Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States
Abstract
:1. Introduction
2. Database and Study Area Characteristics
3. Materials and Methods
3.1. Catchment Classification
3.2. SAC-SMA Model Structure and Calibration
3.2.1. Model Parameters and Physical Meaning
3.2.2. SAC-SMA Calibration and Validation
SAC-SMA Calibration
SAC-SMA Validation
4. Results
4.1. Model Performance Using A Priori and Calibrated Parameters
4.2. Analysis of Predictions from A Priori Parameters and Calibration: The Catchment Land Scape Properties and Runoff Processes
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanborn, S.C.; Bledsoe, B.P. Predicting streamflow regime metrics for ungauged streams in Colorado, Washington, and Oregon. J. Hydrol. 2006, 325, 241–261. [Google Scholar] [CrossRef]
- Dooge, J.C.I. Theory of Flood Routing. In River Flow Modelling and Forecasting. Water Science and Technology Library; Kraijenhoff, D.A., Moll, J.R., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 39–65. [Google Scholar]
- Savenije, H.H.G. Equifinality, a blessing in disguise? Hydrol. Process. 2001, 15, 2835–2838. [Google Scholar] [CrossRef]
- Sivapalan, M.; Kalma, J.D. Scale problems in hydrology: Contributions of the Robertson workshop. Hydrol. Process. 1995, 9, 243–250. [Google Scholar] [CrossRef]
- McDonnell, J.J.; Sivapalan, M.; Vaché, K.; Dunn, S.; Grant, G.; Haggerty, R.; Hinz, C.; Hooper, R.; Kirchner, J.; Roderick, M.L.; et al. Moving beyond heterogeneity and process complexity: A new vision for watershed hydrology. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. Linking parameters across scales: Sub grid parameterizations and scale dependent hydrological models. Hydrol. Process. 1995, 9, 507–525. [Google Scholar] [CrossRef]
- Beven, K.; Feyen, J. The Future of Distributed Modelling. Hydrol. Process. 2002, 16, 169–172. [Google Scholar] [CrossRef]
- Duan, Q.; Schaake, J.; Andréassian, V.; Franks, S.; Goteti, G.; Gupta, H.; Gusev, Y.; Habets, F.; Hall, A.; Hay, L.; et al. Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops. J. Hydrol. 2006, 320, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Li, Z.; Yu, Z.; Zhang, K. A priori parameter estimates for a distributed, grid based Xinanjiang model using geographically based information. J. Hydrol. 2012, 468–469, 47–62. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Gupta, H.V.; Wagener, T. A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ao, T.; Ishidaira, H.; Takeuchi, K.; Kiem, A.S.; Yoshitari, J.; Fukami, K.; Magome, J. Relating BTOPMC model parameters to physical features of MOPEX basins. J. Hydrol. 2006, 320, 84–102. [Google Scholar] [CrossRef]
- Duan, Q.; Schaake, J.; Koren, V.I. A Priori estimation of land surface model parameters. In Water Science and Application; American Geophysical Union: Washington, DC, USA, 2001; Volume 3, pp. 77–94. [Google Scholar]
- Sivapalan, M. Prediction in ungauged basins: A grand challenge for theoretical hydrology. Hydrol. Process. 2003, 17, 3163–3170. [Google Scholar] [CrossRef]
- Schaake, J.; Cong, S.; Duan, Q. US MOPEX data set. In Large Sample Basin Experiments for Hydrological Model Parameterisation; Andreassian, V., Hall, A., Chahinian, N., Schaake, J., Eds.; IAHS Press: Wallingford, UK, 2006. [Google Scholar]
- Zhang, Y.; Zhang, Z.; Reed, S.; Koren, V. An enhanced and automated approach for deriving a priori SAC-SMA parameters from the soil survey geographic database. Comput. Geosci. 2011, 37, 219–231. [Google Scholar] [CrossRef]
- Anderson, R.M.; Koren, V.I.; Reed, S.M. Using SSURGO data to improve Sacramento Model a priori parameter estimates. J. Hydrol. 2006, 320, 103–116. [Google Scholar] [CrossRef]
