Mapping Soil Erosion and Ecosystem Service Loss: Integrating RUSLE and NDVI Metrics to Support Conservation in El Cajas National Park, Ecuador
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Topography and Soils
2.2.2. Climate
2.2.3. Satellite Imagery
2.3. RUSLE Modeling Workflow
2.4. Erosion Control Index (EC)
2.5. Integration Framework
3. Results
3.1. Baseline Soil Loss ()
3.2. Revised Soil Loss with NDVI-Based C ()
3.3. Maximum Potential Soil Loss ()
3.4. Erosion Control Index (EC)
3.5. Hot- and Cold-Spot Clusters
3.6. Uncertainty Considerations and Model Robustness
4. Discussion
4.1. Integrating Biophysical Drivers and Ecosystem-Service Delivery
4.2. Convergence and Divergence with Recent Literature
4.3. Management and Policy Implications for Southern Ecuadorian Páramo
4.4. Methodological Constraints and Sources of Uncertainty
4.5. Directions for Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CNP | El Cajas National Park | 
| RUSLE | Revised Universal Soil Loss Equation | 
| NDVI | Normalized Difference Vegetation Index | 
| EC | Erosion Control index | 
| DEM | Digital Elevation Model | 
| LS | Slope Length–Steepness factor | 
| MFI | Modified Fournier Index | 
| NASA | National Aeronautics and Space Administration | 
| POWER | Prediction of Worldwide Energy Resources (NASA) | 
| INAMHI | Instituto Nacional de Meteorología e Hidrología (Ecuador) | 
| GEE | Google Earth Engine | 
| LULC | Land Use/Land Cover | 
| RMSE | Root Mean Square Error | 
| NSE | Nash–Sutcliffe Efficiency | 
| CV | Coefficient of Variation | 
| ESA | European Space Agency | 
References
- Lucas-Borja, M.; González-Romero, J.; Plaza-Álvarez, P.; Sagra, J.; Gómez, M.; Moya, D.; Cerdà, A.; de las Heras, J. The impact of straw mulching and salvage logging on post-fire runoff and soil erosion generation under Mediterranean climate conditions. Sci. Total Environ. 2019, 654, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Machmuller, M.; Kramer, M.; Cyle, T.K.; Hill, N.; Hancock, D.; Thompson, A. Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 2015, 6, 6995. [Google Scholar] [CrossRef] [PubMed]
- Sartori, M.; Ferrari, E.; M’barek, R.; Philippidis, G.; Boysen-Urban, K.; Borrelli, P.; Montanarella, L.; Panagos, P. Remaining Loyal to Our Soil: A Prospective Integrated Assessment of Soil Erosion on Global Food Security. Ecol. Econ. 2024, 219, 108103. [Google Scholar] [CrossRef]
- Bezak, N.; Ballabio, C.; Mikoš, M.; Petan, S.; Petan, S.; Borrelli, P.; Panagos, P. Reconstruction of past rainfall erosivity and trend detection based on the REDES database and reanalysis rainfall. J. Hydrol. 2020, 590, 125372. [Google Scholar] [CrossRef]
- Kooch, Y.; Heidari, F.; Nouraei, A.; Wang, L.; Ji, Q.Q.; Francaviglia, R.; Wu, D. Can soil health in degraded woodlands of a semi-arid environment improve after thirty years? Sci. Total Environ. 2024, 928, 172218. [Google Scholar] [CrossRef]
- Abe, H.; Fu, D.; Sato, T.; Tokumoto, Y.; Hyodo, F.; Katayama, A. Protection of understory vegetation by deer exclosure fences prevent the reduction of beech growth due to soil erosion. J. Environ. Manag. 2024, 371, 123146. [Google Scholar] [CrossRef]
- Vergara, I.; Garreaud, R.; Ayala, Á. Sharp Increase of Extreme Turbidity Events Due To Deglaciation in the Subtropical Andes. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006584. [Google Scholar] [CrossRef]
