Effects of Climate Variables and Human Activities on Groundwater Level Fluctuations in Unconsolidated Sedimentary Aquifers: A Data-Driven Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.2. Methods
3. Results
3.1. Correlation Analysis of Driving Factors
3.2. Importance of Driving Factors
3.3. GWL Simulation Under Different Driving Factors
4. Discussion
4.1. Driving Factors Affecting Groundwater Level
4.2. Groundwater Level Simulation Based on Data Modelling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
GWL | groundwater level |
LSTM | long short-term memory |
STD | standard deviation |
RMSE | root mean square error |
RMS | root mean square |
RFE | Recursive Feature Elimination |
Appendix A
Driving Factors | Extremely High | High | Moderate | Low | Extremely Low |
---|---|---|---|---|---|
Air pressure | 0.102 | 0.021 | 0.346 | 0.315 | 0.006 |
Temperature | −0.254 | −0.115 | −0.541 | −0.264 | −0.026 |
Precipitation | −0.093 | −0.029 | −0.179 | −0.044 | 0.025 |
Evaporation | 0.243 | 0.111 | 0.425 | 0.187 | −0.118 |
Sunlight | 0.068 | 0.001 | −0.115 | −0.322 | −0.008 |
Supplying water | 0.652 | −0.015 | 0.401 | −0.738 | 0.486 |
Domestic water | 0.482 | −0.057 | 0.324 | −0.721 | 0.605 |
Environmental water | −0.691 | −0.026 | −0.401 | 0.626 | −0.297 |
Industrial water | 0.557 | −0.043 | 0.361 | −0.745 | 0.576 |
Agricultural water | 0.688 | 0.009 | 0.409 | −0.687 | 0.386 |
References
- Jha, M.K.; Shekhar, A.; Jenifer, M.A. Assessing groundwater quality for drinking water supply using hybrid fuzzy-GIS-based water quality index. Water Res. 2020, 179, 115867. [Google Scholar] [CrossRef]
- Kuang, X.; Liu, J.; Scanlon, B.R.; Jiao, J.J.; Jasechko, S.; Lancia, M.; Biskaborn, B.K.; Wada, Y.; Li, H.; Zeng, Z.; et al. The changing nature of groundwater in the global water cycle. Science 2024, 383, eadf0630. [Google Scholar] [CrossRef] [PubMed]
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef] [PubMed]
- Hagage, M.; Abdulaziz, A.M.; Elbeih, S.F.; Hewaidy, A.G.A. Monitoring soil salinization and waterlogging in the northeastern Nile Delta linked to shallow saline groundwater and irrigation water quality. Sci. Rep. 2024, 14, 27838. [Google Scholar] [CrossRef]
- Klassen, J.; Allen, D.M. Assessing the risk of saltwater intrusion in coastal aquifers. J. Hydrol. 2017, 551, 730–745. [Google Scholar] [CrossRef]
- Michael, H.A.; Post, V.E.A.; Wilson, A.M.; Werner, A.D. Science, society, and the coastal groundwater squeeze. Water Resour. Res. 2017, 53, 2610–2617. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Dvory, N.Z.; Livshitz, Y.; Kuznetsov, M.; Adar, E.; Yakirevich, A. The effect of hydrogeological conditions on variability and dynamic of groundwater recharge in a carbonate aquifer at local scale. J. Hydrol. 2016, 535, 480–494. [Google Scholar] [CrossRef]
- Jasechko, S.; Seybold, H.; Perrone, D.; Fan, Y.; Shamsudduha, M.; Taylor, R.G.; Fallatah, O.; Kirchner, J.W. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 2024, 625, 715–721. [Google Scholar] [CrossRef]
- Qian, H.; Chen, J.; Howard, K.W.F. Assessing groundwater pollution and potential remediation processes in a multi-layer aquifer system. Environ. Pollut. 2020, 263, 114669. [Google Scholar] [CrossRef]
- Walraevens, K.; Vandecasteele, I.; Martens, K.; Nyssen, J.; Moeyersons, J.; Gebreyohannes, T.; de Smedt, F.; Poesen, J.; Deckers, J.; van Camp, M. Groundwater Recharge and Flow in a Small Mountain Catchment in Northern Ethiopia. Hydrol. Sci. J. 2009, 54, 739–753. [Google Scholar] [CrossRef]
- Kavvas, M.L.; Tu, T.; Ercan, A.; Polsinelli, J. Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time. Earth Syst. Dyn. 2020, 11, 1–12. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Wang, J.; Hao, X.; Liu, X.; Ouyang, W.; Li, T.; Cui, X.; Pei, J.; Zhang, S.; Zhu, W.; Jin, R. Groundwater–surface water exchange affects nitrate fate in a seasonal freeze–thaw watershed: Sources, migration and removal. J. Hydrol. 2025, 654, 132803. [Google Scholar] [CrossRef]
- Yu, Z.; Zhu, S.; Wu, Y.; Yu, H. Study on the structural characteristics of the overburden under thick loose layer and thin-bed rock for safety of mining coal seam. Environ. Earth Sci. 2020, 79, 9. [Google Scholar] [CrossRef]