- Abdulla, F.A.; Lettenmaier, D.P.; Wood, E.F.; Smith, J.A. Application of a macroscale hydrologic model to estimate the water balance of the Arkansas-Red River Basin. J. Geophys. Res. Space Phys. 1996, 101, 7449–7459. [Google Scholar] [CrossRef]
- Yokoo, Y.; Kazama, S.; Sawamoto, M.; Nishimura, H. Regionalization of lumped water balance model parameters based on multiple regression. J. Hydrol. 2001, 246, 209–222. [Google Scholar] [CrossRef]
- Gupta, H.V.; Bastidas, L.A.; Sorooshian, S.; Shuttleworth, W.J.; Yang, Z.L. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res. Space Phys. 1999, 104, 19491–19503. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.; Thorstensen, A.; Sorooshian, S.; Hsu, K.; AghaKouchak, A.; Sanders, B.; Koren, V.; Cui, Z.; Smith, M. A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling. J. Hydrol. 2016, 541, 401–420. [Google Scholar] [CrossRef] [Green Version]
- Vereecken, H.; Huisman, J.A.; Bogena, H.; VanderBorght, J.; Vrugt, J.A.; Hopmans, J.W. On the value of soil moisture measurements in vadose zone hydrology: A review. Water Resour. Res. 2008, 44, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. Changing ideas in hydrology: The case of physically based models. J. Hydrol. 1989, 105, 157–172. [Google Scholar] [CrossRef]
- Koren, V.; Smith, M.; Duan, Q. Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models. In Calibration of Watershed Models; American Geophysical Union: Washington, DC, USA, 2003; pp. 239–254. [Google Scholar] [CrossRef]
- Beven, K. On the future of distributed modelling in hydrology. Hydrol. Process. 2000, 14, 3183–3184. [Google Scholar] [CrossRef]
- Koren, V.I.; Smith, M.; Wang, D.; Zhang, Z. Use of soil property data in the derivation of conceptual rainfall-runoff model parameters. In Proceedings of the 15th Conference on Hydrology, Long Beach, CA, USA, 9–13 January 2000; pp. 103–106. [Google Scholar]
- Gan, T.Y.; Burges, S.J. Assessment of soil-based and calibrated parameters of the Sacramento model and parameter transferability. J. Hydrol. 2006, 320, 117–131. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.; Blöschl, G.; McDonnell, J.; Sivapalan, M.; Pomeroy, J.; Arheimer, B.; Blume, T.; Clark, M.; Ehret, U.; et al. A decade of Predictions in Ungauged Basins (PUB): A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Sivapalan, M.; Woods, R.A.; Savenije, H.H.G. Patterns of similarity of seasonal water balances: A window into streamflow variability over a range of time scales. Water Resour. Res. 2014, 50, 5638–5661. [Google Scholar] [CrossRef] [Green Version]
- Hershfield, D.M. Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years; Technical Report No. 40; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1961. [Google Scholar]
- Wood, M.K.; Blackburn, W.H. An evaluation of the hydrologic soil groups as used in the SCS runoff method on rangelands. JAWRA J. Am. Water Resour. Assoc. 1984, 20, 379–389. [Google Scholar] [CrossRef]
- Wagener, T.; Sivapalan, M.; Troch, P.; Woods, R. Catchment Classification and Hydrologic Similarity. Geogr. Compass 2007, 1, 901–931. [Google Scholar] [CrossRef]
- Sawicz, K.A.; Wagener, T.; Sivapalan, M.; Troch, P.A.; Carrillo, G.A. Catchment classification: Empirical analysis of hydrologic similarity based on catchment function in the eastern USA. Hydrol. Earth Syst. Sci. 2011, 15, 2895–2911. [Google Scholar] [CrossRef] [Green Version]
- Chouaib, W.; Caldwell, P.V.; Alila, Y. Regional variation of flow duration curves in the eastern United States: Process-based analyses of the interaction between climate and landscape properties. J. Hydrol. 2018, 559, 327–346. [Google Scholar] [CrossRef]
