Disentangling the Main Components of Hydromorphological Modifications at Reach Scale in Rivers of Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samplings and Data Collection
2.2. Data Analysis
3. Results and Discussion
3.1. Hydromorphological Status
3.2. Main Components of Hydromorphological Modification
3.3. Recommendations for Mitigation of Hydromorphological Alteration and Restoration of Degraded Rivers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- González del Tánago, M.; Gurnell, A.M.; Belletti, B.; García de Jalón, D. Indicators of river system hydromorphological character and dynamics: Understanding current conditions and guiding sustainable river management. Aquat. Sci. 2016, 78, 35–55. [Google Scholar] [CrossRef]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; Van De Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Belletti, B.; Nardi, L.; Rinaldi, M.; Poppe, M.; Brabec, K.; Bussettini, M.; Comiti, F.; Gielczewski, M.; Golfieri, B.; Hellsten, S.; et al. Assessing Restoration effects on river hydromorphology using the process-based morphological quality index in eight European river reaches. Environ. Manag. 2018, 61, 69–84. [Google Scholar] [CrossRef]
- Belletti, B.; Rinaldi, M.; Buijse, A.D.; Gurnell, A.M.; Mosselman, E. A review of assessment methods for river hydromorphology. Environ. Earth Sci. 2014, 73, 2079–2100. [Google Scholar] [CrossRef]
- Raven, P.J.; Holmes, N.T.H.; Dawson, F.H.; Everard, M. Quality assessment using River Habitat Survey data. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 405–424. [Google Scholar] [CrossRef]
- Kamp, U.; Binder, W.; Hölzl, K. River habitat monitoring and assessment in Germany. Environ. Monit. Assess. 2007, 127, 209–226. [Google Scholar] [CrossRef]
- Ollero, A.; Ibisate, A.; Gonzalo, L.E.; Acín, V.; Ballarín, D.; Díaz, E.; Domenech, S.; Gimeno, M.; Granado, D.; Horacio, J.; et al. The IHG index for hydromorphological quality assessment of rivers and streams: Updated version. Limnetica 2011, 30, 255–262. [Google Scholar]
- Rinaldi, M.; Surian, N.; Comiti, F.; Bussettini, M. A method for the assessment and analysis of the hydromorphological condition of Italian streams: The Morphological Quality Index (MQI). Geomorphology 2013, 180–181, 96–108. [Google Scholar] [CrossRef]
- Rinaldi, M.; Belletti, B.; Bussettini, M.; Comiti, F.; Golfieri, B.; Lastoria, B.; Marchese, E.; Nardi, L.; Surian, N. New tools for the hydromorphological assessment and monitoring of European streams. J. Environ. Manag. 2017, 202, 363–378. [Google Scholar] [CrossRef]
- Bechter, T.; Baumann, K.; Birk, S.; Bolik, F.; Graf, W.; Pletterbauer, F. LaRiMo—A simple and efficient GIS-based approach for large-scale morphological assessment of large European rivers. Sci. Total Environ. 2018, 628–629, 1191–1199. [Google Scholar] [CrossRef]
- Knehtl, M.; Petkovska, V.; Urbanič, G. Is it time to eliminate field surveys from hydromorphological assessments of rivers?—Comparison between a field survey and a remote sensing approach. Ecohydrology 2018, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Boon, P.J.; Holmes, N.T.H.; Raven, P.J. Developing standard approaches for recording and assessing river hydromorphology: The role of the European Committee for Standardization (CEN). Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 55–61. [Google Scholar] [CrossRef]
- Fehér, J.; Gáspár, J.; Szurdiné-Veres, K.; Kiss, A.; Kristensen, P.; Peterlin, M.; Globevnik, L.; Kirn, T.; Semerádová, S.; Künitzer, A.; et al. Hydromorphological Alterations and Pressures in European Rivers, Lakes, Transitional and Coastal Waters; Thematic assessment for EEA Water 2012 Report. ETC/ICM Technical Report 2/2012; European Topic Centre on Inland, Coastal and Marine Waters: Prague, Czech Republic, 2012. [Google Scholar]
- Davy-Bowker, J.; Furse, M.T. Hydromorphology—Major results and conclusions from the STAR project. Hydrobiologia 2006, 566, 263–265. [Google Scholar] [CrossRef]
- Stefanidis, K.; Papaioannou, G.; Markogianni, V.; Dimitriou, E. Water quality and hydromorphological variability in Greek rivers: A nationwide assessment with implications for management. Water 2019, 11, 1680. [Google Scholar] [CrossRef] [Green Version]