- Pabón-Caicedo, J.D.; Arias, P.; Carril, A.; Espinoza, J.; Borrel, L.F.; Goubanova, K.; Lavado-Casimiro, W.; Masiokas, M.; Solman, S.; Villalba, R. Observed and Projected Hydroclimate Changes in the Andes. Front. Earth Sci. 2020, 8, e00061. [Google Scholar] [CrossRef]
- Suescún, D.; León, J.D.; Villegas, J.C.; Correa-Londoño, G. Nutrient loss to erosion responds to rain characteristics under transformed landscapes in the Río Grande basin, Colombian Andes. Ecohydrology 2023, 16, e2519. [Google Scholar] [CrossRef]
- Leonard, J.S.; Whipple, K.; Heimsath, A.M. Controls on topography and erosion of the north-central Andes. Geology 2023, 52, 153–158. [Google Scholar] [CrossRef]
- Barros, A.; Monz, C.; Pickering, C. Is tourism damaging ecosystems in the Andes? Current knowledge and an agenda for future research. AMBIO 2015, 44, 82–98. [Google Scholar] [CrossRef]
- Luvai, A.; Obiero, J.; Omuto, C. Soil Loss Assessment Using the Revised Universal Soil Loss Equation (RUSLE) Model. Appl. Environ. Soil Sci. 2022, 2022, 1–14. [Google Scholar] [CrossRef]
- K, S.S.K.; Varughese, A.; Sunny, A.C.; R, A.K.P. Erosivity Factor of the Revised Universal Soil Loss Equation (RUSLE)—A Systematized Review. Curr. World Environ. 2023, 18, 433–445. [Google Scholar] [CrossRef]
- Wang, X.; Song, K.; Wang, Z.; Li, S.; Shang, Y.; Liu, G. Effects of land conversion to cropland on soil organic carbon in montane soils of Northeast China from 1985 to 2020. CATENA 2024, 235, 107691. [Google Scholar] [CrossRef]
- Kooch, Y.; Ghorbanzadeh, N.; Kuzyakov, Y.; Praeg, N.; Ghaderi, E. Investigation of the effects of the conversion of forests and rangeland to cropland on fertility and soil functions in mountainous semi-arid landscape. CATENA 2022, 210, 105951. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Whelan, M.; Nichols, J. Soil erosion response to land use change in a mountainous rural area of Son La Province of Vietnam. Environ. Monit. Assess. 2022, 194, 149. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Agricultural Land Classification: Technical Review Part 1; Technical Report; FAO: Rome, Italy, 2006.
- Soil Science Division Staff. Soil Survey Manual; Ditzler, C., Scheffe, K., Monger, H.C., Eds.; USDA Handbook 18; Government Printing Office: Washington, DC, USA, 2017.
- Steinhoff-Knopp, B.; Kuhn, T.K.; Burkhard, B. The impact of soil erosion on soil-related ecosystem services: Development and testing a scenario-based assessment approach. Environ. Monit. Assess. 2021, 193, 274. [Google Scholar] [CrossRef]
- Ochoa, P.; Fries, A.; Mejía, D.; Burneo, J.; Ruíz-Sinoga, J.; Cerdà, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. CATENA 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Portalanza, D.; Barral, M.P.; Villa-Cox, G.; Ferreira-Estafanous, S.; Herrera, P.; Durigon, A.; Ferraz, S. Mapping ecosystem services in a rural landscape dominated by cacao crop: A case study for Los Rios province, Ecuador. Ecol. Indic. 2019, 107, 105593. [Google Scholar] [CrossRef]
- Portalanza, D.; Torres-Ulloa, M.; Arias-Hidalgo, M.; Piza, C.; Villa-Cox, G.; Garcés-Fiallos, F.R.; Álava, E.; Durigon, A.; Espinel, R. Ecosystem services valuation in the Abras de Mantequilla wetland system: A comprehensive analysis. Ecol. Indic. 2024, 158, 111405. [Google Scholar] [CrossRef]
- Guerra, C.A.; Pinto-Correia, T.; Metzger, M.J. Mapping Soil Erosion Prevention Using an Ecosystem Service Modeling Framework for Integrated Land Management and Policy. Ecosystems 2014, 17, 878–889. [Google Scholar] [CrossRef]
