Assessment of Satellite-Based Rainfall Products for Flood Modeling in the Ouémé River Basin in Benin (West Africa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Methodology
2.2.1. Data Used
2.2.2. Satellite-Based Rainfall Assessment
- The coefficient of correlation (R) is the expression of how well the estimation qualitatively fits the variation in the reference data. It is scale- and unit-independent, and thus allows for cross-comparison among data at different spatial or temporal resolutions and/or different units. The worst value is 0 when predictions are uncorrelated with observations and the best value is 1.
- The percentage of bias (PBIAS) is another scale- and unit-independent metric to quantify the bias in estimates. The estimation is considered as good as its value is close to zero, which is the optimum score; very good, good, satisfactory and unsatisfactory scores are values smaller than 10, from 10 to 15, from 15 to 25 and above or equal to 25, respectively [44,45].
- The Kling–Gupta efficiency (KGE) combines the effects of correlation, bias and variability. A good score is a value greater than 0.5 and its optimum value is 1 [46].
2.2.3. Bias-Correction Methods
2.2.4. Hydrological Modeling Assessment
3. Results
3.1. Evaluation of Satellite-Based Rainfall Data
3.1.1. Qualitative Analysis
3.1.2. Quantitative Analysis
3.2. Bias Correction of Satellite-Based Rainfall Data
3.3. Hydrological Modeling Assessment of Satellite-Based Rainfall Data
3.3.1. Reference Scenario
3.3.2. Satellite-Only Scenarios
4. Discussion
4.1. Satellite-Based Rainfall Data Accuracy
4.2. Bias Correction of Satellite-Based Rainfall Data
4.3. Hydrological Modeling Accuracy
4.4. Interests and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC; Intergovernmental Panel On Climate Change. Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-15789-6. [Google Scholar]
- Sylla, M.B.; Nikiema, P.M.; Gibba, P.; Kebe, I.; Klutse, N.A.B. Climate Change over West Africa: Recent Trends and Future Projections. In Adaptation to Climate Change and Variability in Rural West Africa; Yaro, J.A., Hesselberg, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 25–40. ISBN 978-3-319-31497-6. [Google Scholar]
- Tabari, H.; Hosseinzadehtalaei, P.; Thiery, W.; Willems, P. Amplified Drought and Flood Risk Under Future Socioeconomic and Climatic Change. Earth’s Future 2021, 9, e2021EF002295. [Google Scholar] [CrossRef]
- Ekolu, J.; Dieppois, B.; Tramblay, Y.; Villarini, G.; Slater, L.J.; Mahé, G.; Paturel, J.-E.; Eden, J.M.; Moulds, S.; Sidibe, M.; et al. Variability in flood frequency in sub-Saharan Africa: The role of large-scale climate modes of variability and their future impacts. J. Hydrol. 2024, 640, 131679. [Google Scholar] [CrossRef]
- Panthou, G.; Lebel, T.; Vischel, T.; Quantin, G.; Sane, Y.; Ba, A.; Ndiaye, O.; Diongue-Niang, A.; Diopkane, M. Rainfall intensification in tropical semi-arid regions: The Sahelian case. Environ. Res. Lett. 2018, 13, 064013. [Google Scholar] [CrossRef]
