Nutrient Atmospheric Deposition on Utah Lake: A Comparison of Sampling and Analytical Methods
Abstract
:1. Introduction and Background
1.1. Atmospheric Deposition
1.2. Atmospheric Depoistion of Nutrients
1.3. Utah Lake Overview
1.4. Atmospheric Deposition to Utah Lake
1.5. Study Area and Goals
- (1)
- Does the height of the sample table bias the measurements?
- (2)
- Does using a screen, which excludes insects and debris from the sample, make a difference on the measurements (despite not being a NADP rule or recommendation, the ULSP recommended small-mesh screens on the dry side bucket to prevent insects and plant debris from entering the sample), and
- (3)
- How well do measurements from the lake shore represent the deposition across the water surface?
2. Materials and Methods
2.1. Sampling and Analysis Overview
2.2. Sample Table Height
2.3. Impacts of Screens on Samples
2.4. Bird Island Sampler
2.5. Other Modifications
2.5.1. Solar Panel Locations
2.5.2. Miners Moss Installation
3. Results
3.1. High vs. Low Tables Comparison
- the 1st quartile − 1.5 × (interquartile range) and
- the 3rd quartile + 1.5 × (interquartile range).
3.2. Insects, Outliers and Screens
3.2.1. Outlier Removal
3.2.2. Screened vs. Unscreened Samples
3.3. Lake Interior Measurements
3.4. Mid-Lake and Shoreline Sampler Correlations
3.5. Monthly Average Analysis
4. Estimated Utah Lake Atmospheric Deposition
4.1. Previous Approach
4.2. Nutrient Load Estimation Methods
4.3. Estimated Utah Lake Nutrient AD
5. Discussion
5.1. Sample Table Height and Modifications
5.2. Sample Bucket Screens
5.3. Deposition Patterns and Spatial Distributions
5.4. Updated AD Nutrient Loads
6. Analysis and Conclusions
- (1)
- Does the height of the sample table bias the measurements?
- (2)
- Does using a screen, which protects the samples from bugs and debris, make a significant difference on the measurements?
- (3)
- How well do measurements from the lake shore represent the deposition across the water surface?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uttormark, P.D.; Chapin, J.D.; Green, K.M. Estimating Nutrient Loadings of Lakes from Non-Point Sources; U.S. Government Printing Office: Washington, DC, USA, 1974.
- Newman, E. Phosphorus inputs to terrestrial ecosystems. J. Ecol. 1995, 83, 713–726. [Google Scholar] [CrossRef]
- Ahn, H.; James, R.T. Variability, Uncertainty, and Sensitivity of Phosphorus Deposition Load Estimates in South Florida. Water Air Soil Pollut. 2001, 126, 37–51. [Google Scholar] [CrossRef]
- Graham, W.F.; Duce, R.A. Atmospheric Pathways of the phosphorus cycle. Geochim. Cosmochim. Acta 1979, 43, 1195–1208. [Google Scholar] [CrossRef]
- Hicks, B.B. Measuring dry deposition: A re-assessment of the state of the art. Water Air Soil Pollut. 1986, 30, 75–90. [Google Scholar] [CrossRef]
- Anderson, K.A.; Downing, J.A. Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region. Water Air Soil Pollut. 2006, 176, 351–374. [Google Scholar] [CrossRef]
- Jassby, A.D.; Reuter, J.E.; Axler, R.P.; Goldman, C.R.; Hackley, S.H. Atmospheric deposition of nitrogen and phosphorus in the annual nutrient load of Lake Tahoe (California-Nevada). Water Resour. Res. 1994, 30, 2207–2216. [Google Scholar] [CrossRef]
- Lehmann, C.M.B.; Gay, D.A. Monitoring long-term trends of acidic wet deposition in US precipitation: Results from the National Atmospheric Deposition Program. Power Plant Chem. 2011, 13, 378–385. [Google Scholar]