- Sud, A.; Sajan, B.; Kanga, S.; Singh, S.; Singh, S.; Durin, B.; Kumar, P.; Meraj, G.; Sahariah, D.; Debnath, J.; et al. Integrating RUSLE Model with Cloud-Based Geospatial Analysis: A Google Earth Engine Approach for Soil Erosion Assessment in the Satluj Watershed. Water 2024, 16, 1073. [Google Scholar] [CrossRef]
- Fahd, S.; Waqas, M.; Zafar, Z.; Soufan, W.; Almutairi, K.F.; Tariq, A. Integration of RUSLE model with remotely sensed data over Google Earth Engine to evaluate soil erosion in Central Indus Basin. Earth Surf. Process. Landforms 2025, 50, 70019. [Google Scholar] [CrossRef]
- Jodhani, K.H.; Patel, D.; Madhavan, N.; Singh, S.K. Soil Erosion Assessment by RUSLE, Google Earth Engine, and Geospatial Techniques over Rel River Watershed, Gujarat, India. Water Conserv. Sci. Eng. 2023, 8, 1–17. [Google Scholar] [CrossRef]
- Gashaw, T.; Bantidar, A.; Zeleke, G.; Alamirew, T.; Jemberu, W.; Worqlul, A.; Dile, Y.T.; Bewket, W.; Meshesha, D.; Adem, A.; et al. Evaluating InVEST model for estimating soil loss and sediment export in data scarce regions of the Abbay (Upper Blue Nile) Basin: Implications for land managers. Environ. Challenges 2021, 5, 100381. [Google Scholar] [CrossRef]
- Navarrete, E.; Morante-Carballo, F.; Dueñas-Tovar, J.; Carrión-Mero, P.; Jaya-Montalvo, M.; Berrezueta, E. Assessment of Geosites within a Natural Protected Area: A Case Study of Cajas National Park. Sustainability 2022, 14, 3120. [Google Scholar] [CrossRef]
- Prado, D.P.; Ruiz, L. Comparative of Machine Learning Algorithms and Datasets to Classify Natural Coverage in the Cajas National Park (Ecuador) Based on GEOBIA Approach. Proceedings 2019, 19, 20. [Google Scholar] [CrossRef]
- Donovan, M.; Monaghan, R. Impacts of grazing on ground cover, soil physical properties and soil loss via surface erosion: A novel geospatial modelling approach. J. Environ. Manag. 2021, 287, 112206. [Google Scholar] [CrossRef] [PubMed]
- Carreño, L.; Frank, F.C.; Viglizzo, E.F. Tradeoffs between economic and ecosystem services in Argentina during 50 years of land-use change. Agric. Ecosyst. Environ. 2012, 154, 68–77. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Mosquera, G.; Marín, F.; Stern, M.; Bonnesoeur, V.; Ochoa-Tocachi, B.; Román-Dañobeytia, F.; Crespo, P. Progress in understanding the hydrology of high-elevation Andean grasslands under changing land use. Sci. Total Environ. 2021, 804, 150112. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorología e Hidrología (INAMHI). Boletines (meteorológicos e hidrológicos). Available online: https://servicios.inamhi.gob.ec/boletines/ (accessed on 26 August 2025).
- Ansaloni, R.; Izco, J.; Amigo, J.; Minga, D. Analysis of the vascular flora in the Cajas National Park (Central Andes, Ecuador). Mediterr. Bot. 2022, 43, e76491. [Google Scholar] [CrossRef]
- Delgado, D.; Sadaoui, M.; Ludwig, W.; Méndez, W. Spatio-temporal assessment of rainfall erosivity in Ecuador based on RUSLE using satellite-based high frequency GPM-IMERG precipitation data. CATENA 2022, 219, 106597. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Ganadería (MAG); Sistema Nacional de Información y Gestión de Tierras Rurales e Infraestructura Tecnológica (SIGTIERRAS). Mapa Digital: Órdenes de Suelos del Ecuador; escala 1:4,300,000. Memoria explicativa del Mapa de Órdenes de Suelos del Ecuador; SIGTIERRAS–MAG: Quito, Ecuador. 2017. Available online: https://www.sigtierras.gob.ec/mapa-de-ordenes-de-suelos/ (accessed on 26 August 2025).