- McDonnell, J.J.; Woods, R. On the need for catchment classification. J. Hydrol. 2004, 299, 2–3. [Google Scholar] [CrossRef]
- Van Werkhoven, K.; Wagener, T.; Reed, P.; Tang, Y. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Sorooshian, S.; Duan, Q.; Gupta, V.K. Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res. 1993, 29, 1185–1194. [Google Scholar] [CrossRef]
- Newman, A.J.; Clark, M.P.; Sampson, K.; Wood, A.W.; Hay, E.L.; Bock, A.R.; Viger, R.J.; Blodgett, D.L.; Brekke, L.D.; Arnold, J.R.; et al. Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: Data set characteristics and assessment of regional variability in hydrologic model performance. Hydrol. Earth Syst. Sci. 2015, 19, 209–223. [Google Scholar] [CrossRef] [Green Version]
- Bulygina, N.; Gupta, H. Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Jeremiah, E.; Sisson, S.; Marshall, L.; Mehrotra, R.; Sharma, A. Bayesian calibration and uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and sequential Monte Carlo samplers. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Costa, V.; Fernandes, W. Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator. J. Hydrol. 2017, 554, 137–154. [Google Scholar] [CrossRef]
- Bárdossy, A. Calibration of hydrological model parameters for ungauged catchments. Hydrol. Earth Syst. Sci. 2007, 11, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Muttil, N.; Jayawardena, A.W. Shuffled Complex Evolution model calibrating algorithm: Enhancing its robustness and efficiency. Hydrol. Process. 2008, 22, 4628–4638. [Google Scholar] [CrossRef] [Green Version]
- Schaefli, B.; Gupta, H.V. Do Nash values have value? Hydrol. Process. 2007, 21, 2075–2080. [Google Scholar] [CrossRef] [Green Version]
- Dawson, C.; Abrahart, R.; See, L. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 2007, 22, 1034–1052. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, G.; Serinaldi, F.; See, L. Impact of EMD decomposition and random initialisation of weights in ANN hindcasting of daily stream flow series: An empirical examination. J. Hydrol. 2011, 406, 199–214. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Wilson, B.N.; Douglas-Mankin, K.R.; Arnold, J.G.; Gowda, P.H. Hydrologic and Water Quality Models: Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1241–1247. [Google Scholar] [CrossRef]
- Bonell, M. Progress in the understanding of runoff generation dynamics in forests. J. Hydrol. 1993, 150, 217–275. [Google Scholar] [CrossRef]
- Weiler, M.; McDonnell, J.J. Conceptualizing lateral preferential flow and flow networks and simulating the effects on gauged and ungauged hillslopes. Water Resour. Res. 2007, 43, W03403. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, J.J. A Rationale for Old Water Discharge Through Macropores in a Steep, Humid Catchment. Water Resour. Res. 1990, 26, 2821–2832. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Dornes, P.F.; Tolson, B.A.; Davison, B.; Pietroniro, A.; Pomeroy, J.W.; Marsh, P. Regionalisation of land surface hydrological model parameters in subarctic and arctic environments. Phys. Chem. Earth Parts A/B/C 2008, 33, 1081–1089. [Google Scholar] [CrossRef]
- Beckers, J.; Alila, Y. A model of rapid preferential hillslope runoff contributions to peak flow generation in a temperate rain forest watershed. Water Resour. Res. 2004, 40, W03501. [Google Scholar] [CrossRef] [Green Version]
