Partitioning of Rainfall and Sprinkler-Irrigation by Crop Canopies: A Global Review and Evaluation of Available Research
Abstract
:1. Introduction
2. Literature Search and Data Compilation Methods
3. Rainfall and Irrigation Partitioning by Crop Canopies
4. Storms and Growth Stage: Temporal Variability of Rain and Irrigation Partitioning
5. Surface and Subsurface Relevance of Throughfall and Stemflow in Croplands
6. Cropland Precipitation Partitioning Significantly Differs from Shrubs and Forests
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asadieh, B.; Krakauer, N.; Fekete, B. Historical trends in mean and extreme runoff and streamflow based on observations and climate models. Water 2016, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes under Global Warming. Water Resour. Res. 2019, 55, 4901–4914. [Google Scholar] [CrossRef]
- Huntington, T.G. Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol. 2006, 319, 83–95. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491. [Google Scholar] [CrossRef]
- Nie, W.; Zaitchik, B.F.; Rodell, M.; Kumar, S.V.; Arsenault, K.R.; Li, B.; Getirana, A. Assimilating GRACE into a Land Surface Model in the presence of an irrigation-induced groundwater trend. Water Resour. Res. 2019, 55, 11274–11294. [Google Scholar] [CrossRef]
- Najafi, E.; Devineni, N.; Khanbilvardi, R.M.; Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earths Futur. 2018, 6, 410–427. [Google Scholar] [CrossRef]
- Lamm, F.R.; Bordovsky, J.P.; Howell Sr, T.A. A review of in-canopy and near-canopy sprinkler irrigation concepts. Trans. ASABE 2019, 62, 1355–1364. [Google Scholar] [CrossRef]
- Coenders-Gerrits, A.M.J.; Schilperoort, B.; Jiménez-Rodríguez, C. Evaporative Processes on Vegetation: An Inside Look. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J.T., II, Gutmann, E.D., Friesen, J., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 35–48. [Google Scholar]
- Sadeghi, S.M.M.; Gordon, A.G.; Van Stan, J.T. A Global Synthesis of Throughfall and Stemflow Hydrometeorology. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, I.J.T., Gutmann, E.D., Friesen, J., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 49–70. [Google Scholar]
- Ebermayer, E.W.F. Die Physikalischen Einwirkungen des Waldes Auf Luft Und Boden Und Seine Klimatologische Und Hygienische Bedeutung: Begründet Durch Die Beobachtungen Der Forst.-Meteorolog. Stationen im Königreich Bayern; C. Krebs: Aschaffenburg, Germany, 1873. [Google Scholar]
- Zon, R. Forests and Water in the Light of Scientific Investigation; United States Forest Service, United States Department of Agriculture: Washington, DC, USA, 1927. [Google Scholar]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Food and Agricultural Organization of the United Nations. World Programme of the Census of Agriculture 2020 Volume I: Programme, Concepts and Definitions; Food and Agricultural Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Liu, H.; Zhang, R.; Zhang, L.; Wang, X.; Li, Y.; Huang, G. Stemflow of water on maize and its influencing factors. Agric. Water Manag. 2015, 158, 35–41. [Google Scholar] [CrossRef]
- Nazari, M.; Sadeghi, S.M.M.; Van Stan II, J.T.; Chaichi, M.R. Rainfall interception and redistribution by maize farmland in central Iran. J. Hydrol. Reg. Stud. 2020, 27, 100656. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Zhang, R.; Wang, X.; Li, Y. In situ Method for Measurement of the Stem Flow of Maize. Int. J. Plant Soil Sci. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Paltineanu, I.C.; Starr, J.L. Preferential water flow through corn canopy and soil water dynamics across rows. Soil Sci. Soc. Am. J. 2000, 64, 44–54. [Google Scholar] [CrossRef]