- Corral, L.R.; Montiel Olea, C.E. What Drives Take-up in Land Regularization: Ecuador’s Rural Land Regularization and Administration Program, Sigtierras. J. Econ. Race, Policy 2020, 3, 60–75. [Google Scholar] [CrossRef]
- Arcusa, S.; Schneider, T.; Mosquera, P.; Vogel, H.; Kaufman, D.; Szidat, S.; Grosjean, M. Late Holocene tephrostratigraphy from Cajas National Park, southern Ecuador. Andean Geol. 2020, 47, 508–528. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; U.S. Department of Agriculture, Agriculture Handbook No. 537; U.S. Government Printing Office: Washington, DC, USA. 1978. Available online: https://www.ars.usda.gov/ARSUserFiles/60600505/RUSLE/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf (accessed on 26 January 2025).
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.J.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. Isprs J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Masek, J.; Wulder, M.; Markham, B.; McCorkel, J.; Crawford, C.; Storey, J.; Jenstrom, D. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100 [dataset]; Zenodo. 2021. Available online: https://zenodo.org/records/5571936 (accessed on 26 March 2025). [CrossRef]
- Hmimina, G.; Dufrêne, E.; Pontailler, J.Y.; Delpierre, N.; Aubinet, M.; Caquet, B.; de Grandcourt, A.; Burban, B.; Flechard, C.; Granier, A.; et al. Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. Remote Sens. Environ. 2013, 132, 145–158. [Google Scholar] [CrossRef]
- Montico, A.; Zapperi, P.A.; Gil, V. Water regulation ecosystem service facing cities growth. Evaluation of the effects of an urbanization scenario in an intermediate city, Argentina. Urban Water J. 2023, 21, 100–112. [Google Scholar] [CrossRef]
- Hijmans, R.J. terra: Spatial Data Analysis; R package version 1.8-50. 2025. Available online: https://CRAN.R-project.org/package=terra (accessed on 26 August 2025). [CrossRef]
- Bivand, R. R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geogr. Anal. 2022, 54, 488–518. [Google Scholar] [CrossRef]
- Merchán, L.; Fernández, G.; Ángel Sánchez, J. Spatial Representation of Soil Erosion and Vegetation Affected by a Forest Fire in the Sierra de Francia (Spain) Using RUSLE and NDVI. Land 2025, 14, 793. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Y.; Zhao, L. A sedimentological connectivity approach for assessing on-site and off-site soil erosion control services. Ecol. Indic. 2020, 115, 106434. [Google Scholar] [CrossRef]
- Jeong, J.; Ricci, G.; Gentile, F.; Girolamo, A. Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy 2020, 90, 104306. [Google Scholar] [CrossRef]
- Lal, R. Soil conservation and ecosystem services. Int. Soil Water Conserv. Res. 2014, 2, 36–47. [Google Scholar] [CrossRef]
- Adhikari, B.; Nadella, K. Ecological economics of soil erosion: A review of the current state of knowledge. Ann. N. Y. Acad. Sci. 2011, 1219, 134–152. [Google Scholar] [CrossRef] [PubMed]
- Méndez, W.; Farfán-Intriago, P.; Sadaoui, M.; Delgado, D.; Ludwig, W.; Ortiz-Hernández, E. Assessment of soil erosion by RUSLE in the Ecuadorian basins (2001–2020) based on GIS and high-resolution satellite data: Main drivers and changes on soil erosion. Geomorphology 2025, 469, 109515. [Google Scholar] [CrossRef]