- Ameli, A.A.; Craig, J.R.; McDonnell, J.J. Are all runoff processes the same? Numerical experiments comparing a Darcy-Richards solver to an overland flow-based approach for subsurface storm runoff simulation. Water Resour. Res. 2015, 51, 10008–10028. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.A.; Kapangziwiri, E. The use of physical basin properties and runoff generation concepts as an aid to parameter quantification in conceptual type rainfall–runoff models. In Quantification and Reduction of Predictive Uncertainty for Sustainable Water Resources Management; IAHS Press: Wallingford, UK, 2007; pp. 311–318. [Google Scholar]
- Mulder, V.; De Bruin, S.; Schaepman, M.; Mayr, T. The use of remote sensing in soil and terrain mapping: A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
Catchments’ Descriptors | Maximum | Minimum | Median |
---|---|---|---|
Slope (%) | 34 | 0.6 | 12.7 |
Mean Elevation (m) | 1212 | 16.2 | 442.6 |
Land cover crop (%) | 59 | 0 | 15.8 |
Land cover forest (%) | 98 | 28.64 | 65.68 |
Land cover urban (%) | 18.67 | 0 | 6.3 |
Catchments’ size (km2) | 8052 | 67 | 1170.70 |
MAP 1 | 2072 | 982 | 1199 |
Model Parameter | Physical Meaning |
---|---|
UZTWM | The upper layer tension water capacity (mm) |
UZFWM | The upper layer free water capacity (mm) |
UZK | Interflow depletion rate from the upper layer free water storage (day−1) |
ZPERC | Ratio of maximum and minimum percolation rates |
REXP | Shape parameter of the percolation curve |
LZTWM | The lower layer tension water capacity (mm) |
LZFSM | The lower layer supplemental free water |
LZFPM | The lower layer primary free water capacity (mm) |
LZSK | Depletion rate of the lower layer supplemental free water storage (day−1) |
LZPK | Depletion rate of the lower layer primary free water storage (day−1) |
PFREE | Percolation fraction that goes directly to the lower layer free water storages |
PCTIM | Permanent impervious area fraction |
ADIMP | Maximum fraction of an additional impervious area due to saturation |
Region | PHSHP 1 | r | R 2 | p-Value |
---|---|---|---|---|
CAL 3 | ||||
S.AP. | HGB | 0.7 | 0.5 | <0.001 |
HGBD 2 | −0.678 | 0.46 | <0.001 | |
HGC | −0.63 | 0.4 | <0.001 | |
NE | HGA | 0.387 | 0.15 | 0.18 |
HGB | 0.36 | 0.13 | 0.223 | |
HGC | −0.632 | 0.4 | 0.018 | |
N.AP. | HGA | −0.67082 | 0.45 | 0.0082 |
HGB | 0.44721 | 0.2 | 0.1743 | |
HGC | −0.1414 | 0.02 | 0.59 | |
SE | HGA | −0.755 | 0.57 | 0.01773 |
HGB | 0.6403 | 0.41 | 0.06148 | |
HGC | −0.55 | 0.31 | 0.0819 | |
APRIORI4 | ||||
S.AP. | HGB | 0.5916 | 0.35 | 0.0005 |
HGBD 2 | −0.589 | 0.34 | 0.0006 | |
HGC | −0.547 | 0.3 | 0.0018 | |
NE | HGA | 0.424 | 0.18 | <0.001 |
HGB | 0.282 | 0.08 | <0.001 | |
HGC | −0.63 | 0.4 | <0.001 | |
N.AP. | HGA | −0.7 | 0.49 | <0.001 |
HGB | 0.519615 | 0.27 | 0.28 | |
HGC | −0.13416 | 0.018 | 0.64 | |
SE | HGA | −0.44721 | 0.2 | 0.2293 |
HGB | 0.72111 | 0.52 | 0.02701 | |
HGC | −0.72111 | 0.52 | 0.02699 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouaib, W.; Alila, Y.; Caldwell, P.V. Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States. Hydrology 2021, 8, 78. https://doi.org/10.3390/hydrology8020078
Chouaib W, Alila Y, Caldwell PV. Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States. Hydrology. 2021; 8(2):78. https://doi.org/10.3390/hydrology8020078
Chicago/Turabian StyleChouaib, Wafa, Younes Alila, and Peter V. Caldwell. 2021. "Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States" Hydrology 8, no. 2: 78. https://doi.org/10.3390/hydrology8020078
APA StyleChouaib, W., Alila, Y., & Caldwell, P. V. (2021). Implications of a Priori Parameters on Calibration in Conditions of Varying Terrain Characteristics: Case Study of the SAC-SMA Model in Eastern United States. Hydrology, 8(2), 78. https://doi.org/10.3390/hydrology8020078