- Olsen, J.M.; Williams, G.P.; Miller, A.W.; Merritt, L.B. Measuring and Calculating Current Atmospheric Phosphorous and Nitrogen Loadings to Utah Lake Using Field Samples and Geostatistical Analysis. Hydrology 2018, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Tamatamah, R.A.; Hecky, R.E.; Duthie, H.C. The atmospheric deposition of phosphorus in Lake Victoria (East Africa). Biogeochemistry 2005, 73, 325–344. [Google Scholar] [CrossRef]
- Prospero, J.; Glaccum, R.; Nees, R. Atmospheric transport of soil dust from Africa to South America. Nature 1981, 289, 570–572. [Google Scholar] [CrossRef]
- Duce, R.A.; Unni, C.; Ray, B.; Prospero, J.; Merrill, J. Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science 1980, 209, 1522–1524. [Google Scholar] [CrossRef] [Green Version]
- Cole, J.J.; Caraco, N.F.; Likens, G.E. Short–range atmospheric transport: A significant source of phosphorus to an oligotrophic lake. Limnol. Oceanogr. 1990, 35, 1230–1237. [Google Scholar] [CrossRef]
- Lewis, W.M., Jr. Precipitation chemistry and nutrient loading by precipitation in a tropical watershed. Water Resour. Res. 1981, 17, 169–181. [Google Scholar] [CrossRef]
- Schindler, D.; Newbury, R.; Beaty, K.; Campbell, P. Natural water and chemical budgets for a small Precambrian lake basin in central Canada. J. Fish. Board Can. 1976, 33, 2526–2543. [Google Scholar] [CrossRef]
- Stockdale, A.; Krom, M.D.; Mortimer, R.J.; Benning, L.G.; Carslaw, K.S.; Herbert, R.J.; Shi, Z.; Myriokefalitakis, S.; Kanakidou, M.; Nenes, A. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proc. Natl. Acad. Sci. USA 2016, 113, 14639–14644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopàček, J.; Hejzlar, J.; Vrba, J.; Stuchlík, E. Phosphorus loading of mountain lakes: Terrestrial export and atmospheric deposition. Limnol. Oceanogr. 2011, 56, 1343–1354. [Google Scholar] [CrossRef]
- Peters, R.H. The role of prediction in limnology 1. Limnol. Oceanogr. 1986, 31, 1143–1159. [Google Scholar] [CrossRef]
- Zhai, S.; Yang, L.; Hu, W. Observations of atmospheric nitrogen and phosphorus deposition during the period of algal bloom formation in Northern Lake Taihu, China. Environ. Manag. 2009, 44, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Merritt, L.B.; Miller, A.W. Interim Report on Nutrient Loadings to Utah Lake: 2019; Jordan River, Farmington Bay & Utah Lake Water Quality Council: Provo, UT, USA, 2019. [Google Scholar]
- Carlson, R.E. A trophic state index for lakes 1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- PSOMAS. Utah Lake TMDL: Pollutant Loading Assessment & Designated Beneficial Use Impairment Assessment; Utah Division of Water Quality: Salt Lake City, UT, USA, 2007.
- Abu-Hmeidan, H.Y.; Williams, G.P.; Miller, A.W. Characterizing total phosphorus in current and geologic utah lake sediments: Implications for water quality management issues. Hydrology 2018, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Randall, M.C.; Carling, G.T.; Dastrup, D.B.; Miller, T.; Nelson, S.T.; Rey, K.A.; Hansen, N.C.; Bickmore, B.R.; Aanderud, Z.T. Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake. PLoS ONE 2019, 14, e0212238. [Google Scholar] [CrossRef] [PubMed]
- Larsen, D.; Mercier, H. Lake phosphorus loading graphs: An alternative. Natl. Tech. Inf. Serv. 1975, PB-243 869, 4. [Google Scholar]