- Rao, A.S. Interception losses of rainfall from cashew trees. J. Hydrol. 1987, 90, 293–301. [Google Scholar] [CrossRef]
- Aldana, C.A.F.; Ortega, J.E.N.; Bautista, E.H.D.; Salazar, J.C.S. Interceptación de lluvia en diferentes especies en arreglos agroforestales en la Amazonia Colombiana. Mom. Cien. 2014, 11, 28–34. [Google Scholar]
- Cattan, P.; Bussière, F.; Nouvellon, A. Evidence of large rainfall partitioning patterns by banana and impact on surface runoff generation. Hydrol. Process. An Int. J. 2007, 21, 2196–2205. [Google Scholar] [CrossRef]
- Augusto, R.; De Miranda, C. Partitioning of rainfall in a cocoa (Theobroma cacao lour.) plantation. Hydrol. Process. 1994, 8, 351–358. [Google Scholar] [CrossRef]
- Han, X.; Wei, Z.; Zhang, B.; Han, C.; Song, J. Effects of crop planting structure adjustment on water use efficiency in the irrigation area of Hei River Basin. Water 2018, 10, 1305. [Google Scholar] [CrossRef] [Green Version]
- Wollny, E. Untersuchungen über das Verhalten der atmosphärischen Niederschläge zur Pflanze und zum Boden. Forschungen auf dem Gebiete der Agric. Phys. 1890, 13, 316–356. [Google Scholar]
- Sun, Z.; Li, Z.; Li, B.; Sun, T.; Wang, H. Factors Influencing Corn Canopy Throughfall at the Row Scale in Northeast China. Agron. J. 2017, 109, 1591–1601. [Google Scholar] [CrossRef]
- von Hoyningen-Huene, J. Die interzeption des Niederschlages in landwirtschaftlichen Pflanzenbeständen; Deutscher Verband für Wasserwirtschaft und Kulturbau e.V.: Bonn, Germany, 1983. [Google Scholar]
- Saffigna, P.G.; Tanner, C.B.; Keeney, D.R. Non-Uniform Infiltration Under Potato Canopies Caused by Interception, Stemflow, and Hilling. Agron. J. 1976, 68, 337–342. [Google Scholar] [CrossRef]
- Jefferies, R.A.; MacKerron, D.K.L. Stemflow in potato crops. J. Agric. Sci. 1985, 105, 205–207. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Meng, Y.; Yan, H. Effects of growth stage and irrigation depth on alfalfa canopy water interception under low-pressure spray sprinkler. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018; p. 1. [Google Scholar]
- Haynes, J.L. Ground rainfall under vegetative canopy of crops. J. Am. Soc. Agron. 1940, 32, 176–184. [Google Scholar] [CrossRef]
- Wigneron, J.-P.; Calvet, J.-C.; Kerr, Y. Monitoring water interception by crop fields from passive microwave observations. Agric. For. Meteorol. 1996, 80, 177–194. [Google Scholar] [CrossRef]
- Eberbach, P.; Pala, M. Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in Northern Syria. Plant Soil 2005, 268, 195–208. [Google Scholar] [CrossRef]
- Kang, Y.; Wang, Q.-G.; Liu, H.-J.; Liu, P.-S. Winter wheat canopy-interception with its influence factors under sprinkler irrigation. In Proceedings of the 2004 ASAE Annual Meeting, St Joseph, MI, USA, 1–4 August 2004; p. 1. [Google Scholar]
- Butler, D.R.; Huband, N.D.S. Throughfall and stem-flow in wheat. Agric. For. Meteorol. 1985, 35, 329–338. [Google Scholar] [CrossRef]
- Parkin, T.B.; Codling, E.E. Rainfall distribution under a corn canopy: Implications for managing agrochemicals. Agron. J. 1990, 82, 1166–1169. [Google Scholar] [CrossRef]
- Lin, D.; Zheng, Z.; Zhang, X.; Li, T.; Wang, Y. Study on the effect of maize plants on rainfall redistribution processes. Sci. Agric. Sin. 2011, 44, 2608–2615. [Google Scholar]
- Janeau, J.-L.; Grellier, S.; Podwojewski, P. Influence of rainfall interception by endemic plants versus short cycle crops on water infiltration in high altitude ecosystems of Ecuador. Hydrol. Res. 2015, 46, 1008–1018. [Google Scholar] [CrossRef]