- Tramblay, Y.; Villarini, G.; Zhang, W. Observed changes in flood hazard in Africa. Environ. Res. Lett. 2020, 15, 1040b5. [Google Scholar] [CrossRef]
- Quenum, G.M.L.D.; Nkrumah, F.; Klutse, N.A.B.; Sylla, M.B. Spatiotemporal Changes in Temperature and Precipitation in West Africa. Part I: Analysis with the CMIP6 Historical Dataset. Water 2021, 13, 3506. [Google Scholar] [CrossRef]
- Dibi-Anoh, P.A.; Koné, M.; Gerdener, H.; Kusche, J.; N’Da, C.K. Hydrometeorological Extreme Events in West Africa: Droughts. Surv. Geophys. 2023, 44, 173–195. [Google Scholar] [CrossRef]
- Arnaud, P.; Lavabre, J.; Fouchier, C.; Diss, S.; Javelle, P. Sensitivity of hydrological models to uncertainty in rainfall input. Hydrol. Sci. J. 2011, 56, 397–410. [Google Scholar] [CrossRef]
- Bruni, G.; Reinoso, R.; Van De Giesen, N.C.; Clemens, F.H.L.R.; Ten Veldhuis, J.A.E. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution. Hydrol. Earth Syst. Sci. 2015, 19, 691–709. [Google Scholar] [CrossRef]
- Huang, Y.; Bárdossy, A.; Zhang, K. Sensitivity of hydrological models to temporal and spatial resolutions of rainfall data. Hydrol. Earth Syst. Sci. 2019, 23, 2647–2663. [Google Scholar] [CrossRef]
- Bliefernicht, J.; Salack, S.; Waongo, M.; Annor, T.; Laux, P.; Kunstmann, H. Towards a historical precipitation database for West Africa: Overview, quality control and harmonization. Int. J. Climatol. 2022, 42, 4001–4023. [Google Scholar] [CrossRef]
- Hounkpè, J.; Diekkrüger, B.; Badou, D.; Afouda, A. Change in Heavy Rainfall Characteristics over the Ouémé River Basin, Benin Republic, West Africa. Climate 2016, 4, 15. [Google Scholar] [CrossRef]
- Belabid, N.; Zhao, F.; Brocca, L.; Huang, Y.; Tan, Y. Near-Real-Time Flood Forecasting Based on Satellite Precipitation Products. Remote Sens. 2019, 11, 252. [Google Scholar] [CrossRef]
- Brocca, L.; Massari, C.; Pellarin, T.; Filippucci, P.; Ciabatta, L.; Camici, S.; Kerr, Y.H.; Fernández-Prieto, D. River flow prediction in data scarce regions: Soil moisture integrated satellite rainfall products outperform rain gauge observations in West Africa. Sci. Rep. 2020, 10, 12517. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, V.; Massari, C. On the performance of satellite precipitation products in riverine flood modeling: A review. J. Hydrol. 2018, 558, 214–224. [Google Scholar] [CrossRef]
- Mekonnen, K.; Velpuri, N.M.; Leh, M.; Akpoti, K.; Owusu, A.; Tinonetsana, P.; Hamouda, T.; Ghansah, B.; Paranamana, T.P.; Munzimi, Y. Accuracy of satellite and reanalysis rainfall estimates over Africa: A multi-scale assessment of eight products for continental applications. J. Hydrol. Reg. Stud. 2023, 49, 101514. [Google Scholar] [CrossRef]
- Ngo-Duc, T.; Matsumoto, J.; Kamimera, H.; Bui, H.-H. Monthly adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the VuGia–ThuBon River Basin in Central Vietnam using an artificial neural network. Hydrol. Res. Lett. 2013, 7, 85–90. [Google Scholar] [CrossRef]