- Merritt, L.B.; Miller, A.W. Interim Report on Nutrient Loadings to Utah Lake; Jordan River, Farmington Bay & Utah Lake Water Quality Council: Provo, UT, USA, 2016. [Google Scholar]
- Lamb, D.; Bowersox, V. The national atmospheric deposition program: An overview. Atmos. Environ. 2000, 34, 1661–1663. [Google Scholar] [CrossRef]
- Wetherbee, G.A. Precipitation collector bias and its effects on temporal trends and spatial variability in National Atmospheric Deposition Program/National Trends Network data. Environ. Pollut. 2017, 223, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A. Atmospheric deposition maps for the Rocky Mountains. Atmos. Environ. 2003, 37, 4881–4892. [Google Scholar] [CrossRef]
- Goodman, M.M.; Carling, G.T.; Fernandez, D.P.; Rey, K.A.; Hale, C.A.; Bickmore, B.R.; Nelson, S.T.; Munroe, J.S. Trace element chemistry of atmospheric deposition along the Wasatch Front (Utah, USA) reflects regional playa dust and local urban aerosols. Chem. Geol. 2019, 530, 119317. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global–scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, Y.; Hopke, P.K.; Holsen, T.M.; Dhaniyala, S. Characteristics of traffic-induced fugitive dust from unpaved roads. Aerosol Sci. Technol. 2017, 51, 1324–1331. [Google Scholar] [CrossRef]
- Veranth, J.M.; Pardyjak, E.R.; Seshadri, G. Vehicle-generated fugitive dust transport: Analytic models and field study. Atmos. Environ. 2003, 37, 2295–2303. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Green, M.C.; Lowenthal, D.H.; DuBois, D.W.; Kohl, S.D.; Egami, R.T.; Gillies, J.; Rogers, C.F.; Frazier, C.A. Middle-and neighborhood-scale variations of PM10 source contributions in Las Vegas, Nevada. J. Air Waste Manag. Assoc. 1999, 49, 641–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peden, M.E. Sampling, analytical, and quality assurance protocols for the National Atmospheric Deposition Program. In Sampling and Analysis of Rain; ASTM International: West Conshohocken, PA, USA, 1983. [Google Scholar]
- Reidhead, J.G. Significance of the Rates of Atmospheric Deposition Around Utah Lake and Phosphorus-Fractionation of Local Soils. Master’s Thesis, Brigham Young University, Provo, UT, USA, 2019; p. 7685. [Google Scholar]
- Brahney, J. Estimating Total and Bioavailable Nutrient Loading to Utah Lake from the Atmosphere. Watershed Sci. Fac. Publ. 2019, 1094. [Google Scholar] [CrossRef]
- Ramsey, F.S.; Schafer, D. The Statistical Sleuth: A Course in Methods of Data Analysis, 3rd ed.; Cengage Learning: Boston, MA, USA, 2012; p. 784. [Google Scholar]
Variable | N | Low-Table Mean | High-Table Mean | Mean Diff. | Prob > |t| | Prob > t | Prob < t |
---|---|---|---|---|---|---|---|
(mg/m2) | (mg/m2) | (mg/m2) | |||||
P | 34 | 2.88 | 3.11 | 0.24 | 0.41 | 0.68 | 0.32 |
DIN | 37 | 25.29 | 25.39 | 0.10 | 0.97 | 0.52 | 0.48 |
Location | N | TP | (mg/L) | DIN | (mg/L) | ||
---|---|---|---|---|---|---|---|
2019 | Avg w/ Outliers | Avg w/o Outliers | Number of Outliers | Avg w/ Outliers | Avg w/o Outliers | # Outliers | |
Lakeshore | 35 | 0.219 | 0.137 | 2 | 2.070 | 0.590 | 2 |
Mosida | 35 | 3.130 | 0.129 | 9 | 10.097 | 0.489 | 3 |
Pump Station | 36 | 0.155 | 0.155 | 0 | 1.134 | 0.432 | 2 |
Orem | 36 | 0.265 | 0.154 | 2 | 1.572 | 0.575 | 2 |
2020 | |||||||
Lakeshore | 35 | 0.181 | 0.120 | 2 | 0.785 | 0.451 | 2 |
Mosida | 39 | 0.532 | 0.088 | 2 | 1.935 | 0.458 | 3 |
Pump Station | 40 | 0.120 | 0.120 | 0 | 0.398 | 0.320 | 1 |
