Reassessing Hydrological Processes That Control Stable Isotope Tracers in Groundwater of the Atacama Desert (Northern Chile)
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Groundwater Sampling
3.2. Isotope Sample Analysis
3.3. Isotope Data
3.4. Geostatistical Interpolation
3.5. Mathematical Calculation of the Intersection of the Local Meteoric Water Line and a Given Local Evaporation Line
4. Results
4.1. Geostatistical Assessment of Stable Isotope Data from the Andean Altiplano to the PdT Aquifer
4.2. δ2H-δ18O-Charts of All Stable Isotope Data
4.3. δ18O against Sample Altitude for Samples of Compartments Two, Three and Five
4.4. Time Series of Stable Isotope Samples from Spring Sites between 1967 and 2014
4.5. Depth-Specific Stable Isotope Samples from the PdT Aquifer
4.6. 3H Samples from Shallow Alluvial Fan Groundwater in the PdT
5. Discussion
5.1. Hydrological Processes Controlling Stable Isotope Tracers in the Salar del Huasco Basin (Altiplano)
5.2. Hydrological Processes Controlling Stable Isotope Tracers in the Pampa del Tamarugal and Andean Precordillera
5.2.1. Hydrothermal Water-Rock Interactions
5.2.2. Isotopic Fractionation by Evaporation of Meteoric Waters and Initial Isotopic Composition of Feeding Rainwater
5.2.3. Catchment-dependent δ18O Value Ranges of Precipitations: Topographic Controls on Air Mass and Vapor Mixing
5.3. Kriging Models, Regional Groundwater Flow Regime and Identified Recharge Areas
5.4. Recharge Mechanisms
6. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chávez, R.O.; Clevers, J.G.P.W.; Decuyper, M.; de Bruin, S.; Herold, M. 50 years of water extraction in the Pampa del Tamarugal basin: Can Prosopis tamarugo trees survive in the hyper-arid Atacama Desert (Northern Chile)? J. Arid Environ. 2016, 124, 292–303. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). The Study on the Development of Water Resources in Northern Chile. 1995. Available online: http://sad.dga.cl/ (accessed on 13 May 2016).
- Fritz, P.; Suzuki, O.; Silva, C.; Salati, E. Isotope hydrology of groundwaters in the Pampa del Tamarugal, Chile. J. Hydrol. 1981, 53, 161–184. [Google Scholar] [CrossRef]
- Salazar, C.; Rojas, L.; Pollastri, A. Evaluación de Recursos Hidricos en el Sector de Pica—Evaluation of Water Resources in the Pica Area, Hoya de la Pampa del Tamarugal I Region. 1998. Available online: http://documentos.dga.cl/SUB1658.djvu (accessed on 30 May 2016).
- Magaritz, M.; Aravena, R.; Peña, H.; Suzuki, O.; Grilli, A. Water chemistry and isotope study of streams and springs in northern Chile. J. Hydrol. 1989, 108, 323–341. [Google Scholar] [CrossRef]
- Aravena, R. Isotope Hydrology and Geochemistry of Northern Chile Groundwaters. Bull. IFEA 1995, 24, 495–503. [Google Scholar]
- Magaritz, M.; Aravena, R.; Peña, H.; Suzuki, O.; Grilli, A. Source of Ground Water in the Deserts of Northern Chile: Evidence of Deep Circulation of Ground Water from the Andes. Groundwater 1990, 28, 513–517. [Google Scholar] [CrossRef]
- Uribe, J.; Muñoz, J.F.; Gironás, J.; Oyarzún, R.; Aguirre, E.; Aravena, R. Assessing groundwater recharge in an Andean closed basin using isotopic characterization and a rainfall-runoff model: Salar del Huasco basin, Chile. Hydrogeol. J. 2015, 23, 1535–1551. [Google Scholar] [CrossRef]
- Jayne, R.S.; Pollyea, R.M.; Dodd, J.P.; Olson, E.J.; Swanson, S.K. Spatial and temporal constraints on regional-scale groundwater flow in the Pampa del Tamarugal Basin, Atacama Desert, Chile. Hydrogeol. J. 2016, 24, 1921–1937. [Google Scholar] [CrossRef]