- Kaufmann, G. Modelling karst aquifer evolution in fractured, porous rocks. J. Hydrol. 2016, 543, 796–807. [Google Scholar] [CrossRef]
- Li, C.; Fang, J.; Feng, F.; Yao, T.; Shan, Y.; Su, W. Differential Evolution in Hydrochemical Characteristics Amongst Porous, Fissured and Karst Aquifers in China. Hydrology 2025, 12, 175. [Google Scholar] [CrossRef]
- Custodio, E.; Jodar, J.; Herrera, C.; Custodio-Ayala, J.; Medina, A. Changes in groundwater reserves and radiocarbon and chloride content due to a wet period intercalated in an arid climate sequence in a large unconfined aquifer. J. Hydrol. 2018, 556, 427–437. [Google Scholar] [CrossRef]
- Qin, R.; Song, Q.; Hao, Y.; Wu, G. Groundwater Level Declines in Tianjin, North China: Climatic Variations and Human Activities. Environ. Dev. Sustain. 2022, 25, 1899–1913. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater system and climate change: Present status and future considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, X.; Zhao, R.; Mu, W.; Wu, C. Identifying the Facts and Driving Factors of Deceleration of Groundwater Table Decline in Beijing During 1999–2018. J. Hydrol. 2022, 607, 127475. [Google Scholar] [CrossRef]
- Zhou, W.J.; Hao, L. Impact of Rapid Urbanization on Groundwater Storage Variation Amid Climate Change in the Yangtze River Basin. J. Hydrol. Reg. Stud. 2025, 59, 102360. [Google Scholar] [CrossRef]
- Ali, J.; Islam, F.; Bibi, T.; Islam, I.; Mughal, M.R.; Sabir, M.; Awwad, F.; Ismail, E. Quantifying the impact of climate change and urbanization on groundwater resources using geospatial modeling. Front. Earth Sci. 2024, 12, 1377367. [Google Scholar] [CrossRef]
- Boo, K.B.W.; El-Shafie, A.; Othman, F.; Khan, M.M.H.; Birima, A.H.; Ahmed, A.N. Groundwater level forecasting with machine learning models: A review. Water Res. 2024, 252, 121249. [Google Scholar] [CrossRef] [PubMed]
- Kadiyala, L.A.; Mermer, O.; Samuel, D.J.; Sermet, Y.; Demir, I. The Implementation of Multimodal Large Language Models for Hydrological Applications: A Comparative Study of GPT-4 Vision, Gemini, LLaVa, and Multimodal-GPT. Hydrology 2024, 11, 148. [Google Scholar] [CrossRef]
- Gómez-Escalonilla, V.; Martínez-Santos, P. A Machine Learning Approach to Map the Vulnerability of Groundwater Resources to Agricultural Contamination. Hydrology 2024, 11, 153. [Google Scholar] [CrossRef]
- de Graaf, I.E.M.; Stahl, K. A model comparison assessing the importance of lateral groundwater flows at the global scale. Environ. Res. Lett. 2022, 17, 044020. [Google Scholar] [CrossRef]
- Ozdogan-Sarikoc, G.; Dadaser-Celik, F. Physically based vs. data-driven models for streamflow and reservoir volume prediction at a data-scarce semi-arid basin. Environ. Sci. Pollut. Res. Int. 2024, 31, 39098–39119. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, C. Improving Results of Existing Groundwater Numerical Models Using Machine Learning Techniques: A Review. Water 2022, 14, 2307. [Google Scholar] [CrossRef]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT-MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Hayley, K.; White, E. Quantifying urban groundwater complexity: A high parameterization modelling approach. J. Hydrol. 2024, 638, 131416. [Google Scholar] [CrossRef]
- Amaranto, A.; Pianosi, F.; Solomatine, D.; Corzo, G.; Muñoz-Arriola, F. Sensitivity analysis of data-driven groundwater forecasts to hydroclimatic controls in irrigated croplands. J. Hydrol. 2020, 587, 124957. [Google Scholar] [CrossRef]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Kim, S.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.; Mehrm, A.D.; et al. Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Sun, Y.; Wendi, D.; Kim, D.E.; Liong, S.-Y. Technical note: Application of artificial neural networks in groundwater table forecasting—A case study in a Singapore swamp forest. Hydrol. Earth Syst. Sci. 2016, 20, 1405–1412. [Google Scholar] [CrossRef]
- Qin, C.; Chen, L.; Cai, Z.; Liu, M.; Jin, L. Long short-term memory with activation on gradient. Neural Netw. 2023, 164, 135–145. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Liu, J.; Li, W.; Zheng, Y. Options of Sustainable Groundwater Development in Beijing Plain, China. Phys. Chem. Earth 2012, 47–48, 99–113. [Google Scholar] [CrossRef]
