraj, K.; Pande, C.; Ravichandran, N.; Thomas, M.; Karuppannan, S. Geochemical Evaluation and Human Health Risk Assessment of Nitrate-Contaminated Groundwater in an Industrial Area of South India. Environ. Sci. Pollut. Res. 2021. [Google Scholar] [CrossRef]
- Howell, N. Comparative Water Qualities and Blending in the Ogallala and Dockum Aquifers in Texas. Hydrology 2021, 8, 166. [Google Scholar] [CrossRef]
- Alexakis, D.E. Water Quality Indices: Current and Future Trends in Evaluating Contamination of Groundwater Resources. Water 2021, 13, 401. [Google Scholar] [CrossRef]
- Chikita, K.A.; Goto, A.; Okada, J.; Yamaguchi, T.; Miura, S.; Yamamoto, M. Hydrological and Chemical Budgets of Okama Crater Lake in Active Zao Volcano, Japan. Hydrology 2022, 9, 28. [Google Scholar] [CrossRef]
- Padedda, B.M.; Lugliè, A.; Lai, G.G.; Giadrossich, F.; Satta, C.T.; Pulina, S. Land-Based Impact of Nutrient Loads and Eutrophication on an Ancient Mediterranean Natural Lake. Hydrology 2021, 9, 7. [Google Scholar] [CrossRef]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Water Pollut. Control Fed 1965, 37, 300–306. [Google Scholar]
- Abbasi, T.; Abbasi, S.A. Water Quality Indices; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Akhtar, N.; Ishak, M.I.S.; Ahmad, M.I.; Umar, K.; Md Yusuff, M.S.; Anees, M.T.; Qadir, A.; Ali Almanasir, Y.K. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A Water Quality Index: Do We Dare? Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Scottish Research Development Department (SRDD). Development of A Water Quality Index; Engineering Division: Edinburg, UK, 1976. [Google Scholar]
- Liou, S.-M.; Lo, S.-L.; Wang, S.-H. A Generalized Water Quality Index for Taiwan. Environ. Monit. Assess. 2004, 96, 35–52. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines for the Protection of Aquatic Life. CCME Water Quality Index 1.0, User’s Manual; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2001. [Google Scholar]
- Bhargava, D.S. Expression for Drinking Water Supply Standards. J. Environ. Eng. 1985, 111, 304–316. [Google Scholar] [CrossRef]
- Sargaonkar, A.; Deshpande, V. Development of an Overall Index of Pollution for Surface Water Based on a General Classification Scheme in Indian Context. Environ. Monit. Assess. 2003, 89, 43–67. [Google Scholar] [CrossRef]
- Zandbergen, P.A.; Hall, K.J. Analysis of the British Columbia Water Quality Index for Watershed Managers: A Case Study of Two Small Watersheds. Water Qual. Res. J. 1998, 33, 519–550. [Google Scholar] [CrossRef]
- Cude, C.G. Oregon water quality index a tool for evaluating water quality management effectiveness. J. Am. Water Resour. Assoc. 2001, 37, 125–137. [Google Scholar] [CrossRef]
- Shuhaimi-Othman, M.; Lim, E.C.; Mushrifah, I. Water Quality Changes in Chini Lake, Pahang, West Malaysia. Environ. Monit. Assess. 2007, 131, 279–292. [Google Scholar] [CrossRef]
- Alexakis, D.; Tsihrintzis, V.A.; Tsakiris, G.; Gikas, G.D. Suitability of Water Quality Indices for Application in Lakes in the Mediterranean. Water Resour. Manag. 2016, 30, 1621–1633. [Google Scholar] [CrossRef]
- Alexakis, D.E. Meta-Evaluation of Water Quality Indices. Application into Groundwater Resources. Water 2020, 12, 1890. [Google Scholar] [CrossRef]
- Ewaid, S.; Abed, S.; Al-Ansari, N.; Salih, R. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67. [Google Scholar] [CrossRef]
- Zhulidov, A.V.; Khlobystov, V.V.; Robarts, R.D.; Pavlov, D.F. Critical Analysis of Water Quality Monitoring in the Russian Federation and Former Soviet Union. Can. J. Fish. Aquat. Sci. 2000, 57, 1932–1939. [Google Scholar] [CrossRef]
- Kouadri, S.; Elbeltagi, A.; Islam, A.R.M.T.; Kateb, S. Performance of Machine Learning Methods in Predicting Water Quality Index Based on Irregular Data Set: Application on Illizi Region (Algerian Southeast). Appl. Water Sci. 2021, 11, 190. [Google Scholar] [CrossRef]
- Deng, T.; Chau, K.-W.; Duan, H.-F. Machine Learning Based Marine Water Quality Prediction for Coastal Hydro-Environment Management. J. Environ. Manag. 2021, 284, 112051. [Google Scholar] [CrossRef]
- Hadjisolomou, E.; Stefanidis, K.; Herodotou, H.; Michaelides, M.; Papatheodorou, G.; Papastergiadou, E. Modelling Freshwater Eutrophication with Limited Limnological Data Using Artificial Neural Networks. Water 2021, 13, 1590. [Google Scholar] [CrossRef]
- Clark, T. King County Lake Union/Ship Canal Water Quality Report: January 2014 to March 2016; Water and Land Resources Division: Seattle, WA, USA, 2018. [Google Scholar]
- King County Water Quality Report 2000. 2000 Water Quality Survey Results; Department of Natural Resources: Seattle, WA, USA, 2000; 29p.