- Scheihing, K.W.; Moya, C.E.; Tröger, U. Insights into Andean slope hydrology: Reservoir characteristics of the thermal Pica spring system, Pampa del Tamarugal, northern Chile. Hydrogeol. J. 2017, 25, 1833–1852. [Google Scholar] [CrossRef]
- Rojas, R.; Batelaan, O.; Feyen, L.; Dassargues, A. Assessment of conceptual model uncertainty for the regional aquifer Pampa del Tamarugal—North Chile. Hydrol. Earth Syst. Sci. 2010, 14, 171–192. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Scheihing, K.; Tröger, U. Local climate change induced by groundwater overexploitation in a high Andean arid watershed, Laguna Lagunillas basin, northern Chile. Hydrogeol. J. 2017, 16, 1817. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology, 2nd ed.; Lewis Publisher: Boca Raton, FL, USA, 1999. [Google Scholar]
- Kendall, C. (Ed.) Isotope Tracers in Catchment Hydrology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Jordan, T.E.; Nester, P.L. The Pampa del Tamarugal forearc basin in Northern Chile. In Tectonics of Sedimentary Basins: Recent Advances; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2012; pp. 369–381. [Google Scholar]
- Nester, P.L. Basin and Paleoclimate Evolution of the Pampa del Tamarugal Forearc Valley, Atacama Desert, Northern Chile. 2008. Available online: https://ecommons.cornell.edu/bitstream/handle/1813/10484/Nester2008.pdf?sequence=1&isAllowed=y (accessed on 5 May 2017).
- Rojas, R.; Dassargues, A. Groundwater flow modelling of the regional aquifer of the Pampa del Tamarugal, northern Chile. Hydrogeol. J. 2007, 15, 537–551. [Google Scholar] [CrossRef]
- Blanco, N.; Tomlinson, A.J. Carta Guatacondo—Región de Tarapacá (Geological Map Guatacondo—Tarapacá Region), 156th ed.; Map Scale 1:100.000; Sernageomin: Santiago, Chile, 2013. [Google Scholar]
- Houston, J. The great Atacama flood of 2001 and its implications for Andean hydrology. Hydrol. Process. 2006, 20, 591–610. [Google Scholar] [CrossRef]
- Houston, J. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: mechanisms, magnitudes and causes. Hydrol. Process. 2002, 16, 3019–3035. [Google Scholar] [CrossRef]
- Galli, C.; Dingman, R. Geology and Ground-Water Resources of the Pica Area Tarapaca Province, Chile. 1965. Available online: https://pubs.er.usgs.gov/publication/b1189 (accessed on 13 May 2016).
- Aravena, R.; Suzuki, O.; Peña, H.; Pollastri, A.; Fuenzalida, H.; Grilli, A. Isotopic composition and origin of the precipitation in Northern Chile. Appl. Geochem. 1999, 14, 411–422. [Google Scholar] [CrossRef]
- Aravena, R.; Suzuki, O.; Peña, H.; Grilli, A.; Salazar, C.; Orphanopoulos, D.; Rauert, W. Estudios de Hidrología Isotopica en Latino America (Isotope Hydrology Studies in Latin America), Estudio de Hidrología Isotopica en el Area del Salar de Llamara, Desierto de Atacama, Chile (Isotope Hydrology Study in the Salar de Llamara Area, Atacama Desert, Chile). 1989. Available online: http://www.iaea.org/inis/collection/nclcollectionstore/_public/21/031/21031083.pdf (accessed on 30 May 2016).
- Houston, J. Variability of precipitation in the Atacama Desert: Its causes and hydrological impact. Int. J. Climatol. 2006, 26, 2181–2198. [Google Scholar] [CrossRef]
- Dirección General de Aguas (DGA). Información Oficial Hidrometeorológica y de Calidad de Aguas en Línea (Oficial Online Information; Hydrometeorology and Water Quality). 2017. Available online: http://snia.dga.cl/BNAConsultas/reportes (accessed on 20 July 2017).