Orem | 32 | 0.150 | 0.113 | 1 | 0.553 | 0.352 | 1 |
Bird Island | 18 | 0.376 | 0.255 | 1 | 0.820 | 0.642 | 1 |
Year | TP w/ (mg/L) | TP w/o (mg/L) | % Diff | DIN w/ (mg/L) | DIN w/o (mg/L) | % Diff |
---|---|---|---|---|---|---|
2019 | 0.942 | 0.144 | 15% | 3.718 | 0.522 | 14% |
2020 | 0.271 | 0.139 | 51% | 0.898 | 0.445 | 49% |
Month | Bird Island | Lakeshore | Mosida | Pump Station | Orem | Avg of 4 Shore Sites |
---|---|---|---|---|---|---|
July | 5.35 | 6.62 | 7.40 | 2.56 | 3.73 | 5.08 |
August | 9.37 | 2.55 | 3.13 | 4.36 | 2.31 | 3.09 |
September | 36.25 | 3.75 | 6.17 | 19.91 | 16.45 | 11.57 |
October | 1.73 | 4.70 | 3.36 | 2.49 | 8.42 | 4.74 |
November | 33.34 | 6.01 | 2.89 | 3.34 | 9.51 | 5.44 |
Month | Bird Island | Lakeshore | Mosida | Pump Station | Orem | Avg of 4 Shore Sites |
---|---|---|---|---|---|---|
July | 31.93 | 24.91 | 21.25 | 17.28 | 19.84 | 20.82 |
August | 28.87 | 35.50 | 38.31 | 30.02 | 37.94 | 35.44 |
September | 52.29 | 35.47 | 25.28 | 20.21 | 26.40 | 26.84 |
October | 16.39 | 16.84 | 15.37 | 9.58 | 11.14 | 13.23 |
November | 27.17 | 14.51 | 13.24 | 2.62 | 15.36 | 11.43 |
Month | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
January | N/A | N/A | 54.88 | 17.34 |
February | N/A | N/A | 32.13 | 5.72 |
March | N/A | N/A | 251.57 | 36.20 |
April | N/A | 38.84 | 88.89 | 63.50 |
May | 25.96 | 334.52 | 55.17 | 73.58 |
June | 63.16 | 29.56 | 67.20 | 27.24 |
July | 44.26 | 50.71 | 414.19 | 19.23 |
August | 34.10 | 52.27 | 342.39 | 35.44 |
September | 36.12 | 33.94 | 53.46 | 26.84 |
October | 19.77 | 44.42 | 39.03 | 13.23 |
November | N/A | 40.94 | 19.25 | 11.43 |
December | N/A | 13.58 | 24.51 | 4.28 |
Month. | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|
January | N/A | N/A | 4.08 | 1.66 |
February | N/A | N/A | 2.36 | 1.80 |
March | N/A | N/A | 10.97 | 2.86 |
April | N/A | 4.25 | 3.29 | 12.57 |
May | 10.91 | 36.43 | 5.15 | 24.82 |
June | 99.32 | 12.20 | 13.13 | 6.56 |
July | 17.82 | 22.02 | 102.40 | 3.97 |
August | 10.15 | 16.85 | 122.43 | 3.09 |
September | 7.09 | 9.91 | 11.31 | 11.25 |
October | 4.58 | 6.38 | 4.54 | 3.65 |
November | N/A | 4.55 | 2.16 | 4.57 |
December | N/A | 2.90 | 2.44 | 1.84 |
Nutrient | 2019 | 2020 |
---|---|---|
TP 1 | 262 | 133 |
DIN 1 | 1052 | 482 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrus, S.M.; Williams, G.P.; Miller, A.W.; Borup, M.B.; Merritt, L.B.; Richards, D.C.; Miller, T.G. Nutrient Atmospheric Deposition on Utah Lake: A Comparison of Sampling and Analytical Methods. Hydrology 2021, 8, 123. https://doi.org/10.3390/hydrology8030123
Barrus SM, Williams GP, Miller AW, Borup MB, Merritt LB, Richards DC, Miller TG. Nutrient Atmospheric Deposition on Utah Lake: A Comparison of Sampling and Analytical Methods. Hydrology. 2021; 8(3):123. https://doi.org/10.3390/hydrology8030123
Chicago/Turabian StyleBarrus, Seth Michael, Gustavious Paul Williams, A. Woodruff Miller, M. Brett Borup, LaVere B. Merritt, David C. Richards, and Theron G. Miller. 2021. "Nutrient Atmospheric Deposition on Utah Lake: A Comparison of Sampling and Analytical Methods" Hydrology 8, no. 3: 123. https://doi.org/10.3390/hydrology8030123
APA StyleBarrus, S. M., Williams, G. P., Miller, A. W., Borup, M. B., Merritt, L. B., Richards, D. C., & Miller, T. G. (2021). Nutrient Atmospheric Deposition on Utah Lake: A Comparison of Sampling and Analytical Methods. Hydrology, 8(3), 123. https://doi.org/10.3390/hydrology8030123