- Casse, C.; Gosset, M.; Peugeot, C.; Pedinotti, V.; Boone, A.; Tanimoun, B.A.; Decharme, B. Potential of satellite rainfall products to predict Niger River flood events in Niamey. Atmos. Res. 2015, 163, 162–176. [Google Scholar] [CrossRef]
- Yonaba, R.; Belemtougri, A.; Fowé, T.; Mounirou, L.A.; Nkiaka, E.; Dembélé, M.; Komlavi, A.; Coly, S.M.; Koïta, M.; Karambiri, H. Rainfall estimation in the West African Sahel: Comparison and cross-validation of top-down vs. bottom-up precipitation products in Burkina Faso. Geocarto Int. 2024, 39, 2391956. [Google Scholar] [CrossRef]
- Satgé, F.; Defrance, D.; Sultan, B.; Bonnet, M.-P.; Seyler, F.; Rouché, N.; Pierron, F.; Paturel, J.-E. Evaluation of 23 gridded precipitation datasets across West Africa. J. Hydrol. 2020, 581, 124412. [Google Scholar] [CrossRef]
- Houngnibo, M.C.M.; Minoungou, B.; Traore, S.B.; Maidment, R.I.; Alhassane, A.; Ali, A. Validation of high-resolution satellite precipitation products over West Africa for rainfall monitoring and early warning. Front. Clim. 2023, 5, 1185754. [Google Scholar] [CrossRef]
- Badou, D.F.; Diekkrüger, B.; Kapangaziwiri, E.; Mbaye, M.L.; Yira, Y.; Lawin, E.A.; Oyerinde, G.T.; Afouda, A. Modelling blue and green water availability under climate change in the Beninese Basin of the Niger River Basin, West Africa. Hydrol. Process. 2018, 32, 2526–2542. [Google Scholar] [CrossRef]
- Oyerinde, G.T.; Fademi, I.O.; Denton, O.A. Modeling runoff with satellite-based rainfall estimates in the Niger basin. Cogent Food Agric. 2017, 3, 1363340. [Google Scholar] [CrossRef]
- Hounguè, N.R.; Ogbu, K.N.; Almoradie, A.D.S.; Evers, M. Evaluation of the performance of remotely sensed rainfall datasets for flood simulation in the transboundary Mono River catchment, Togo and Benin. J. Hydrol. Reg. Stud. 2021, 36, 100875. [Google Scholar] [CrossRef]
- Dembélé, M.; Zwart, S.J. Evaluation and comparison of satellite-based rainfall products in Burkina Faso, West Africa. Int. J. Remote Sens. 2016, 37, 3995–4014. [Google Scholar] [CrossRef]
- Trinh, M.X.; Molkenthin, F. Flood hazard mapping for data-scarce and ungauged coastal river basins using advanced hydrodynamic models, high temporal-spatial resolution remote sensing precipitation data, and satellite imageries. Nat. Hazards 2021, 109, 441–469. [Google Scholar] [CrossRef]
- Bodjrenou, R.; Cohard, J.-M.; Hector, B.; Lawin, E.A.; Chagnaud, G.; Danso, D.K.; N’tcha M’po, Y.; Badou, F.; Ahamide, B. Evaluation of Reanalysis Estimates of Precipitation, Radiation, and Temperature over Benin (West Africa). J. Appl. Meteorol. Climatol. 2023, 62, 1005–1022. [Google Scholar] [CrossRef]
- Bodjrènou, R.; Sintondji, L.O.; Comandan, F. Hydrological modeling with physics-based models in the oueme basin: Issues and perspectives for simulation optimization. J. Hydrol. Reg. Stud. 2023, 48, 101448. [Google Scholar] [CrossRef]
