Evaluation of Long-Term Radar-Derived Precipitation for Water Balance Estimates: A Case Study for Multiple Catchments in Saxony, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Dischagre
2.2.2. Open Sensor Web (OSW)
2.2.3. RADKLIM RW Data Set
2.3. Hydrological Modelling
2.3.1. The BROOK90 Model
2.3.2. Model Setup
2.4. Wind Correction Method
2.5. Analysis
3. Results
3.1. Comparing Precipitation Datasets
3.2. Impact to Water Balance Processes
3.2.1. Water Balance Components
3.2.2. Discharge Simulation
3.2.3. Skill Scores Evaluation
3.2.4. Discharge Magnitude Comparision
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Parameters Abbreviation | Physical Meaning | Coniferous Forest | Deciduous Forest | Agriculture | Grass |
---|---|---|---|---|---|
RELHT | pairs of day of the year and relative height between 0 and 1 | 1 | 1 | (1,0,100,0, 213,1,278,1, 308,0,366,0) | (1,0.1,115,0.1, 145,1,268,1, 298,1,366,0.1) |
RELLAI | pairs of day of the year and relative LAI between 0 and 1 | (1,0.8,60,0.8, 90,0.8,120,1,274, 0.9,305,0.8,366,0.8) | (1,0,54,0,84,1, 299,1,329,0,366,0) | (1,0,100,0, 213,1,278,1, 308,0,366,0) | (1,0,115,0, 145,1,268,1, 298,0,366,0) |
ALB | albedo or surface reflectivity without snow | 0.07 | 0.18 | 0.22 | 0.2 |
ALBSN | albedo or surface reflectivity with snow | 0.3 | 0.23 | 0.5 | 0.5 |
KSNVP | hydraulic conductivity at field capacity corresponding to THETAF and PSIF for a soil layer | 0.3 | 0.3 | 1 | 1 |
Z0G | ground surface roughness (m) | 0.02 | 0.003 | 0.005 | 0.03 |
MAXHT | maximum canopy height for the year | 29 | 26 | 2.2 | 0.8 |
MAXLAI | maximum projected LAI for the year | 7.5 | 6 | 4 | 4 |
MXRTLN | maximum length of fine roots per unit ground area (m2/m2) | 3100 | 3200 | 110 | 1000 |
MXKPL | maximum plant conductivity (mm/day MPa) | 8 | 8 | 8 | 8 |
FXYLEM | fraction of plant resistance that is in the xylem | 0.5 | 0.5 | 0 | 0 |
CS | ratio of projected SAI to HEIGHT | 0.035 | 0.45 | - | 0.035 |
GLMAX | maximum leaf conductance (cm/s) | 0.35 | 0.1 | 1.3 | 1.5 |
LWIDTH | average leaf width (m) | 0.004 | 0.1 | 0.1 | 0.01 |
CR | extinction coefficient for photosynthetically active radiation in the canopy | 0.5 | 0.6 | 0.7 | 0.7 |
Appendix C
Precipitation Type | Tmean (TM) (Valid for Germany) | ε | Shielding Degree (b) | |||
---|---|---|---|---|---|---|
Free | Weak | Moderate | Strong | |||
Rain (summer) | TM > 3.0 °C | 0.38 | 0.345 | 0.310 | 0.280 | 0.245 |
Rain (winter) | 0.46 | 0.340 | 0.280 | 0.240 | 0.190 | |
Mixed precipitation (sleet) | 3.0 °C ≤ TM ≤ −0.7 °C | 0.55 | 0.535 | 0.390 | 0.305 | 0.185 |
Snow | TM < −0.7 °C | 0.82 | 0.720 | 0.510 | 0.330 | 0.210 |
References
- Beven, K. Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrological Processes. 2002, 206, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Borga, M.; Esposti, S.D.; Norbiato, D. Influence of errors in radar rainfall estimates on hydrological modeling prediction uncertainty. Water Resources Research. 2006, 42, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rozalis, S.; Morin, E.; Yair, Y.; Price, C. Flash flood prediction using an uncalibrated hydrological model and radar rainfall data in a Mediterranean watershed under changing hydrological conditions. J. Hydrol. 2010, 394, 245–255. [Google Scholar] [CrossRef]