- Zapata, N.; Robles, O.; Playán, E.; Paniagua, P.; Romano, C.; Salvador, R.; Montoya, F. Low-pressure sprinkler irrigation in maize: Differences in water distribution above and below the crop canopy. Agric. Water Manag. 2018, 203, 353–365. [Google Scholar] [CrossRef]
- Siles, P.; Vaast, P.; Dreyer, E.; Harmand, J.-M. Rainfall partitioning into throughfall, stemflow and interception loss in a coffee (Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora. J. Hydrol. 2010, 395, 39–48. [Google Scholar] [CrossRef] [Green Version]
- de Moura, A.E.; Gico Lima Montenegro, S.M.; de Lima, L.E.; da Silva, B.B.; de Oliveira, L.M.; Santos, N.D.O. Evaluation of throughfall in coffee cultivation in a representative basin in the State of Pernambuco. WATER Resour. Irrig. Manag. 2014, 3, 21–29. [Google Scholar]
- Gurav, M.; Sachin Kumar, M.D.; Kushalappa, C.G.; Vaast, P. Throughfall and Interception Loss in Relation to Different Canopy Levels of Coffee Agroforestry Systems. Int. J. Environ. Sci. 2012, 1, 145–149. [Google Scholar]
- Holwerda, F.; Bruijnzeel, L.A.; Barradas, V.L.; Cervantes, J. The water and energy exchange of a shaded coffee plantation in the lower montane cloud forest zone of central Veracruz, Mexico. Agric. For. Meteorol. 2013, 173, 1–13. [Google Scholar] [CrossRef]
- Harmand, J.-M.; Ávila, H.; Dambrine, E.; Skiba, U.; De Miguel, S.; Renderos, R.V.; Oliver, R.; Jiménez, F.; Beer, J. Nitrogen dynamics and soil nitrate retention in a Coffea arabica—Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 2007, 85, 125–139. [Google Scholar] [CrossRef]
- Noble, C.A.; Morgan, R.P.C. Rainfall interception and splash detachment with a Brussels sprouts plant: A laboratory simulation. Earth Surf. Process. Landf. 1983, 8, 569–577. [Google Scholar] [CrossRef]
- Macinnis-Ng, C.M.O.; Flores, E.E.; Müller, H.; Schwendenmann, L. Rainfall partitioning into throughfall and stemflow and associated nutrient fluxes: Land use impacts in a lower montane tropical region of Panama. Biogeochemistry 2012, 111, 661–676. [Google Scholar] [CrossRef]
- Musgrave, G.W.; Norton, R.A. Soil and water conservation investigations, Progress Report USDA. Tech. Bull 1937, 530, 79. [Google Scholar]
- Breuer, L.; Eckhardt, K.; Frede, H.-G. Plant parameter values for models in temperate climates. Ecol. Modell. 2003, 169, 237–293. [Google Scholar] [CrossRef]
- Crouse, R.P.; Corbett, E.S.; Seegrist, D.W. Methods of measuring and analyzing rainfall interception by grass. Hydrol. Sci. J. 1966, 11, 110–120. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Yan, S.; Xiang, Y. Rainfall partitioning into throughfall, stemflow and interception loss by maize canopy on the semi-arid Loess Plateau of China. Agric. Water Manag. 2018, 195, 25–36. [Google Scholar] [CrossRef]
- Friesen, J.; Lundquist, J.; Van Stan, J.T. Evolution of forest precipitation water storage measurement methods. Hydrol. Process. 2015, 29, 2504–2520. [Google Scholar] [CrossRef]
- Aston, A.R. Rainfall interception by eight small trees. J. Hydrol. 1979, 42, 383–396. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Link, T.E.; Keim, R.F.; Van Stan II, J.T. Storage and Routing of Precipitation Through Canopies. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J.T., Gutmann, E.D., Friesen, J., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 17–34. [Google Scholar]
- Van Elewijck, L. Influence of leaf and branch slope on stemflow amount. Catena 1989, 16, 525–533. [Google Scholar] [CrossRef]
- De Ploey, J. A stemflow equation for grasses and similar vegetation. Catena 1982, 9, 139–152. [Google Scholar] [CrossRef]