- Le Barbé, L.; Alé, G.; Millet, B.; Texier, H.; Borel, Y.; Gualde, R. Les Ressources en Eaux Superficielles de la RÉPUBLIQUE du Bénin; ORSTOM Edition: Paris, France, 1993; ISBN 2-7099-1168-X. [Google Scholar]
- Ague, A.; Afouda, A. Analyse fréquentielle et nouvelle cartographie des maxima annuels de pluies journalières au Bénin. Int. J. Bio. Chem. Sci. 2015, 9, 121. [Google Scholar] [CrossRef]
- Akpo, A.B.; Galy-Lacaux, C.; Laouali, D.; Delon, C.; Liousse, C.; Adon, M.; Gardrat, E.; Mariscal, A.; Darakpa, C. Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin). Atmos. Environ. 2015, 115, 110–123. [Google Scholar] [CrossRef]
- Djossou, J.; Akpo, A.; Afféwé, J.; Donnou, V.; Liousse, C.; Léon, J.-F.; Nonfodji, F.; Awanou, C. Dynamics of the Inter Tropical Front and Rainy Season Onset in Benin. Curr. J. Appl. Sci. Technol. 2017, 24, 1–15. [Google Scholar] [CrossRef]
- Bossa, Y.A.; Djangni, O.; Yira, Y.; Hounkpè, J.; Avossè, A.D.; Sintondji, L.O. Flood Risk Assessment in the Lower Valley of Ouémé, Benin. Open J. Mod. Hydrol. 2024, 14, 130–151. [Google Scholar] [CrossRef]
- Lawin, A.E.; Hounguè, R.; N’Tcha M’Po, Y.; Hounguè, N.R.; Attogouinon, A.; Afouda, A.A. Mid-Century Climate Change Impacts on Ouémé River Discharge at Bonou Outlet (Benin). Hydrology 2019, 6, 72. [Google Scholar] [CrossRef]
- Chaigneau, A.; Okpeitcha, O.V.; Morel, Y.; Stieglitz, T.; Assogba, A.; Benoist, M.; Allamel, P.; Honfo, J.; Awoulmbang Sakpak, T.D.; Rétif, F.; et al. From seasonal flood pulse to seiche: Multi-frequency water-level fluctuations in a large shallow tropical lagoon (Nokoué Lagoon, Benin). Estuar. Coast. Shelf Sci. 2022, 267, 107767. [Google Scholar] [CrossRef]
- Jobard, I.; Chopin, F.; Berges, J.C.; Roca, R. An intercomparison of 10-day satellite precipitation products during West African monsoon. Int. J. Remote Sens. 2011, 32, 2353–2376. [Google Scholar] [CrossRef]
- Poméon, T.; Jackisch, D.; Diekkrüger, B. Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light. J. Hydrol. 2017, 547, 222–235. [Google Scholar] [CrossRef]
- Nwachukwu, P.N.; Satge, F.; Yacoubi, S.E.; Pinel, S.; Bonnet, M.-P. From TRMM to GPM: How Reliable Are Satellite-Based Precipitation Data across Nigeria? Remote Sens. 2020, 12, 3964. [Google Scholar] [CrossRef]
- Yue, H.; Gebremichael, M.; Nourani, V. Performance of the Global Forecast System’s medium-range precipitation forecasts in the Niger river basin using multiple satellite-based products. Hydrol. Earth Syst. Sci. 2022, 26, 167–181. [Google Scholar] [CrossRef]
- Kuntoro, A.A.; Hapsari, R.K.; Adityawan, M.B.; Farid, M. Estimation of Extreme Rainfall over Kalimantan Island based on GPM IMERG Daily Data. IOP Conf. Ser. Earth Environ. Sci. 2022, 1065, 012036. [Google Scholar] [CrossRef]
- Su, F.; Hong, Y.; Lettenmaier, D.P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin. J. Hydrometeorol. 2008, 9, 622–640. [Google Scholar] [CrossRef]