- Naura, M.; Clark, M.J.; Sear, D.A.; Atkinson, P.M.; Hornby, D.D.; Kemp, P.; England, J.; Peirson, G.; Bromley, C.; Carter, M.G. Mapping habitat indices across river networks using spatial statistical modelling of River Habitat Survey data. Ecol. Indic. 2016, 66, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.J.A.; Naura, M.; Scarlett, P. An account of the derivation and testing of a standard field method: An example using River Habitat Survey. Aquat. Conserv. Mar. Freshw. Ecosyst. 1998, 8, 455–475. [Google Scholar] [CrossRef]
- Lazaridou, M.; Ntislidou, C.; Karaouzas, I.; Skoulikidis, N. Harmonisation of a new assessment method for estimating the ecological quality status of Greek running waters. Ecol. Ind. 2017, 84, 683–694. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R package “corrplot”: Visualization of a Correlation Matrix. Available online: https://github.com/taiyun/corrplot (accessed on 1 March 2020).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: A package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- European Environment Agency [EEA]. European Waters—Assessment of Status and Pressures; EEA Report No 7/2018; EEA: Copenhagen, Denmark, 2018. [Google Scholar]
- Erba, S.; Buffagni, A.; Holmes, N.; O’Hare, M.; Scarlett, P.; Stenico, A. Preliminary testing of River Habitat Survey features for the aims of the WFD hydromorphological assessment: An overview from the STAR Project. Hydrobiologia 2006, 566, 281–296. [Google Scholar] [CrossRef]
- Feld, C.K.; Birk, S.; Bradley, D.C.; Hering, D.; Kail, J.; Marzin, A.; Melcher, A.; Nemitz, D.; Pedersen, M.L.; Pletterbauer, F.; et al. From Natural to Degraded Rivers and Back Again: A Test of Restoration Ecology Theory and Practice. In Advances in Ecological Research, 1st ed.; Woodward, G., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2011; Volume 44, pp. 119–209. [Google Scholar] [CrossRef]
- Anim, D.O.; Fletcher, T.D.; Vietz, G.J.; Pasternack, G.B.; Burns, M.J. Effect of urbanization on stream hydraulics. River Res. Appl. 2018, 34, 661–674. [Google Scholar] [CrossRef]
- Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, S.M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L. From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed. Geomorphology 2011, 132, 272–286. [Google Scholar] [CrossRef]
- Elosegi, A.; Díez, J.; Mutz, M. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 2010, 657, 199–215. [Google Scholar] [CrossRef]
- Gurnell, A.; Bussettini, M.; Camenen, B.; Gonzalez Del Tanago, M.; Grabowski, R.; Hendriks, D.; Henshaw, A.; Latapie, A.; Rinaldi, M.; Surian, N. A Hierarchical Multi-Scale Framework and Indicators of Hydromorpho—Logical Processes and Forms; Report D2.1. Part 1 of the FP7 project REFORM. 2014. Available online: http://www.reformrivers.eu/multi-scale-framework-and-indicators-hydromorphological-processes-and-forms-i-main-report (accessed on 1 March 2020).
- Muhar, S.; Januschke, K.; Kail, J.; Poppe, M.; Schmutz, S.; Hering, D.; Buijse, A.D. Evaluating good-practice cases for river restoration across Europe: Context, methodological framework, selected results and recommendations. Hydrobiologia 2016, 769, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Dyste, J.M.; Valett, H.M. Assessing stream channel restoration: The phased recovery framework. Restor. Ecol. 2019, 27, 850–861. [Google Scholar] [CrossRef] [Green Version]
- Poppe, M.; Kail, J.; Aroviita, J.; Stelmaszczyk, M.; Giełczewski, M.; Muhar, S. Assessing restoration effects on hydromorphology in European mid-sized rivers by key hydromorphological parameters. Hydrobiologia 2016, 769, 21–40. [Google Scholar] [CrossRef]
- Ourloglou, O.; Stefanidis, K.; Dimitriou, E. Assessing nature-based and classical engineering solutions for flood-risk reduction in urban streams. J. Ecol. Eng. 2020, 21, 46–56. [Google Scholar] [CrossRef]
- Theodoropoulos, C.; Stamou, A.; Vardakas, L.; Papadaki, C.; Dimitriou, E.; Skoulikidis, N.; Kalogianni, E. River restoration is prone to failure unless pre-optimized with a mechanistic ecological framework |Insights from a model-based case study. Water Res. 2020, 173, 11550. [Google Scholar] [CrossRef]
- Dimitriou, E.; Stavroulaki, E. Assessment of riverine morphology and habitat regime using unmanned aerial vehicles in a Mediterranean environment. Pure Appl. Geophys. 2018, 175, 3247–3261. [Google Scholar] [CrossRef]
- Szoszkiewicz, K.; Buffagni, A.; Davy-Bowker, J.; Lesny, J.; Chojnicki, B.H.; Zbierska, J.; Staniszewski, R.; Zgola, T. Occurrence and variability of River Habitat Survey features across Europe and the consequences for data collection and evaluation. Hydrobiologia 2006, 566, 267–280. [Google Scholar] [CrossRef]