- Zoccatelli, D.; Marra, F.; Armon, M.; Rinat, Y.; Smith, J.A.; Morin, E. Contrasting rainfall-runoff characteristics of floods in Desert and Mediterranean basins. Hydrol. Earth Syst. Sci. Discuss. 2018. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Borga, M.; Morin, E.; Delrieu, G. Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions. Nat. Hazards Earth Syst. Sci. 2012, 12, 1255–1265. [Google Scholar] [CrossRef] [Green Version]
- Braud, I.; Roux, H.; Anquetin, S.; Maubourguet, M.M.; Manus, C.; Viallet, P.; Dartus, D. The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes. J. Hydrol. 2010, 394, 162–181. [Google Scholar] [CrossRef] [Green Version]
- Blöschl, G.; Reszler, C.; Komma, J. A spatially distributed flash flood forecasting model. Environ. Model. Softw. 2008, 23, 464–478. [Google Scholar] [CrossRef]
- Corral, C.; Velasco, D.; Forcadell, D.; Sempere-Torres, D.; Velasco, E. Advances in radar-based flood warning systems. The EHIMI system and the experience in the Besòs flash-flood pilot basin. In Flood Risk Management: Research and Practice; CRC Press: Boca Raton, FL, USA, 2009; Volume 332, pp. 1295–1303. [Google Scholar]
- Kirstetter, P.E.; Delrieu, G.; Boudevillain, B.; Obled, C. Toward an error model for radar quantitative precipitation estimation in the Cévennes-Vivarais region, France. J. Hydrol. 2010, 394, 28–41. [Google Scholar] [CrossRef]
- He, X.; Vejen, F. An Opera θ onal Weather Radar—Based Quan θ ta θ ve Precipita θ on Es θ ma θ on and its Applica θ on in Catchment. Water Resour. Model. 2011, 10, 8–24. [Google Scholar]
- Borga, M.; Tonelli, F.; Moore, R.J.; Andrieu, H. Long-term assessment of bias adjustment in radar rainfall estimation. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef] [Green Version]
- Knöll, P.; Zirlewagen, J.; Scheytt, T. Using radar-based quantitative precipitation data with coupled soil- and groundwater balance models for stream flow simulation in a karst area. J. Hydrol. 2020, 586, 124884. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.F.; Ntelekos, A.A.; Georgakakos, K.P.; Smith, J.A. Towards probabilistic forecasting of flash floods: The combined effects of uncertainty in radar-rainfall and flash flood guidance. J. Hydrol. 2010, 394, 275–284. [Google Scholar] [CrossRef]
- Meissner, D.; Gebauer, S.; Schumann, H.A.; Pahlow, M.; Rademacher, S. Analysis of radar-based precipitation products as input data to improve water-level forecasting for navigation on the Rive Rhine. Hydrol. Wasserbewirtsch. 2012, 56, 16–28. [Google Scholar]
- Winterrath, T.; Rosenow, W.; Weigl, E. On the DWD quantitative precipitation analysis and nowcasting system for real-time application in German flood risk management. IAHS- Publ. 2012, 351, 323–329. [Google Scholar]
- Kronenberg, R.; Bernhofer, C. A method to adapt radar-derived precipitation fields for climatological applications. Meteorol. Appl. 2015, 22, 636–649. [Google Scholar] [CrossRef]
- Kreklow, J.; Tetzla, B.; Kuhnt, G.; Burkhard, B. A Rainfall Data Intercomparison Dataset of RADKLIM, RADOLAN, and Rain Gauge Data for Germany. Data 2019, 4, 118. [Google Scholar] [CrossRef] [Green Version]
- Winterrath, T.; Brendel, C.; Hafer, M.; Junghänel, T.; Klameth, A.; Lengfeld, K.; Walawender, E.; Weigl, E.; Becker, A. Radar Climatology (RADKLIM) Version 2017.002 (RW), Gridded Precipitation Data for Germany. 2017. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/hourly/radolan/reproc/2017_002/bin/ (accessed on 10 January 2020).