- Troost, K.G.; Booth, D.B. Geology of Seattle and the Seattle Area, Washington. In Landslides and Engineering Geology of the Seattle, Washington, Area; Geological Society of America: Boulder, CO, USA, 2008. [Google Scholar]
- Barberopoulou, A. A Seiche Hazard Study for Lake Union, Seattle, Washington. Bull. Seismol. Soc. Am. 2008, 98, 1837–1848. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking Water Quality, Vol. 1: Recommendations; World Health Organization: Geneva, Switzerland, 1993. [Google Scholar]
- State of Utah, Department of Environmental Quality, Division of Water Quality (SUDEQ). Standard Operating Procedure for Turbidity Measurements Using a Turbidity Tube; Revision 0, Effective 1 May 2014; State of Utah, Department of Environmental Quality, Division of Water Quality (SUDEQ): Salt Lake City, UT, USA, 2014. [Google Scholar]
- Kikuda, R.; Pereira Gomes, R.; Rodrigues Gama, A.; De Paula Silva, J.A.; Pereira Dos Santos, A.; Rodrigues Alves, K.; Nascimento Arruda, P.; Scalize, P.S.; Gonçalves Vieira, J.D.; Carneiro, L.C.; et al. Evaluation of Water Quality of Buritis Lake. Water 2022, 14, 1414. [Google Scholar] [CrossRef]
Units | NSF6-WQI | NSF7-WQI | CCME6-WQI | CCME8-WQI | |
Chlorophyll-a | μg L−1 | - | - | - | ✓ (4) |
Change in Temperature | °C | - | ✓ | - | - |
Faecal Coliforms | CFU/100 mL | ✓ | ✓ | ✓ (100) | ✓ (100) |
Dissolved Oxygen (DO) | mg L−1 | - | - | ✓ (6) | ✓ (6) |
% | ✓ | ✓ | - | - | |
Electrical Conductivity (CND) | μS cm−1 | - | - | - | ✓ (2,500) |
Nitrate Nitrogen (N-NO3-) | mg L−1 | ✓ | ✓ | ✓ (13.45) | ✓ (13.45) |
pH | - | ✓ | ✓ | ✓ (6.5–9.0) | ✓ (6.5–9.0) |
Total Phosphorus | mg L−1 | ✓ | ✓ | - | - |
μg L−1 | - | - | ✓ (10) | ✓ (10) | |
Turbidity | NTU | ✓ | ✓ | ✓ (5) | ✓ (5) |
NSF-WQI [19] | CCME-WQI [22] | |||
---|---|---|---|---|
Class | Rating | Range | Rating | Range |
5 | Excellent | 91–100 | Excellent | 95–100 |
4 | Good | 90–71 | Good | 80–94 |
3 | Medium | 51–70 | Fair | 65–79 |
2 | Bad | 26–50 | Marginal | 45–64 |
1 | Very bad | 0–25 | Poor | 0–44 |
NSF6-WQI | NSF7-WQI | CCME6-WQI | CCME8-WQI | |
---|---|---|---|---|
Chlorophyll-a | - | - | - | −0.150 |
p-value | - | - | - | 0.252 |
Change in Temperature | - | −0.400 | - | - |
p-value | - | 0.033 | - | - |
Faecal Coliform | −0.126 | 0.056 | −0.153 | −0.041 |
p-value | 0.289 | 0.402 | 0.248 | 0.428 |
Dissolved Oxygen (DO) | 0.453 | 0.076 | −0.625 | −0.807 |
p-value | 0.017 | 0.369 | 0.001 | 0.000 |
Electrical Conductivity (CND) | - | - | - | 0.579 |
p-value | - | - | - | 0.002 |
Nitrate-nitrogen (NO3-N) | −0.052 | 0.113 | −0.943 | −0.714 |
p-value | 0.409 | 0.309 | 0.000 | 0.000 |
pH | 0.472 | −0.010 | 0.410 | −0.043 |
p-value | 0.013 | 0.482 | 0.029 | 0.424 |
Total Phosphorous (TP) | 0.202 | 0.360 | −0.248 | −0.292 |
p-value | 0.183 | 0.050 | 0.133 | 0.094 |
Turbidity | −0.936 | −0.304 | −0.224 | 0.198 |
p-value | 0.000 | 0.084 | 0.159 | 0.189 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamvroula, D.E.; Alexakis, D.E. Evaluating the Performance of Water Quality Indices: Application in Surface Water of Lake Union, Washington State-USA. Hydrology 2022, 9, 116. https://doi.org/10.3390/hydrology9070116
Gamvroula DE, Alexakis DE. Evaluating the Performance of Water Quality Indices: Application in Surface Water of Lake Union, Washington State-USA. Hydrology. 2022; 9(7):116. https://doi.org/10.3390/hydrology9070116
Chicago/Turabian StyleGamvroula, Dimitra E., and Dimitrios E. Alexakis. 2022. "Evaluating the Performance of Water Quality Indices: Application in Surface Water of Lake Union, Washington State-USA" Hydrology 9, no. 7: 116. https://doi.org/10.3390/hydrology9070116
APA StyleGamvroula, D. E., & Alexakis, D. E. (2022). Evaluating the Performance of Water Quality Indices: Application in Surface Water of Lake Union, Washington State-USA. Hydrology, 9(7), 116. https://doi.org/10.3390/hydrology9070116