River Basin District (RBD) | No of Records |
---|---|
GR01 (Western Peloponnese) | 2 |
GR02 (Northern Peloponnese) | 5 |
GR03 (Eastern Peloponnese) | 11 |
GR04 (West. Sterea Ellada) | 13 |
GR05 (Epirus) | 19 |
GR06 (Attica) | 1 |
GR07 (East. Sterea Ellada) | 1 |
GR08 (Thessaly) | 13 |
GR09 (Western Macedonia) | 5 |
GR10 (Central Macedonia) | 2 |
GR11 (Eastern Macedonia) | 0 |
GR12 (Thrace) | 4 |
GR13 (Crete) | 14 |
GR14 (Aegean Islands) | 16 |
Total | 106 |
Sub-Score Category | Assessed Features | Score Derivation |
---|---|---|
Culverts | Presence of culverts | Score is derived by records obtained during spot-checks and sweep-up |
Bank and Bed Reinforcement | Artificial bank and bed materials | Score is given for presence of artificial bank and channel substrate materials combined with bank and channel modifications recorded during spot-checks and sweep-up |
Bank and Bed Resectioning | Resectioning of banks and channel. Signs of resectioning include deepening, straightening, absence of bank vegetation. | Score is derived by records obtained during spot-checks and sweep-up |
Realignment | Obvious change in the river’s planform | Score is based on observations during the sweep-up. |
Berms and Embankments | Artificial berms and embankments that aim to reduce the low-flow channel width and raise the banks | Score is derived by records obtained during spot-checks and sweep-up. Score is also given for the presence of artificial two-stage channel recorded during the sweep-up |
Weirs, Dams and Sluices | Presence of permanent weir, sluice and dam structures | Score is based on observations during the sweep-up. |
Bridges | Presence of bridges | Score is based on observations during the sweep-up. |
Poaching | Banks that are significantly trampled by livestock | Score is derived by records obtained during spot-checks and sweep-up |
Fords | Permanent crossing places for vehicles | Score is based on observations during the sweep-up. |
Outfalls and Deflectors | Outfalls concern structures that allow abstraction from or discharge to watercourses and deflectors are structures that avert currents from eroding cliffs | Score is based on observations during the sweep-up. |
Habitat Modification Score | Habitat Modification Class | Description |
---|---|---|
0–16 | 1 | Pristine/semi-natural |
17–199 | 2 | Predominantly unmodified |
200–499 | 3 | Obviously modified |
500–1399 | 4 | Significantly modified |
>1400 | 5 | Severely modified |
HMS | Elevation | Slope | Upstream Catchment Area | Distance from Source | %Natural LUs | % Artificial LUs | |
---|---|---|---|---|---|---|---|
HMS | 1 | ||||||
Elevation | −0.019 | 1 | |||||
Slope | −0.156 | 0.453 ** | 1 | ||||
Upstream catchment area | −0.115 | −0.128 | −0.237 ** | 1 | |||
Distance from source | 0.009 | −0.139 | −0.370 ** | 0.773 ** | 1 | ||
%Natural LUs | −0.204 * | −0.454 ** | 0.319 ** | −0.057 | −0.008 | 1 | |
% Artificial LUs | 0.179 | −0.104 | −0.080 | −0.046 | −0.032 | 0.225 * | |
% Agricultures | 0.227 * | −0.430 ** | −0.279 ** | 0.061 | −0.003 | −0.948 ** | −0.089 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanidis, K.; Latsiou, A.; Kouvarda, T.; Lampou, A.; Kalaitzakis, N.; Gritzalis, K.; Dimitriou, E. Disentangling the Main Components of Hydromorphological Modifications at Reach Scale in Rivers of Greece. Hydrology 2020, 7, 22. https://doi.org/10.3390/hydrology7020022
Stefanidis K, Latsiou A, Kouvarda T, Lampou A, Kalaitzakis N, Gritzalis K, Dimitriou E. Disentangling the Main Components of Hydromorphological Modifications at Reach Scale in Rivers of Greece. Hydrology. 2020; 7(2):22. https://doi.org/10.3390/hydrology7020022
Chicago/Turabian StyleStefanidis, Konstantinos, Anna Latsiou, Theodora Kouvarda, Anastasia Lampou, Nektarios Kalaitzakis, Konstantinos Gritzalis, and Elias Dimitriou. 2020. "Disentangling the Main Components of Hydromorphological Modifications at Reach Scale in Rivers of Greece" Hydrology 7, no. 2: 22. https://doi.org/10.3390/hydrology7020022
APA StyleStefanidis, K., Latsiou, A., Kouvarda, T., Lampou, A., Kalaitzakis, N., Gritzalis, K., & Dimitriou, E. (2020). Disentangling the Main Components of Hydromorphological Modifications at Reach Scale in Rivers of Greece. Hydrology, 7(2), 22. https://doi.org/10.3390/hydrology7020022