Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Presentation
2.2. Land Use and Land Cover Change Analysis
2.3. Rainfall and Stream Flow Analysis
- (Mean − standard deviation) × 100/Mean corresponding to very dry year,
- (Mean − 0.5 × standard deviation) × 100/Mean corresponding to dry year,
- (Mean + 0.5 × standard deviation) × 100/Mean corresponding to wet year and
- (Mean + standard deviation) × 100/Mean corresponding to very wet year.
2.4. Brief Description of the Black Volta WEAP Model Implementation
2.5. The WEAP Model Evaluation
2.6. Scenarios Development
2.6.1. Climate Change Scenarios
2.6.2. The WEAP Model Scenarios
3. Results
3.1. Land Use Land Cover Change Analysis
3.2. Rainfall-Stream Variability
3.2.1. Annual Variation
3.2.2. Seasonal Variation
Dry Season (November–April 1982–2010)
Wet Season (May–October 1982–2010)
Driest Month (January)
Wettest Month (August)
3.3. The WEAP Modeling
3.3.1. The WEAP Model Performance Results
3.3.2. Impact of LULCC on Projected Surface Runoff Coefficient and Evapotranspiration Coefficient (2012–2040)
3.3.3. The Potential Bui Hydropower Production under Different Scenarios
4. Discussion
5. Conclusions and Recommendations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Dubash, N.K. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Bartle, A. Hydropower potential and development activities. Energy Policy 2002, 30, 1231–1239. [Google Scholar] [CrossRef]
- Palmer, M.A.; Reidy Liermann, C.A.; Nilsson, C.; Flörke, M.; Alcamo, J.; Lake, P.S.; Bond, N. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Bewket, W.; Sterk, G. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia. Hydrol. Process. 2005, 19, 445–458. [Google Scholar] [CrossRef]
- Andreini, M.; Vlek, P.; Giesen, N.; van Lanen, H.A.J.; Demuth, S. Water sharing in the Volta basin. In FRIEND 2002-Regional Hydrology: Bridging the Gap between Research and Practice. Proceedings of Fourth International Conference on FRIEND (Flow Regimes from International Network Data), Cape Town, South Africa, 18–22 March 2002; IAHS Press: Wallingford, UK, 2002; pp. 329–335. [Google Scholar]
- Wei, X.; Liu, W.; Zhou, P. Quantifying the relative contributions of forest change and climatic variability to hydrology in large watersheds: A critical review of research methods. Water 2013, 5, 728–746. [Google Scholar] [CrossRef]
- Shaibu, S.; Odai, S.N.; Adjei, K.A.; Osei, E.M.; Annor, F.O. Simulation of runoff for the Black Volta Basin using satellite observation data. Int. J. River Basin Manag. 2012, 10, 245–254. [Google Scholar] [CrossRef]
- Jung, G. Regional climate change and the impact on hydrology in the Volta Basin of West Africa. Doctoral Dissertation, University of Augsburg, Augsburg, Germany, 2006. [Google Scholar]
- Kasei, R.A. Modelling Impacts of Climate Change on Water Resources in the Volta Basin, West Africa. Doctoral Dissertation, University of Bonn, Bonn, Germany, 2009. [Google Scholar]
- Cornelissen, T.; Diekkrüger, B.; Giertz, S. A comparison of hydrological models for assessing the impact of land use and climate change on discharge in a tropical catchment. J. Hydrol. 2013, 498, 221–236. [Google Scholar] [CrossRef]
- Nunes, C.; Auge, J.I. Land-Use and Land-Cover Change (LUCC): Implementation Strategy. Available online: http://digital.library.unt.edu/ark:/67531/metadc12005/m1/10/ (accessed on 20 June 2015).
- Li, K.Y.; Coe, M.T.; Ramankutty, N.; De Jong, R. Modeling the hydrological impact of land-use change in West Africa. J. Hydrol. 2007, 337, 258–268. [Google Scholar] [CrossRef]
- Calder, I.R. Water-Resource and Land-Use Issues; SWIM Paper 3; International Water Management Institute: Colombo, Sri Lanka, 1998. [Google Scholar]
- Giertz, S.; Diekkrüger, B. Analysis of the hydrological processes in a small headwater catchment in Benin (West Africa). Phys. Chem. Earth Parts A/B/C 2003, 28, 1333–1341. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Strobl, E. Climate Change, Hydro-Dependency, and the African Dam Boom. World Dev. 2014, 60, 84–98. [Google Scholar] [CrossRef]
- Kabo-bah, A.T.; Anornu, G.K.; Ofosu, E.; Andoh, R.; Lis, K.J. Spatial-temporal estimation of evapotranspiration over Black Volta of West Africa. Int. J. Water Resour. Environ. Eng. 2014, 6, 295–302. [Google Scholar]
- Diagnostic Study of the Black Volta Basin in Ghana; Final Report; ALLWATER Consult Limited: Kumasi, Ghana, June 2012; Available online: http://www.gwiwestafrica.org/sites/default/files/6_gh8_hydrological_study_of_the_black_volta_basin.pdf (accessed on 20 June 2015).