- Lengfeld, K.; Winterrath, T.; Junghänel, T.; Hafer, M. Characteristic spatial extent of hourly and daily precipitation events in Germany derived from 16 years of radar data. Meteorol. Z. 2019, 28, 363–378. [Google Scholar] [CrossRef]
- Stisen, S.; Højberg, A.L.; Troldborg, L.; Refsgaard, J.C.; Christensen, B.S.B.; Olsen, M.; Henriksen, H.J. On the importance of appropriate precipitation gauge catch correction for hydrological modelling at mid to high latitudes. Hydrol. Earth Syst. Sci. 2012, 16, 4157–4176. [Google Scholar] [CrossRef] [Green Version]
- Stisen, S.; Sonnenborg, T.O.; Hojberg, A.L.; Troldborg, L.; Refsgaard, J.C. Evaluation of Climate Input Biases and Water Balance Issues Using a Coupled Surface—Subsurface Model. Vadose Zone J. 2011, 10, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Graf, A.; Bogena, H.R.; Drüe, C.; Hardelauf, H.; Pütz, T.; Heinemann, G.; Vereecken, H. Water Resources Research. Water Resour. Res. 2014, 50, 4837–4857. [Google Scholar] [CrossRef] [Green Version]
- Richter, D. Ergebnisse Methodischer Untersuchungen zur Korrektur des Systematischen Meßfehlers des Hellmann-Niederschlagsmessers; Final report of German Weather Service, Bericht des Deutschen Wetterdienstes Nr. 194; Self-Publishing of German Weather Service: Offenbach am Main, Germany, 1995; ISSN 2194-5969. (In German) [Google Scholar]
- Kronenberg, R.; Franke, J.; Bernhofer, C. Classification of daily precipitation patterns on the basis of radar-derived precipitation rates for Saxony, Germany. Meteorol. Z. 2012, 21, 475–486. [Google Scholar] [CrossRef]
- Pluntke, T.; Jatho, N.; Kurbjuhn, C.; Dietrich, J.; Bernhofer, C. Use of past precipitation data for regionalisation of hourly rainfall in the low mountain ranges of Saxony, Germany. Nat. Hazards Earth Syst. Sci. 2010, 10, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Winterrath, T.; Brendel, C.; Hafer, M.; Klameth, A.; Walawender, E. Erstellung Einer Radargestützten Niederschlagsklimatologie 251; Final report of German Weather Service, Bereicht des Deutschen Wetterdienstes Nr. 251; Self-Publishing of German Weather Service: Offenbach am Main, Germany, 2017; ISBN 9783881484992. (In German) [Google Scholar]
- Bernhofer, C.; Matschullat, J.; Bobeth, A. Das Klima in der REGKLAM- Modellregion Dresden; Rhombos-Verlag: Berlin, Germany, 2009; ISBN 9783941216228. [Google Scholar]
- Franke, J.; Bernhofer, C. A method for deriving a future temporal spectrum of heavy precipitation on the basis of weather patterns in low mountain ranges. Meteorol. Appl. 2009, 522, 513–522. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Winterrath, T.; Brendel, C.; Junghänel, T.; Klameth, A.; Lengfeld, K.; Walawender, E.; Weigl, E.; Hafer, M.; Becker, A. An Overview of the New Radar-Based Precipitation Climatology of the Deutscher Wetterdienst- Data, Methods, Products. In Proceedings of the 11th International Workshop on Precipitation in Urban Areas (UrbanRain18), Pontresina, Switzerland, 5–7 December 2018. [Google Scholar]
- Kreklow, J. Facilitating radar precipitation data processing, assessment and analysis: A GIS-compatible python approach. J. Hydroinformatics 2019, 21, 652–670. [Google Scholar] [CrossRef] [Green Version]
- Federer, C.A.; Vörösmarty, C.; Fekete, B. Sensitivity of Annual Evaporation to Soil and Root Properties in Two Models of Contrasting Complexity. J. Hydrometeorol. 2003, 4, 1276–1290. [Google Scholar] [CrossRef]
- Spank, U.; Schwärzel, K.; Renner, M.; Moderow, U.; Bernhofer, C. Effects of measurement uncertainties of meteorological data on estimates of site water balance components. J. Hydrol. 2013, 492, 176–189. [Google Scholar] [CrossRef]
- Schwärzel, K.; Feger, K.-H.; Häntzschel, J.; Menzer, A.; Spank, U.; Clausnitzer, F.; Köstner, B.; Bernhofer, C. A novel approach in model-based mapping of soil water conditions at forest sites. For. Ecol. Manag. 2009, 258, 2163–2174. [Google Scholar] [CrossRef]
- Luong, T.T.; Pöschmann, J.; Vorobevskii, I.; Wiemann, S.; Kronenberg, R.; Bernhofer, C. Pseudo-Spatially-Distributed Modeling of Water Balance Components in the Free State of Saxony. Hydrology MDPI 2020, 7, 84. [Google Scholar] [CrossRef]
- Vorobevskii, I.; Kronenberg, R.; Bernhofer, C. Global BROOK90 (R-package): An automatic framework to simulate the water balance at any location. Water MDPI 2020, 12, 2037. [Google Scholar] [CrossRef]
- Klimainformationssystem, ReKIS—Regionales Klimainformationssystem Sachsen, Sachsen-Anhalt und Thüringen. 2014 (Updated on a Monthly Basis). Available online: https://rekis.hydro.tu-dresden.de (accessed on 10 March 2020).