- Arango-Carvajal, L.I.; Villegas, J.C.; León-Peláez, J.D.; Sánchez-Londoño, J. Not all trade-offs and synergies between ecosystem services are created equal: Assessing their spatio-temporal variation in response to land cover change in the Colombian Andes. Reg. Environ. Chang. 2025, 25, 46. [Google Scholar] [CrossRef]
- Henríquez, N.C.; Leal, C.M. Restoration as a re-commoning process. Territorial initiative and global conditions in the process of water recovery in the ‘Cordillera de Nahuelbuta’, Chile. Ecosyst. People 2021, 17, 556–573. [Google Scholar] [CrossRef]
- Dai, Q.; Zeng, G.; Pan, Y.; Zhu, Y.; Guo, G.; Lin, J.; Kuai, J.; Xu, Y.; Jia, X. A more accurate approach to estimate the C-factor of RUSLE by coupling stratified vegetation cover index in southern China. For. Ecol. Manag. 2023, 541, 120979. [Google Scholar] [CrossRef]
- Maxwald, M.; Correa, R.; Japón, E.; Preti, F.; Rauch, H.P.; Immitzer, M. Soil and Water Bioengineering in Fire-Prone Lands: Detecting Erosive Areas Using RUSLE and Remote Sensing Methods. Fire 2024, 7, 319. [Google Scholar] [CrossRef]
- Boyd, P.; Bedoya, R.; Langendoen, E.; Girón, P.E.; East, A.; Gibson, S.; Crespo, P.D.B. Major fluvial erosion and a 500-Mt sediment pulse triggered by lava-dam failure, Río Coca, Ecuador. Earth Surf. Process. Landforms 2024, 49, 1058–1080. [Google Scholar] [CrossRef]
- Yang, F.; Shangguan, Z.; Deng, L.; Bai, R.; Wang, X.; Li, J. The impact of vegetation reconstruction on soil erosion in the Loess plateau. J. Environ. Manag. 2024, 363, 121382. [Google Scholar] [CrossRef]
- Finlay, J.; Winikoff, S.G.; Larkin, D.; Meier, S. Vegetation trajectories of restored agricultural wetlands following sediment removal. Restor. Ecol. 2020, 28, 13128. [Google Scholar] [CrossRef]
- Kreuter, U.; Teague, R. Managing Grazing to Restore Soil Health, Ecosystem Function, and Ecosystem Services. Front. Media S.A. 2020, 2020. 4, 534187. [Google Scholar] [CrossRef]
- Oel, P.R.; Wiegant, D.; Peralvo, M.; Dewulf, A. Five scale challenges in Ecuadorian forest and landscape restoration governance. Land Use Policy 2020, 96, 104686. [Google Scholar] [CrossRef]
- Joslin, A. Dividing “Above” and “Below”: Constructing Territory for Ecosystem Service Conservation in the Ecuadorian Highlands. Ann. Am. Assoc. Geogr. 2020, 110, 1874–1890. [Google Scholar] [CrossRef]
- Li, L.; Xia, R.; Dou, M.; Ling, M.; Li, G.; Wang, C.; Mi, Q. Integrating landsat NDVI data with climate and anthropogenic factors reveals drivers of vegetation dynamics in the semi-arid Basin of Western China. Sci. Rep. 2025, 15, 18831. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Xie, J.; Zhang, G.; Yin, G.; Ma, D.; Hu, J.; Zhang, Y. An RTM-Driven Machine Learning Approach for Estimating High-Resolution FAPAR From LANDSAT 5/7/8/9 Surface Reflectance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 10225–10240. [Google Scholar] [CrossRef]
- Moore, D.; Barnes, M.; Law, D.; Fojtik, A.C.; van Leeuwen, W.V.; Barron-Gafford, G.; Breshears, D.; Monson, R. Beyond greenness: Detecting temporal changes in photosynthetic capacity with hyperspectral reflectance data. PLoS ONE 2017, 12, 189539. [Google Scholar] [CrossRef]