- Ran, Q.; Fu, W.; Liu, Y.; Li, T.; Shi, K.; Sivakumar, B. Evaluation of Quantitative Precipitation Predictions by ECMWF, CMA, and UKMO for Flood Forecasting: Application to Two Basins in China. Nat. Hazards Rev. 2018, 19, 05018003. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; International geophysics series; Elsevier: Amsterdam,The Netherlands; Paris, France, 2006; ISBN 978-0-12-751966-1. [Google Scholar]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Roy, T.; Weedon, G.P.; Pappenberger, F.; Van Dijk, A.I.J.M.; Huffman, G.J.; Adler, R.F.; Wood, E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci. 2019, 23, 207–224. [Google Scholar] [CrossRef]
- Devi, U.; Shekhar, M.S.; Singh, G.P. Correction of mesoscale model daily precipitation data over Northwestern Himalaya. Theor. Appl. Climatol. 2021, 143, 51–60. [Google Scholar] [CrossRef]
- WMO. Guide D’utilisation de L’indice de Précipitations Normalize; WMO: Geneva, Switzerland, 2012. [Google Scholar]
- Tian, Y.; Huffman, G.J.; Adler, R.F.; Tang, L.; Sapiano, M.; Maggioni, V.; Wu, H. Modeling errors in daily precipitation measurements: Additive or multiplicative? Geophys. Res. Lett. 2013, 40, 2060–2065. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Stisen, S.; Sandholt, I. Evaluation of remote-sensing-based rainfall products through predictive capability in hydrological runoff modelling. Hydrol. Process. 2010, 24, 879–891. [Google Scholar] [CrossRef]
- Li, N.; Tang, G.; Zhao, P.; Hong, Y.; Gou, Y.; Yang, K. Statistical assessment and hydrological utility of the latest multi-satellite precipitation analysis IMERG in Ganjiang River basin. Atmos. Res. 2017, 183, 212–223. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Seibert, J.; Vis, M.J. Teaching hydrological modeling with a user-friendly catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 2012, 16, 3315–3325. [Google Scholar] [CrossRef]
- Habib, E.; Haile, A.; Sazib, N.; Zhang, Y.; Rientjes, T. Effect of Bias Correction of Satellite-Rainfall Estimates on Runoff Simulations at the Source of the Upper Blue Nile. Remote Sens. 2014, 6, 6688–6708. [Google Scholar] [CrossRef]
- Goshime, D.W.; Absi, R.; Ledésert, B. Evaluation and Bias Correction of CHIRP Rainfall Estimate for Rainfall-Runoff Simulation over Lake Ziway Watershed, Ethiopia. Hydrology 2019, 6, 68. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; McVicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef]
- Masood, M.; Naveed, M.; Iqbal, M.; Nabi, G.; Kashif, H.M.; Jawad, M.; Mujtaba, A. Evaluation of Satellite Precipitation Products for Estimation of Floods in Data-Scarce Environment. Adv. Meteorol. 2023, 2023, 1685720. [Google Scholar] [CrossRef]
- Ogbu, K.N.; Hounguè, N.R.; Gbode, I.E.; Tischbein, B. Performance Evaluation of Satellite-Based Rainfall Products over Nigeria. Climate 2020, 8, 103. [Google Scholar] [CrossRef]
- Peinó, E.; Bech, J.; Udina, M.; Polls, F. Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean. Remote Sens. 2024, 16, 457. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P.; Francis, S.D.; Akpo, A.B.; Jegede, G.; Yorke, C. Interactions between Convection and a Moist Vortex Associated with an Extreme Rainfall Event over Southern West Africa. Mon. Weather. Rev. 2019, 147, 2309–2328. [Google Scholar] [CrossRef]