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized soil moisture index for drought monitoring based on soil moisture active passive observations and 36 years of North American Land Data Assimilation System data: A case study in the Southeast United States. Remote Sens. 2018, 10, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Knoben, W.J.M.; Freer, J.E.; Woods, R.A. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef]
- Pöschmann, J.M.; Kim, D.; Kronenberg, R.; Bernhofer, C. An analysis on temporal scaling behavior of extreme rainfall of Germany based on radar precipitation QPE data. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–21. [Google Scholar]
- He, X.; Vejen, F.; Stisen, S.; Sonnenborg, T.O.; Jensen, K.H. An Operational Weather Radar-Based Quantitative Precipitation Estimation and its Application in Catchment Water Resources Modeling. Vadose Zone J. 2011, 10, 8–24. [Google Scholar] [CrossRef]
- Fleischbein, K.; Lindenschmidt, K.; Merz, B. Advances in Geosciences Modelling the runoff response in the Mulde catchment (Germany). Adv. Geosci. 2006, 9, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Körner, P.; Rico, K.; Gliksman, D.; Christian, B. REAL-Fog part 2: A novel approach to calculate high resoluted spatio- temporal fog deposition: A daily fog deposition data set for entire Germany for 1949–2018. J. Hydrol. 2021. [Google Scholar] [CrossRef]
- Price, K.; Purucker, S.T.; Kraemer, S.R.; Babendreier, J.E.; Knightes, C.D. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrol. Process 2014, 28, 3505–3520. [Google Scholar] [CrossRef]
- He, X.; Sonnenborg, T.O.; Refsgaard, J.C.; Vejen, F.; Jensen, K.H. Evaluation of the value of radar QPE data and rain gauge data for hydrological modeling. Water Resources Research 2013, 49, 5989–6005. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Sangati, M.; Zanon, F. Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 29, 2003 flash flood. J. Hydrol. 2007, 345, 149–166. [Google Scholar] [CrossRef]
- Zoccatelli, D.; Borga, M.; Zanon, F.; Antonescu, B.; Stancalie, G. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. J. Hydrol. 2010, 394, 148–161. [Google Scholar] [CrossRef]
- Spieler, D.; Mai, J.; Craig, J.R.; Tolson, B.A. Automatic Model Structure Identi fi cation for Conceptual Hydrologic Models. Water Resour. Res. 2020, 56, e2019WR027009. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J.; Freer, J.E.; Lamb, R. A history of TOPMODEL. Hydrol. Earth Syst. Sci. 2021, 25, 527–549. [Google Scholar] [CrossRef]
- Jansen, K.F.; Teuling, A.J.; Craig, J.R.; Molin, M.D. Mimicry of a Conceptual Hydrological Model (HBV): What â€TM s in a Name? Water Resour. Res. 2021, 57, e2020WR029143. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, Q.; Fu, D.; Guo, S.; Liu, P.; Zeng, Y. Comparison of spatial interpolation methods for the estimation of precipitation patterns at different time scales to improve the accuracy of discharge simulations. Hydrology Research. 2020, 51, 583–601. [Google Scholar] [CrossRef]
- Wiemann, S. Beitrag J: Stefan Wiemann Web-basierte Analyse und Prozessierung hydro- meteorologischer Daten im Kontext von Extremereignissen Web-Based Analysis and Processing of Hydro- meteorological Data in the Context of Extreme Events. 2018, pp. 139–148. Available online: https://ceur-ws.org/Vol-2197/paper10.pdf (accessed on 25 August 2019).