- Fact Sheet Climate Change in Africa—What Is at Stake, Compiled by AMCEN Secretariat. Available online: http://www.unep.org/roa/amcen/docs/AMCEN_Events/climate-change/2ndExtra_15Dec/FACT_SHEET_CC_Africa.pdf (accessed on 20 June 2015).
- Climate Change 2007: Synthesis Report, an Assessment of the Intergovernmental Panel on Climate Change. p. 32. Available online: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf (accessed on 20 June 2015).
- Programme for Central and West Africa of International Union for Conservation of Nature (IUCN-PACO): Project for Improving Water Governance in the Volta Basin (PAGEV) Update of Water Audit of the Volta Basin, 2012.
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. 2014: Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA; pp. 1199–1265.
- Van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Modelli. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Stehman, S.V.; Czaplewski, R.L. Design and Analysis for Thematic Map Accuracy Assessment—An application of satellite imagery. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Zavoianu, F.; Caramizoiub, A.; Badeaa, D. Study and Accuracy Assessment of Remote Sensing Data for Environmental Change Detection in Romanian Coastal Zone of the Black Sea. In Proceedings of the International Society for Photogrammetry and Remote Sensing, Istanbul, Turkey, 12–23 July 2004.
- Carletta, J. Assessing agreement on classification tasks: The kappa statistic. Comput. Linguist. 1996, 22, 249–254. [Google Scholar]
- UNEP-GEF Volta Project, 2013. Volta Basin Transboundary Diagnostic Analysis; UNEP/GEF/Volta: Accra, Ghana, 2013. [Google Scholar]
- IEA (International Energy Association). World Energy Outlook 2002; International Energy Agency: Paris, France; p. 533. Available online: http://www.iea.org/textbase/nppdf/ free/2000/weo2002.pdf (accessed on 21 June 2015).
- Béné, C. Diagnostic Study of the Volta Basin Fisheries. Part 1—Overview of the Fisheries Resources; Volta Basin Focal Project Report No 6; WorldFish Center Regional Offices for Africa and West Asia, Cairo Egypt, and CPWF: Colombo, Sri Lanka, 2007; p. 31. [Google Scholar]
- Akpoti, K.; Antwi, E.O.; Kabo-bah, A.T. Impacts of Rainfall Variability, Land Use and Land Cover Change on Stream Flow of the Black Volta Basin, West Africa. Hydrology 2016, 3, 26. [Google Scholar] [CrossRef]
- Mahé, G.; Paturel, J.E. 1896–2006 Sahelian annual rainfall variability and runoff increase of Sahelian Rivers. C. R. Geosci. 2009, 341, 538–546. [Google Scholar] [CrossRef]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef]
- Comprehensive Assessment of Water Management in Agriculture: Comparative Study of River Basin Development and Management; The Volta River Basin, 2005. Available online: http://www.iwmi.cgiar.org/assessment/files_new/research_projects/River_Basin_Development_and_Management/VoltaRiverBasin_Boubacar.pdf (accessed on 20 February 2015).
- Giertz, S.; Junge, B.; Diekkrüger, B. Assessing the effects of land use change on soil physical properties and hydrological processes in the sub-humid tropical environment of West Africa. Phys. Chem. Earth Parts A/B/C 2005, 30, 485–496. [Google Scholar] [CrossRef]
- Mahe, G.; Paturel, J.E.; Servat, E.; Conway, D.; Dezetter, A. The impact of land use change on soil water holding capacity and river flow modelling in the Nakambe River, Burkina-Faso. J. Hydrol. 2005, 300, 33–43. [Google Scholar] [CrossRef]
- Shi, P.J.; Yuan, Y.; Zheng, J.; Wang, J.A.; Ge, Y.; Qiu, G.Y. The effect of land use/cover change on surface runoff in Shenzhen region. China Catena 2007, 69, 31–35. [Google Scholar] [CrossRef]
- Molina, A.; Govers, G.; Vanacker, V.; Poesen, J.; Zeelmaekers, E.; Cisneros, F. Runoff generation in a degraded Andean ecosystem: interaction of vegetation cover and land use. Catena 2007, 71, 357–370. [Google Scholar] [CrossRef]