- Vuille, M.; Werner, M. Stable isotopes in precipitation recording South American summer monsoon and ENSO variability: Observations and model results. Clim. Dyn. 2005, 25, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Herrera, C.; Gamboa, C.; Custodio, E.; Jordan, T.; Godfrey, L.; Jódar, J.; Luque, J.A.; Vargas, J.; Sáez, A. Groundwater origin and recharge in the hyperarid Cordillera de la Costa, Atacama Desert, northern Chile. Sci. Total Environ. 2017, 624, 114–132. [Google Scholar] [CrossRef] [PubMed]
- Gayo, E.M.; Latorre, C.; Jordan, T.E.; Nester, P.L.; Estay, S.A.; Ojeda, K.F.; Santoro, C.M. Late Quaternary hydrological and ecological changes in the hyperarid core of the northern Atacama Desert (~21° S). Earth Sci. Rev. 2012, 113, 120–140. [Google Scholar] [CrossRef]
- Jordan, T.E.; Kirk-Lawlor, N.E.; Blanco, N.P.; Rech, J.A.; Cosentino, N.J. Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol. Soc. Am. Bull. 2014, 126, 1016–1046. [Google Scholar] [CrossRef]
- Placzek, C.; Quade, J.; Betancourt, J.L.; Patchett, P.J.; Rech, J.A.; Latorre, C.; Matmon, A.; Holmgren, C.; English, N.B. Climate in the dry central Andes over geologic, millennial and interannual timescales. Ann. Mo. Bot. Gard. 2009, 96, 386–397. [Google Scholar] [CrossRef]
- Placzek, C.; Quade, J.; Patchett, P.J. Geochronology and stratigraphy of late Pleistocene lake cycles on the southern Bolivian Altiplano: Implications for causes of tropical climate change. Geol. Soc. Am. Bull. 2006, 118, 515–532. [Google Scholar] [CrossRef]
- Quade, J.; Rech, J.A.; Betancourt, J.L.; Latorre, C.; Quade, B.; Rylander, K.A.; Fisher, T. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quat. Res. 2008, 69, 343–360. [Google Scholar] [CrossRef]
- Gayo, E.M.; Latorre, C.; Santoro, C.M.; Maldonado, A.; de Pol-Holz, R. Hydroclimate variability in the low-elevation Atacama Desert over the last 2500 yr. Clim. Past 2012, 8, 287–306. [Google Scholar] [CrossRef]
- Gupta, P.; Noone, D.; Galewsky, J.; Sweeney, C.; Vaughn, B.H. Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun. Mass Spectrom. RCM 2009, 23, 2534–2542. [Google Scholar] [CrossRef] [PubMed]
- Coplen, T.B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Clayton, R.N.; Groning, M. Calibration of delta(17)O and delta(18)O of international measurement standards—VSMOW, VSMOW2, SLAP, and SLAP2. Rapid Commun. Mass Spectrom. RCM 2010, 24, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Compañía Minera Doña Inés de Collahuasi (CMDIC). Estudio de los Tiempos de Residencia del Agua Subterránea en el Entorno de la Compañía Minera Doña Inés de Collahuasi (Study of the Residence Times of Groundwater Arround the Mining Site of Compañía Minera Doña Inés de Collahuasi); Amphos 21 in Santiago: Santiago, Chile, 2012. [Google Scholar]
- Aravena, R.; Suzuki, O. Isotopic Evolution of River Water in the Northern Chile Region. Water Resour. Res. 1990, 26, 2887–2895. [Google Scholar] [CrossRef]
- López, L.; Cifuentes, J.; Cervetto, M.; Feuker, P.; Neira, H.; Troncoso, R.; Espinoza, M. Estudio Hidrogeológico de la Pampa del Tamarugal y Cuencas Vecinas, Región de Tarapacá (Hydrogeological Study of the Pampa del Tamarugal and Adjacent Basins, Tarapacá Region); Servicio Nacional de Geología y Minería: Santiago, Chile, 2014. [Google Scholar]
- Pontificia Universidad Católica de Chile (PUC). Levantamiento Hidrogeológico Para el Desarrollo de Nuevas Fuentes de Agua en Áreas Prioritarias de la Zona Norte de Chile, Regiones XV, I, II y III (Hydrogeological Study for the Development of New Sources of Water Resources in Northern Zones of Chile, Regiones XV, I, II and III). 2009. Available online: documentos.dga.cl/REH5161v4.pdf (accessed on 13 May 2016).
- Kitanidis, P.K. Introduction to Geostatistics: Applications to Hydrogeology; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1997. [Google Scholar]
- Frigge, M.; Hoaglin, D.C.; Iglewicz, B. Some Implementations of the Boxplot. Am. Stat. 1989, 43, 50–54. [Google Scholar]
- Dirección General de Aguas (DGA). Levantamiento de Información Geofísico en la Región de Tarapacá (Geophysical Study of the Region Tarapacá). Con Potencial Consultores LTDA. 2013. Available online: documentos.dga.cl/SUB5485v1.pdf (accessed on 13 May 2016).