- Maranan, M.; Fink, A.H.; Knippertz, P.; Amekudzi, L.K.; Atiah, W.A.; Stengel, M. A Process-Based Validation of GPM IMERG and Its Sources Using a Mesoscale Rain Gauge Network in the West African Forest Zone. J. Hydrometeorol. 2020, 21, 729–749. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Gao, L.; Zhong, Y.; Peng, X. Comparison of GPM IMERG Version 06 Final Run Products and Its Latest Version 07 Precipitation Products across Scales: Similarities, Differences and Improvements. Remote Sens. 2023, 15, 5622. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change 2012, 112, 449–468. [Google Scholar] [CrossRef]
- M’Po, Y.N.; Lawin, A.E.; Oyerinde, G.T.; Yao, B.K.; Afouda, A.A. Comparison of Daily Precipitation Bias Correction Methods Based on Four Regional Climate Model Outputs in Ouémé Basin, Benin. Hydrology 2016, 4, 58. [Google Scholar] [CrossRef]
- Biao, E. Assessing the Impacts of Climate Change on River Discharge Dynamics in Oueme River Basin (Benin, West Africa). Hydrology 2017, 4, 47. [Google Scholar] [CrossRef]
- Kodja, D.J.; Akognongbé, A.J.S.; Amoussou, E.; Mahé, G.; Vissin, E.W.; Paturel, J.-E.; Houndénou, C. Calibration of the hydrological model GR4J from potential evapotranspiration estimates by the Penman-Monteith and Oudin methods in the Ouémé watershed (West Africa). Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 163–169. [Google Scholar] [CrossRef]
- Essou, G.; Brissette, F. Climate Change Impacts on the Ouémé River, Benin, West Africa. J. Earth Sci. Clim. Change 2013, 4, 1. [Google Scholar] [CrossRef]
- Yong, B.; Ren, L.L.; Hong, Y.; Wang, J.H.; Gourley, J.J.; Jiang, S.H.; Chen, X.; Wang, W. Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China. Water Resour. Res. 2010, 46, 2009WR008965. [Google Scholar] [CrossRef]
Product | Latency | Spatial Resolution | Temporal Resolution | Sensors |
---|---|---|---|---|
Integrated Multi-satellite Retrieval for Global Precipitation Measurement—GPM IMERG—version 7 Late (IMERGv7) | 12 h | 0.1° × 0.1° (approximately 10 km × 10 km) | Half hour | Passive microwave, Infrared |
Integrated Multi-satellite Retrieval for Global Precipitation Measurement—GPM IMERG—version 6 Early (IMERGv6) | 4 h | 0.1° × 0.1° (approximately 10 km × 10 km) | Half hour | Passive microwave, Infrared |
Global Satellite Mapping of Precipitation (GSMAP) near real-time | 4 h | 0.1° × 0.1° (approximately 10 km × 10 km) | Hourly | Passive microwave, Infrared |
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks—PERSIANN—Dynamic Infrared Rain Rate in near real-time (PERSIANN) | 30–60 min | 0.04° × 0.04° (approximately 4 km × 4 km) | Daily | Infrared |
Parameter | Explanation | Unit |
---|---|---|
Snow routine: | ||
TT | Threshold temperature | °C |
CFMAX | Degree — Δt factor | mm °C−1Δt−1 |
SFCF | Snowfall correction factor | - |