Land Cover Type | Area Coverage (km2) | Area Coverage (%) | 1986–2000 | 2000–2014 | 1986–2014 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1986 | 2000 | 2014 | 1986 | 2000 | 2014 | Change | Change Rate | Change | Change Rate | Change | Change Rate | |
(%) | (%/Year) | (%) | (%/Year) | (%) | (%/Year) | |||||||
Water bodies | 75.30 | 365.6 | 588.60 | 0.0049 | 0.2360 | 0.38 | 385.60 | 27.8 | 60.97 | 4.06 | 681.70 | 24.34 |
Land Use | 25,393.20 | 28,628.4 | 45,785.60 | 16.30 | 18.50 | 29.50 | 12.70 | 0.85 | 59.90 | 4.00 | 80.30 | 4.02 |
Shrubs | 33,243.30 | 38,416.1 | 34,992.10 | 21.40 | 24.70 | 22.50 | 15.60 | 1.04 | −8.90 | −0.59 | 5.26 | 0.19 |
Savannah | 82,808.70 | 81,894.7 | 67,695.20 | 53.40 | 52.80 | 43.70 | −1.10 | −0.07 | −17.30 | −1.13 | −18.25 | −0.65 |
Forest | 13,545.60 | 5761.3 | 6004.60 | 8.74 | 3.72 | 3.87 | −57.47 | 3.80 | 4.20 | 0.28 | −55.67 | −1.90 |
Events | Very Dry | Dry | Normal | Wet | Very Wet |
---|---|---|---|---|---|
Description | Below Mean − 1Std | [Mean − 1Std; Mean − 0.5Std] | Mean/Closer | [Mean + 0.5Std; Mean + 1Std] | Above Mean + 1Std |
Years | 1983 1987 1990 2011 | 1982 1984 1986 1988 1997 2001 2006 2007 | 1992 1993 1995 1998 2000 2005 2009 | 1985 1994 1996 2002 2004 2010 | 1989 1991 1999 2003 2008 |
P-Factor | 0.9 | 0.95 | 1 | 1.045 | 1.09 |
P (cms) | Q (cms) | |||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | CV (%) | Min | Max | Mean | CV (%) | |
January | 0.00 | 97.62 | 7.62 | 240.46 | 1.50 | 82.70 | 25.21 | 86.77 |
February | 0.00 | 89.53 | 23.22 | 107.60 | 0.40 | 63.30 | 14.06 | 103.49 |
March | 3.67 | 241.31 | 102.22 | 59.19 | 0.10 | 53.50 | 10.78 | 120.99 |
April | 71.82 | 391.4 | 243.73 | 35.09 | 0.40 | 42.30 | 12.92 | 86.77 |
May | 248.03 | 963.8 | 415.81 | 32.88 | 2.10 | 138.50 | 40.67 | 79.51 |
June | 343.40 | 835.82 | 581.77 | 20.67 | 25.03 | 343.70 | 105.88 | 76.60 |
July | 406.01 | 1079.4 | 762.81 | 21.65 | 78.60 | 582.89 | 223.05 | 54.99 |
August | 421.66 | 1234.92 | 941.03 | 20.42 | 196.40 | 1649 | 533.51 | 59.18 |
September | 421.97 | 976.73 | 688.42 | 21.10 | 270.80 | 2905.32 | 1022.27 | 62.02 |
October | 136.62 | 694.97 | 293.89 | 43.71 | 87.20 | 3147.55 | 689.76 | 88.42 |
November | 1.49 | 196.71 | 36.45 | 111.89 | 18.30 | 500.00 | 164.25 | 72.28 |
December | 0.00 | 51.12 | 8.92 | 145.82 | 3.80 | 200.00 | 59.4655 | 78.92 |
Annual | 2054.67 | 6853.33 | 4105.89 | 8.60 | 684.63 | 9708.76 | 2901.83 | 60.85 |
Sub Catchment | R Square | Nash—Sutcliffe Coefficient (NS) | |
---|---|---|---|
Calibration | Bui | 0.89 | 0.889 |
Samandeni | 0.92 | 0.899 | |
Validation | Bui | 0.79 | 0.73 |
Samandeni | 0.94 | 0.97 |
Scenarios | Evapotranspiration Coefficient (%) | Runoff Coefficient (%) |
---|---|---|
Reference | 84.93 | 9.62 |
NoLCC&NoCC | 84.93 | 9.62 |
NoLCC&CCWet | 82.91 | 11.68 |
NoLCC&CCDry | 90.06 | 5.75 |
NoLCC&CCcurrent | 86.51 | 8.56 |
LCC&NoCC | 83.70 | 10.70 |
LCC&CCWet | 82.35 | 12.25 |
LCC&CCDry | 89.32 | 6.48 |
LCC&CCcurrent | 85.84 | 9.24 |
Adaptation CC&LCC | 81.94 | 11.74 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obahoundje, S.; Ofosu, E.A.; Akpoti, K.; Kabo-bah, A.T. Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa. Hydrology 2017, 4, 2. https://doi.org/10.3390/hydrology4010002
Obahoundje S, Ofosu EA, Akpoti K, Kabo-bah AT. Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa. Hydrology. 2017; 4(1):2. https://doi.org/10.3390/hydrology4010002
Chicago/Turabian StyleObahoundje, Salomon, Eric Antwi Ofosu, Komlavi Akpoti, and Amos T. Kabo-bah. 2017. "Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa" Hydrology 4, no. 1: 2. https://doi.org/10.3390/hydrology4010002
APA StyleObahoundje, S., Ofosu, E. A., Akpoti, K., & Kabo-bah, A. T. (2017). Land Use and Land Cover Changes under Climate Uncertainty: Modelling the Impacts on Hydropower Production in Western Africa. Hydrology, 4(1), 2. https://doi.org/10.3390/hydrology4010002