- Mazzetti, C.; Todini, E. Combining weather radar and raingauge data for hydrologic applications. In Flood Risk Management: Research and Practice; CRC Press: Boca Raton, FL, USA, 2009; Volume 332, pp. 1345–1348. [Google Scholar]
Water Gauge ID | Area (Km²) | Average Elevation (m.a.s.l.) | HRU/ Km² | Land Use (%) | |||||
---|---|---|---|---|---|---|---|---|---|
Agriculture | Grass Land | Deciduous Forest | Evergreen Forest | Other | |||||
Großschweidnitz | 1 | 41.44 | 239.66 | 7.2 | 47 | 21 | 2 | 18 | 12 |
Holtendorf | 2 | 54.17 | 269.29 | 3.4 | 65 | 13 | 2 | 13 | 7 |
Kreischa | 3 | 43.88 | 384.91 | 11.2 | 44 | 25 | 4 | 22 | 5 |
Krummenhenners-dorf | 4 | 130.92 | 476.96 | 4.0 | 57 | 29 | 0 | 5 | 9 |
Neustadt | 5 | 40.18 | 386.16 | 7.7 | 30 | 24 | 4 | 28 | 14 |
Niedermuelsen | 6 | 49.58 | 355.61 | 9.7 | 47 | 21 | 1 | 18 | 13 |
Niederoderwitz | 7 | 28.87 | 123.80 | 3.1 | 53 | 18 | 2 | 4 | 23 |
Niederzwoenitz | 8 | 31.36 | 600.58 | 2.8 | 29 | 16 | 0 | 44 | 11 |
Reichenbach- Oberlausitz | 9 | 42.51 | 266.05 | 6.2 | 64 | 18 | 3 | 6 | 9 |
Tannenberg | 10 | 91.48 | 662.02 | 4.3 | 24 | 23 | 1 | 42 | 10 |
Water Gauge/ID | Average Annual Days of | |||
---|---|---|---|---|
Snow | Sleet | Rain | ||
Großschweidnitz | 1 | 40 | 48 | 277 |
Holtendorf | 2 | 41 | 49 | 275 |
Kreischa | 3 | 42 | 50 | 273 |
Krummenhenners-dorf | 4 | 44 | 52 | 269 |
Neustadt | 5 | 45 | 51 | 269 |
Niedermuelsen | 6 | 41 | 49 | 275 |
Niederoderwitz | 7 | 43 | 50 | 273 |
Niederzwoenitz | 8 | 43 | 54 | 268 |
Reichenbach- Oberlausitz | 9 | 38 | 46 | 282 |
Tannenberg | 10 | 70 | 59 | 236 |
Water Gauge | Daily | Monthly | Annual |
---|---|---|---|
Großschweidnitz | 5.6 ** | −1.5 | 0.3 |
Holtendorf | 40 ** | 25 ** | 22.1 ** |
Kreischa | 22.5 ** | 3.5 ** | 6.5 ** |
Krummenhenners-dorf | 19.7 ** | −0.9 | 0.2 |
Neustadt | 6.9 ** | −5.8 ** | −8.8 ** |
Niedermuelsen | 27.9 ** | 7.7 ** | 7.4 ** |
Niederoderwitz | 20.6 ** | 0.3 | 0.8 |
Niederzwoenitz | 33.8 ** | 8.2 ** | 7.9 ** |
Reichenbach- Oberlausitz | 32.0 ** | 14.5 ** | 9.7 ** |
Tannenberg | 35.1 ** | 10.5 ** | 8.3 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luong, T.T.; Vorobevskii, I.; Pöschmann, J.; Kronenberg, R.; Gliksman, D.; Bernhofer, C. Evaluation of Long-Term Radar-Derived Precipitation for Water Balance Estimates: A Case Study for Multiple Catchments in Saxony, Germany. Hydrology 2022, 9, 204. https://doi.org/10.3390/hydrology9110204
Luong TT, Vorobevskii I, Pöschmann J, Kronenberg R, Gliksman D, Bernhofer C. Evaluation of Long-Term Radar-Derived Precipitation for Water Balance Estimates: A Case Study for Multiple Catchments in Saxony, Germany. Hydrology. 2022; 9(11):204. https://doi.org/10.3390/hydrology9110204
Chicago/Turabian StyleLuong, Thanh Thi, Ivan Vorobevskii, Judith Pöschmann, Rico Kronenberg, Daniel Gliksman, and Christian Bernhofer. 2022. "Evaluation of Long-Term Radar-Derived Precipitation for Water Balance Estimates: A Case Study for Multiple Catchments in Saxony, Germany" Hydrology 9, no. 11: 204. https://doi.org/10.3390/hydrology9110204
APA StyleLuong, T. T., Vorobevskii, I., Pöschmann, J., Kronenberg, R., Gliksman, D., & Bernhofer, C. (2022). Evaluation of Long-Term Radar-Derived Precipitation for Water Balance Estimates: A Case Study for Multiple Catchments in Saxony, Germany. Hydrology, 9(11), 204. https://doi.org/10.3390/hydrology9110204