CWH | Water-holding capacity of snow | - |
CFR | Refreezing coefficient | - |
SP | Seasonal variability in degree — Δt factor | - |
Soil moisture routine: | ||
FC | Field capacity: maximum soil moisture storage | mm |
LP | Soil moisture value above which AET reaches PET | - |
BETA | Shape coefficient | - |
Response routine: | ||
K0 | Additional recession coefficient of upper groundwater store | Δt−1 |
K1 | Recession coefficient of upper groundwater store | Δt−1 |
K2 | Recession coefficient of lower groundwater store | Δt−1 |
UZL | Threshold parameter for K0 outflow | mm |
PERC | Threshold parameter | mm Δt−1 |
Routing routine: | ||
MAXBAS | Length of equilateral triangular weighting function | mm Δt−1 |
Calibration Driven Data | Ground-Based (1) | Corrected Satellite-Based (2) | Uncorrected Satellite-Based (3) | |
---|---|---|---|---|
Validation Driven Data | ||||
Ground-based (1) | 1.1 | - | - | |
Corrected satellite-based (2) | 1.2 | 2.2 | - | |
Uncorrected satellite-based (3) | 1.3 | - | 3.3 |
IMERGv7 | IMERGv6 | GSMAP | PERSIANN | |||||
---|---|---|---|---|---|---|---|---|
Statistics | BVO | Delta | BVO | Delta | BVO | Delta | BVO | Delta |
POD | 0.77 | 0.67 | 0.74 | 0.64 | 0.72 | 0.58 | 0.73 | 0.70 |
FAR | 0.15 | 0.28 | 0.16 | 0.30 | 0.16 | 0.26 | 0.17 | 0.35 |
R | 0.63 | 0.6 | 0.58 | 0.56 | 0.55 | 0.49 | 0.5 | 0.45 |
PBIAS (%) | 1.9 | −0.7 | 8.3 | 15.8 | 2.3 | 24.4 | −19.3 | 31.7 |
KGE | 0.6 | 0.57 | 0.47 | 0.39 | 0.51 | 0.01 | 0.44 | −0.14 |
IMERGv7 | IMERGv6 | GSMAP | PERSIANN | ||||||
---|---|---|---|---|---|---|---|---|---|
Scale | Statistics | BVO | Delta | BVO | Delta | BVO | Delta | BVO | Delta |
10-day | R | 0.93 | 0.9 | 0.85 | 0.81 | 0.84 | 0.72 | 0.73 | 0.72 |
PBIAS (%) | 1.9 | −0.7 | 8.3 | 15.8 | 2.3 | 24.4 | −19.3 | 31.7 | |
KGE | 0.89 | 0.89 | 0.77 | 0.71 | 0.83 | 0.4 | 0.67 | 0.2 | |
Month | R | 0.97 | 0.95 | 0.9 | 0.85 | 0.88 | 0.79 | 0.8 | 0.8 |
PBIAS (%) | 1.9 | −0.7 | 8.3 | 15.8 | 2.3 | 24.4 | −19.3 | 31.7 | |
KGE | 0.92 | 0.94 | 0.82 | 0.76 | 0.88 | 0.47 | 0.72 | 0.27 |
IMERGv7 Corrected | IMERGv6 Corrected | GSMAP Corrected | PERSIANN Corrected | |||||
---|---|---|---|---|---|---|---|---|
Statistics | BVO | Delta | BVO | Delta | BVO | Delta | BVO | Delta |
R | 0.66 | 0.62 | 0.62 | 0.58 | 0.59 | 0.56 | 0.58 | 0.53 |
PBIAS (%) | −2.9 | 1.2 | 0.4 | 1.9 | −0.5 | 8.5 | −3.1 | 1.9 |
KGE | 0.65 | 0.62 | 0.62 | 0.58 | 0.58 | 0.55 | 0.57 | 0.51 |
IMERGv7 Corrected | IMERGv6 Corrected | GSMAP Corrected | PERSIANN Corrected | |||||
---|---|---|---|---|---|---|---|---|
BVO | Delta | BVO | Delta | BVO | Delta | BVO | Delta | |
Change in score of KGE (%) | +8.33 | +8.77 | +31.91 | +48.72 | +13.73 | +5400.00 | +29.55 | +464.29 |
Change in score of PBIAS (%) | +252.63 | +271.43 | −95.18 | −87.97 | −121.74 | −65.16 | −83.94 | −94.01 |
Change in score of RMSE (%) | −15.63 | −15.75 | −27.87 | −32.04 | −18.61 | −64.03 | −25.69 | −90.55 |
(a) | ||||||||||
Scenario | 1.1 | 1.2 (corrected data) | 1.3 (uncorrected data) | |||||||