- Schroth, G.; Ferreira Da Silva, L.; Wolf, M.-A.; Geraldes Teixeira, W.; Zech, W. Distribution of throughfall and stemflow in multi-strata agroforestry, perennial monoculture, fallow and primary forest in central Amazonia, Brazil. Hydrol. Process. 1999, 13, 1423–1436. [Google Scholar] [CrossRef]
- Ma, B.; Yu, X.; Ma, F.; Li, Z.; Wu, F. Effects of crop canopies on rain splash detachment. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Hakimi, L.; Sadeghi, S.M.M.; Van Stan, J.T.; Pypker, T.G.; Khosropour, E. Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agric. Ecosyst. Environ. 2018, 259, 77–85. [Google Scholar] [CrossRef]
- Clark, O.R. Interception of rainfall by prairie grasses, weeds, and certain crop plants. Ecol. Monogr. 1940, 10, 243–277. [Google Scholar] [CrossRef]
- Ma, B.; Li, C.D.; Ma, F.; Li, Z.B.; Wu, F.Q. Influences of rainfall intensity and leaf area on corn stemflow: Development of a model. CLEAN Soil Air Water 2016, 44, 922–929. [Google Scholar] [CrossRef]
- Keen, B.; Cox, J.; Morris, S.; Dalby, T. Stemflow runoff contributes to soil erosion at the base of macadamia trees. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 240–243. [Google Scholar]
- Dolan, M.S.; Dowdy, R.H.; Lamb, J.A. Redirection of precipitation by a corn canopy and related soilwater status. Commun. Soil Sci. Plant Anal. 2001, 32, 739–750. [Google Scholar] [CrossRef]
- Lamm, F.R.; Manges, H.L. Partitioning of sprinkler irrigation water by a corn canopy. Trans. ASAE 2000, 43, 909. [Google Scholar] [CrossRef]
- Steiner, J.L.; Kanemasu, E.T.; Clark, R.N. Spray losses and partitioning of water under a center pivot sprinkler system. Trans. ASAE 1983, 26, 1128–1134. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Yan, S.; Wu, Y.; Lu, J.; Guo, J.; Cheng, M.; Pei, Y. Throughfall and stemflow heterogeneity under the maize canopy and its effect on soil water distribution at the row scale. Sci. Total Environ. 2019, 660, 1367–1382. [Google Scholar] [CrossRef] [PubMed]
- Leistra, M.; Boesten, J.J.T.I. Pesticide leaching from agricultural fields with ridges and furrows. Water Air Soil Pollut. 2010, 213, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Moss, A.J.; Green, T.W. Erosive effects of the large water drops (gravity drops) that fall from plants. Soil Res. 1987, 25, 9–20. [Google Scholar] [CrossRef]
- Dunkerley, D. A review of the Effects of Throughfall and Stemflow on Soil Properties and Soil Erosion. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J.T., Gutmann, E.D., Friesen, J., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 183–214. [Google Scholar]
- Van Stan, J.T.; Hildebrandt, A.; Friesen, J.; Metzger, J.C.; Yankine, S.A. Spatial Variablity and Temporal Stability of Local Net Precipitation Patterns. In Precipitation Partitioning by Vegetation: A Global Synthesis; Van Stan, J.T., Gutmann, E.D., Friesen, J., Eds.; Springer Nature: Cham, Switzerland, 2020; pp. 89–104. [Google Scholar]
- Li, H.; Ma, Y.; Liu, W.; Liu, W. Soil changes induced by rubber and tea plantation establishment: Comparison with tropical rain forest soil in Xishuangbanna, SW China. Environ. Manag. 2012, 50, 837–848. [Google Scholar] [CrossRef]
- Bui, E.N.; Box, J.E. Stemflow, rain throughfall, and erosion under canopies of corn and sorghum. Soil Sci. Soc. Am. J. 1992, 56, 242–247. [Google Scholar] [CrossRef]
- Martello, M.; Ferro, N.D.; Bortolini, L.; Morari, F. Effect of incident rainfall redistribution by maize canopy on soil moisture at the crop row scale. Water 2015, 7, 2254–2271. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Fang, Q.; Yang, Y.; Yang, H.; Yang, T.; Zheng, H. Stemflow contributions to soil erosion around the stem base under simulated maize-planted and rainfall conditions. Agric. For. Meteorol. 2020, 281, 107814. [Google Scholar] [CrossRef]