- Herrera, C.; Custodio, E.; Chong, G.; Lamban, L.J.; Riquelme, R.; Wilke, H.; Jodar, J.; Urrutia, J.; Urqueta, H.; Sarmiento, A.; et al. Groundwater flow in a closed basin with a saline shallow lake in a volcanic area: Laguna Tuyajto, northern Chilean Altiplano of the Andes. Sci. Total Environ. 2016, 541, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Cortecci, G.; Boschetti, T.; Mussi, M.; Lameli, C.H.; Mucchino, C.; Barbieri, M. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochem. J. 2005, 39, 547–571. [Google Scholar] [CrossRef]
- Yonge, C.J.; Goldenberg, L.; Krouse, H.R. An isotope study of water bodies along a traverse of southwestern Canada. J. Hydrol. 1989, 106, 245–255. [Google Scholar] [CrossRef]
- Hren, M.T.; Bookhagen, B.; Blisniuk, P.M.; Booth, A.L.; Chamberlain, C.P. δ18O and δD of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions. Earth Planet. Sci. Lett. 2009, 288, 20–32. [Google Scholar] [CrossRef]
- Terzer, S.; Wassenaar, L.I.; Araguás-Araguás, L.J.; Aggarwal, P.K. Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci. 2013, 17, 4713–4728. [Google Scholar] [CrossRef]
- Risacher, F.; Alonso, H.; Salazar, C. Geoquimica de Aguas en Cuencas Cerradas I, II y III Regiones Chile (Geochemistry of Water Resources in Closed Basins, Regions I, II and III of Chile), Volume I and II. 1999. Available online: http://documentos.dga.cl/CQA1921v1.pdf (accessed on 30 May 2016).
- Houston, J. Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes. J. Hydrol. 2006, 330, 402–412. [Google Scholar] [CrossRef]
- Tóth, J. Gravitational Systems of Groundwater Flow: Theory, Evaluation, Utilization, 1st ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Urqueta, H.; Jódar, J.; Herrera, C.; Wilke, H.-G.; Medina, A.; Urrutia, J.; Custodio, E.; Rodríguez, J. Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert. Sci. Total Environ. 2017, 612, 1234–1248. [Google Scholar] [CrossRef] [PubMed]
- Blanco, N.; Landino, M. Carta Mamina—Región de Tarapacá (Geological Map Mamina—Tarapacá Region); Map Scale 1:100.000; Sernageomin: Santiago, Chile, 2012. [Google Scholar]
- Guo, X.; Feng, Q.; Liu, W.; Li, Z.; Wen, X.; Si, J.; Xi, H.; Guo, R.; Jia, B. Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of Northwestern China. Hydrol. Process. 2015, 29, 4703–4718. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 2006, 20, 3335–3370. [Google Scholar] [CrossRef]
- Acosta, O.; Custodio, E. Impactos ambientales de las extracciones de agua subterránea en el Salar del Huasco (norte de Chile) (Environmental impacts of groundwater production in the Salar del Huasco basin (Northern Chile)). Boletín Geológico y Minero 2008, 119, 33–50. [Google Scholar]
Sample Source | Sampling Campaign Dates | Covered Catchments | Amount of Samples | Sample Types |
---|---|---|---|---|
[39] | April–May 1981 and April–May 1984 | Tarapacá | 13 | River water |
[38] | February 2011, May 2011, August 2011 | Quisma, Aroma, Chacarillas, Juan de Morales, Tarapacá, Salar del Huasco | 36 | Well, spring and river water |
[3] | January 1974, May 1975 | Quisma, Aroma, Chacarillas, Juan de Morales, Tarapacá, Salar del Huasco | 47 | Well, spring and river water |
[40] | October 2012, January–February 2014 | Quisma, Aroma, Chacarillas, Juan de Morales, Tarapacá, Salar de Pintados and Bellavista, Salar del Huasco | 92 | Well and spring water |
[41] | September 2008 | Salar del Huasco | 17 | Well and spring water |