Data source | Ground-based | IMERGv7 | IMERGv6 | GSMAP | PERSIANN | IMERGv7 | IMERGv6 | GSMAP | PERSIANN | |
Metrics | Calibration | Validation | ||||||||
R | 0.96 | 0.97 | 0.93 | 0.88 | 0.75 | 0.79 | 0.94 | 0.86 | 0.72 | 0.64 |
NSE | 0.9 | 0.95 | 0.81 | 0.77 | 0.54 | 0.62 | 0.88 | 0.39 | 0.51 | 0.36 |
NSE rainy season | 0.87 | 0.92 | 0.73 | 0.68 | 0.31 | 0.44 | 0.83 | 0.11 | 0.27 | 0.03 |
KGE | 0.91 | 0.93 | 0.67 | 0.81 | 0.52 | 0.73 | 0.9 | 0.42 | 0.59 | 0.51 |
PBIAS (%) | −0.7 | −0.6 | −17.4 | −0.1 | −12.3 | 0.6 | 0 | 41.1 | −1.6 | −25.4 |
(b) | ||||||||||
Scenario | 1.1 | 2.2 Corrected | ||||||||
Data source | Ground-based | IMERGv7 | IMERGv6 | GSMAP | PERSIANN | |||||
Metrics | Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation |
R | 0.96 | 0.97 | 0.96 | 0.93 | 0.87 | 0.88 | 0.9 | 0.77 | 0.92 | 0.79 |
NSE | 0.9 | 0.95 | 0.93 | 0.84 | 0.75 | 0.75 | 0.81 | 0.59 | 0.85 | 0.62 |
NSE rainy season | 0.87 | 0.92 | 0.91 | 0.77 | 0.65 | 0.65 | 0.74 | 0.4 | 0.79 | 0.42 |
KGE | 0.91 | 0.93 | 0.96 | 0.72 | 0.82 | 0.72 | 0.89 | 0.7 | 0.9 | 0.71 |
PBIAS (%) | −0.7 | −0.6 | −0.6 | −19.1 | 4.9 | 20 | 0.6 | −5.4 | 3.3 | −1.4 |
(c) | ||||||||||
Scenario | 1.1 | 3.3 Uncorrected | ||||||||
Data source | Ground-based | IMERGv7 | IMERGv6 | GSMAP | PERSIANN | |||||
Metrics | Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation | Calibration | Validation |
R | 0.96 | 0.97 | 0.96 | 0.93 | 0.83 | 0.67 | 0.89 | 0.77 | 0.87 | 0.7 |
NSE | 0.9 | 0.95 | 0.92 | 0.83 | 0.68 | 0.24 | 0.79 | 0.58 | 0.75 | 0.46 |
NSE rainy season | 0.87 | 0.92 | 0.89 | 0.76 | 0.7 | 0.64 | 0.7 | 0.38 | 0.67 | 0.19 |
KGE | 0.91 | 0.93 | 0.95 | 0.7 | 0.8 | 0.47 | 0.85 | 0.62 | 0.84 | 0.67 |
PBIAS (%) | −0.7 | −0.6 | 0.6 | −18.7 | 3.7 | 41.4 | 4.4 | −5.7 | −0.7 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodjrènou, M.; Peng, K.; Afféwé, D.J.; Hounkpè, J.; Donnou, H.E.V.; Adounkpè, J.; Akpo, A.B. Assessment of Satellite-Based Rainfall Products for Flood Modeling in the Ouémé River Basin in Benin (West Africa). Hydrology 2025, 12, 71. https://doi.org/10.3390/hydrology12040071
Bodjrènou M, Peng K, Afféwé DJ, Hounkpè J, Donnou HEV, Adounkpè J, Akpo AB. Assessment of Satellite-Based Rainfall Products for Flood Modeling in the Ouémé River Basin in Benin (West Africa). Hydrology. 2025; 12(4):71. https://doi.org/10.3390/hydrology12040071
Chicago/Turabian StyleBodjrènou, Marleine, Kaidi Peng, Dognon Jules Afféwé, Jean Hounkpè, Hagninou E. V. Donnou, Julien Adounkpè, and Aristide B. Akpo. 2025. "Assessment of Satellite-Based Rainfall Products for Flood Modeling in the Ouémé River Basin in Benin (West Africa)" Hydrology 12, no. 4: 71. https://doi.org/10.3390/hydrology12040071
APA StyleBodjrènou, M., Peng, K., Afféwé, D. J., Hounkpè, J., Donnou, H. E. V., Adounkpè, J., & Akpo, A. B. (2025). Assessment of Satellite-Based Rainfall Products for Flood Modeling in the Ouémé River Basin in Benin (West Africa). Hydrology, 12(4), 71. https://doi.org/10.3390/hydrology12040071