- Hartley, D.M.; Alonso, C. V Numerical study of the maximum boundary shear stress induced by raindrop impact. Water Resour. Res. 1991, 27, 1819–1826. [Google Scholar] [CrossRef]
- Armenise, E.; Simmons, R.W.; Ahn, S.; Garbout, A.; Doerr, S.H.; Mooney, S.J.; Sturrock, C.J.; Ritz, K. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics. J. Hydrol. 2018, 556, 211–219. [Google Scholar] [CrossRef]
- McIntyre, D.S. Permeability measurements of soil crusts formed by raindrop impact. Soil Sci. 1958, 85, 185–189. [Google Scholar] [CrossRef]
- Morin, J. Soil Crusting and Sealing. In FAO Soils Bull; Soil Resources, Management and Conservation Service, Land and Water Development Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 1993. [Google Scholar]
- Agassi, M.; Shainberg, I.; Warrington, D.; Ben-Hur, M. Runoff and erosion control in potato fields. Soil Sci. 1989, 148, 149. [Google Scholar] [CrossRef]
- Agassi, M.; Levy, G.J. Effect of the dyked furrow technique on potato yield. Potato Res. 1993, 36, 247–251. [Google Scholar] [CrossRef]
- Dekker, L.W.; Ritsema, C.J. Uneven moisture patterns in water repellent soils. Geoderma 1996, 70, 87–99. [Google Scholar] [CrossRef]
- Warner, G.S.; Young, R.A. Measurement of preferential flow beneath mature corn. In Proceedings of Preferential Flow: Proceedings of the National Symposium, Chicago, IL, USA, 16–17 December 1991; pp. 150–159.
- Gómez, J.A.; Vanderlinden, K.; Giráldez, J.V.; Fereres, E. Rainfall concentration under olive trees. Agric. Water Manag. 2002, 55, 53–70. [Google Scholar] [CrossRef]
- De Miranda, R.A.C.; Butler, D.R. Interception of rainfall in a hedgerow apple orchard. J. Hydrol. 1986, 87, 245–253. [Google Scholar] [CrossRef]
- Dawoe, E.K.; Barnes, V.R.; Oppong, S.K. Spatio-temporal dynamics of gross rainfall partitioning and nutrient fluxes in shaded-cocoa (Theobroma cocoa) systems in a tropical semi-deciduous forest. Agrofor. Syst. 2018, 92, 397–413. [Google Scholar] [CrossRef]
- de Oliveira Leite, J.; Valle, R.R. Nutrient cycling in the cacao ecosystem: Rain and throughfall as nutrient sources for the soil and the cacao tree. Agric. Ecosyst. Environ. 1990, 32, 143–154. [Google Scholar] [CrossRef]
- Serrano, R.C. Hydrology of Different Coconut (Cocos Nucifera L.)-Based Agroecosystems. M.S. Thesis, University of the Philippines, Los Baños, CA, USA, 1982. [Google Scholar]
- Park, A.; Cameron, J.L. The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. For. Ecol. Manag. 2008, 255, 1915–1925. [Google Scholar] [CrossRef]
- Kim, J.H.; Jackson, R.B. A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.; Sadeghi, S.M.M.; Van Stan, J.T., II. Partitioning of Rainfall and Sprinkler-Irrigation by Crop Canopies: A Global Review and Evaluation of Available Research. Hydrology 2020, 7, 76. https://doi.org/10.3390/hydrology7040076
Lin M, Sadeghi SMM, Van Stan JT II. Partitioning of Rainfall and Sprinkler-Irrigation by Crop Canopies: A Global Review and Evaluation of Available Research. Hydrology. 2020; 7(4):76. https://doi.org/10.3390/hydrology7040076
Chicago/Turabian StyleLin, Meimei, Seyed Mohammad Moein Sadeghi, and John T. Van Stan, II. 2020. "Partitioning of Rainfall and Sprinkler-Irrigation by Crop Canopies: A Global Review and Evaluation of Available Research" Hydrology 7, no. 4: 76. https://doi.org/10.3390/hydrology7040076
APA StyleLin, M., Sadeghi, S. M. M., & Van Stan, J. T., II. (2020). Partitioning of Rainfall and Sprinkler-Irrigation by Crop Canopies: A Global Review and Evaluation of Available Research. Hydrology, 7(4), 76. https://doi.org/10.3390/hydrology7040076