[4] | May 1964, September 1967, October 1972, May 1973, July 1973, November 1973, January 1974, April–May 1974, December 1974, April 1975, November–December 1975, March 1979, April 1981, March–May 1982, January–May 1983, November 1983, January–May 1984, November–December 1984, March 1985, January 1987, February 1988, August 1996, January 1997, November 1997 | Quisma, Aroma, Chacarillas, Juan de Morales, Tarapacá, Salar de Pintados and Bellavista, Salar del Huasco | 209 | Well, spring and river water |
This study | August 2014, October–November 2015 | Quisma, Aroma, Juan de Morales, Tarapacá, Chacarillas, Salar del Huasco | 15 (of which 9 are depth-specific) | Well and spring water |
[8] | December 2009, January 2011 | Juan de Morales, Quisma, Quipisca, Chacarillas, Salar del Huasco | 32 | Well, river and spring water |
Sample | J5.1 | J5.2 | J5.3 | J8.1 | J8.2 | JF.1 | JF.2 | LC2.1 | LC2.2 |
---|---|---|---|---|---|---|---|---|---|
Date | October 2015 | October 2015 | October 2015 | October 2015 | October 2015 | October 2015 | October 2015 | October 2015 | October 2015 |
Sample depth + | 36 | 150 | 262 | 60 | 170 | 68 | 158 | 85 | 255 |
Well elevation − | 1029 | 1018 | 1017 | 1055 | |||||
Water level + | ~32 | ~39 | ~55 | ~69 | |||||
Well depth + | 300 | 300 | 300 | 210 | 210 | 224 | 224 | 270 | 270 |
Electrical conductivity (µS/cm) | 3500 | 3660 | 3680 | 997 | 875 | 2450 | 2470 | 2380 | 2570 |
pH | 8.7 | 9 | 9 | 8.3 | 8.5 | 8.1 | 7.8 | 8.2 | 8.1 |
δ2H * | −70.9 | −70.1 | −71.8 | −80 | −88 | −87.7 | −89.7 | −57.8 | −57.7 |
δ18O * | −8.7 | −8.8 | −8.9 | −9.4 | −10.9 | −10 | −10.3 | −7.5 | −7.5 |
Dex * | −1.5 | 0.3 | −0.9 | −5.2 | −0.6 | −7.6 | −7 | 2 | 2.5 |
Sample | Q1 | M1 | M2 | C1 |
---|---|---|---|---|
Date | February 2011 | February 2011 | February 2011 | February 2011 |
Area | Quipisca af | Juan de Morales af | Juan de Morales af | Chacarillas af |
Well depth (m b.g.l.) | Unknown (shallow) | 20 | 24 | 54 |
EC (µS/cm) | 1994 | 1681 | 2500 | 796 |
T (°C) | 26.8 | 24.5 | 24.0 | 28.0 |
pH | 8.52 | 7.55 | 7.74 | 8.42 |
3H (TU) | ≤0.09 | ≤0.09 | ≤0.09 | ≤0.09 |
δ18O (‰VSMOW) | −10.8 | −10.15 | −9.98 | −10.82 |
δ2H (‰VSMOW) | −79.7 | −81.3 | −78.6 | −86.3 |
Dex (‰VSMOW) | 0.94 | −0.1 | 1.24 | 0.26 |
Source | [38] | [38] | [38] | [38] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scheihing, K.W.; Moya, C.E.; Struck, U.; Lictevout, E.; Tröger, U. Reassessing Hydrological Processes That Control Stable Isotope Tracers in Groundwater of the Atacama Desert (Northern Chile). Hydrology 2018, 5, 3. https://doi.org/10.3390/hydrology5010003
Scheihing KW, Moya CE, Struck U, Lictevout E, Tröger U. Reassessing Hydrological Processes That Control Stable Isotope Tracers in Groundwater of the Atacama Desert (Northern Chile). Hydrology. 2018; 5(1):3. https://doi.org/10.3390/hydrology5010003
Chicago/Turabian StyleScheihing, Konstantin W., Claudio E. Moya, Ulrich Struck, Elisabeth Lictevout, and Uwe Tröger. 2018. "Reassessing Hydrological Processes That Control Stable Isotope Tracers in Groundwater of the Atacama Desert (Northern Chile)" Hydrology 5, no. 1: 3. https://doi.org/10.3390/hydrology5010003
APA StyleScheihing, K. W., Moya, C. E., Struck, U., Lictevout, E., & Tröger, U. (2018). Reassessing Hydrological Processes That Control Stable Isotope Tracers in Groundwater of the Atacama Desert (Northern Chile). Hydrology, 5(1), 3. https://doi.org/10.3390/hydrology5010003