- Du, J.; Laghari, Y.; Wei, Y.-C.; Wu, L.; He, A.-L.; Liu, G.-Y.; Yang, H.-H.; Guo, Z.-Y.; Leghari, S.J. Groundwater Depletion and Degradation in the North China Plain: Challenges and Mitigation Options. Water 2024, 16, 354. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, D.; Liu, J.; Li, W. Upgrading a Regional Groundwater Level Monitoring Network for Beijing Plain, China. Geosci. Front. 2013, 4, 127–138. [Google Scholar] [CrossRef]
- Beijing Geological Prospecting and Developing Bureau, Beijing Institute of Hydrogeology and Engineering Geology. Beijing Groundwater; China Land Press: Beijing, China, 2008; pp. 47–50. [Google Scholar]
- Edelmann, D.; Móri, T.F.; Székely, G.J. On Relationships Between the Pearson and the Distance Correlation Coefficients. Stat. Probab. Lett. 2021, 169, 108960. [Google Scholar] [CrossRef]
- Chen, Q.; Meng, Z.; Liu, X.; Jin, Q.; Su, R. Decision variants for the automatic determination of optimal feature subset in RF-RFE. Genes 2018, 9, 301. [Google Scholar] [CrossRef]
- Barzani, A.R.; Pahlavani, P.; Ghorbanzadeh, O.; Gholamnia, K.; Ghamisi, P. Evaluating the impact of recursive feature elimination on machine learning models for predicting forest fire-prone zones. Fire 2024, 7, 440. [Google Scholar] [CrossRef]
- Van Houdt, G.; Mosquera, C.; Napoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Spane, F.A. Considering barometric pressure in groundwater flow investigations. Water Resour. Res. 2002, 38, 14-1–14-18. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Garcia, C.; Morán-Tejeda, E. Groundwater Level Responses to Precipitation Variability in Mediterranean Insular Aquifers. J. Hydrol. 2017, 552, 516–531. [Google Scholar] [CrossRef]
- Balugani, E.; Lubczynski, M.W.; Reyes-Acosta, L.; van der Tol, C.; Francés, A.P.; Metselaar, K. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland. J. Hydrol. 2017, 547, 54–66. [Google Scholar] [CrossRef]
- Bova, S.; Rosenthal, Y.; Liu, Z.; Godad, S.P.; Yan, M. Seasonal Origin of the Thermal Maxima at the Holocene and the Last Interglacial. Nature 2021, 589, 548–553. [Google Scholar] [CrossRef]
- Guo, C.; Liu, T.; Niu, Y.; Liu, Z.; Pan, X.; De Maeyer, P. Quantitative analysis of the driving factors for groundwater resource changes in arid irrigated areas. Hydrol. Process. 2021, 35, e13967. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Fakhreddine, S.; Rateb, A.; de Graaf, I.; Famiglietti, J.; Gleeson, T.; Grafton, R.Q.; Jobbagy, E.; Kebede, S.; Kolusu, S.R.; et al. Global water resources and the role of groundwater in a resilient water future. Nat. Rev. Earth Environ. 2023, 4, 87–101. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, Y.; Wu, B.; Wu, X.; Liu, J.; Zheng, C. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ. Model. Softw. 2015, 63, 170–184. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Nijsten, G.-J.; Richts, A. Groundwater—A global focus on the ‘local resource’. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Gao, M.; Chen, J.; Shi, W.; Hou, C.; Liu, Z.; Luo, C.; Yu, J.; Yang, X.; Dong, J. Effects of Climate Variables and Human Activities on Groundwater Level Fluctuations in Unconsolidated Sedimentary Aquifers: A Data-Driven Approach. Hydrology 2025, 12, 215. https://doi.org/10.3390/hydrology12080215
Yang L, Gao M, Chen J, Shi W, Hou C, Liu Z, Luo C, Yu J, Yang X, Dong J. Effects of Climate Variables and Human Activities on Groundwater Level Fluctuations in Unconsolidated Sedimentary Aquifers: A Data-Driven Approach. Hydrology. 2025; 12(8):215. https://doi.org/10.3390/hydrology12080215
Chicago/Turabian StyleYang, Liu, Ming Gao, Jiameng Chen, Wenqing Shi, Changhong Hou, Zichun Liu, Cheng Luo, Jiahui Yu, Xiangyu Yang, and Jie Dong. 2025. "Effects of Climate Variables and Human Activities on Groundwater Level Fluctuations in Unconsolidated Sedimentary Aquifers: A Data-Driven Approach" Hydrology 12, no. 8: 215. https://doi.org/10.3390/hydrology12080215
APA StyleYang, L., Gao, M., Chen, J., Shi, W., Hou, C., Liu, Z., Luo, C., Yu, J., Yang, X., & Dong, J. (2025). Effects of Climate Variables and Human Activities on Groundwater Level Fluctuations in Unconsolidated Sedimentary Aquifers: A Data-Driven Approach. Hydrology, 12(8), 215. https://doi.org/10.3390/hydrology12080215