- Mello, C.R.; Guo, L.; Riquetti, N.B.; Beskow, S. Soil erosion assessment in the Amazon basin in the last 60 years of deforestation. Environ. Res. 2023, 236, 116846. [Google Scholar] [CrossRef]
- Ascencio-Sanchez, M.; Padilla-Castro, C.; Atalluz-Ganoza, D.; Riveros-Lizana, C.; Hermoza-Espezúa, R.M.; Solórzano-Acosta, R. Impacts of Land Use on Soil Erosion: RUSLE Analysis in a Sub-Basin of the Peruvian Amazon (2016–2022). Geosciences 2025, 15, 15. [Google Scholar] [CrossRef]
- Šarapatka, B.; Doktor, D.; Ayalew, D.; Deumlich, D. Quantifying the Sensitivity of NDVI-Based C Factor Estimation and Potential Soil Erosion Prediction using Spaceborne Earth Observation Data. Remote. Sens. 2020, 12, 1136. [Google Scholar] [CrossRef]
- Laceby, J.; Ramon, R.; Chaboche, P.A.; Evrard, O.; Foucher, A. A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs). Geomorphology 2020, 362, 107103. [Google Scholar] [CrossRef]
- Verleyen, E.; Abere, T.; Frankl, A.; Evrard, O.; Chalaux-Clergue, T.; Lemma, H.; Adgo, E. Fingerprinting sediment sources using fallout radionuclides demonstrates that subsoil provides the major source of sediment in sub-humid Ethiopia. J. Soils Sediments 2025, 25, 1008–1021. [Google Scholar] [CrossRef]
- Castro, P. Implementation of Strategies for the Management of Dams with Sedimented Reservoirs. Water Resour. Manag. 2021, 35, 4399–4413. [Google Scholar] [CrossRef]
- Oliveira, P.S.; Almagro, A.; Nearing, M.; Hagemann, S. Projected climate change impacts in rainfall erosivity over Brazil. Sci. Rep. 2017, 7, 8130. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Wang, H.; Klik, A.; Yin, S.; He, Z. Projections of rainfall erosivity in climate change scenarios for mainland China. CATENA 2023, 232, 107391. [Google Scholar] [CrossRef]



| Step | Action | Expected Product | 
|---|---|---|
| 1 | Harmonise grids (projection, 30 m pixel) for all layers | Common raster stack | 
| 2 | Re-run RUSLE with updated C | Updated soil-loss map | 
| 3 | Create no-vegetation scenario (, ) | Maximum soil-loss surface | 
| 4 | Derive erosion-control index | EC raster (0–1) | 
| 5 | Hot/cold-spot (Getis-Ord ) on high + low | Priority map, statistics | 
| 6 | Scenario analysis: NDVI/LULC shifts | Policy-relevant scenarios | 
| Slope Category | Area Fraction (%) | Mean (t ha−1 yr−1) | 
|---|---|---|
| <5% (flat–gentle) | 7.0 | 0.6 | 
| 5–10% (moderate) | 25.6 | 3.4 | 
| 10–25% (strong) | 41.8 | 12.1 | 
| 25–50% (very strong) | 21.3 | 38.4 | 
| >50% (escarpment) | 4.4 | 119.7 | 
| EC Class | 2023 | 2024 | ||
|---|---|---|---|---|
| Area (ha) | Share (%) | Area (ha) | Share (%) | |
| Very low (<0.02) | 0.08 | 0.0003 | 0.08 | 0.0003 | 
| Low (0.02–20) | 28,421.4 | 99.57 | 22,597.7 | 79.18 | 
| Moderate (20–40) | 120.0 | 0.42 | 5939.9 | 20.80 | 
| High (40–60) | 0.17 | 0.0006 | 79.6 | 0.28 | 
| Very high (>60) | — | — | 1.4 | 0.0049 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portalanza, D.; Morstadt, J.D.-C.; Polhmann, V.; Gallardo, G.; Aguilera, K.; Garcia, Y.; Rodriguez-Jarama, F. Mapping Soil Erosion and Ecosystem Service Loss: Integrating RUSLE and NDVI Metrics to Support Conservation in El Cajas National Park, Ecuador. Hydrology 2025, 12, 279. https://doi.org/10.3390/hydrology12110279
Portalanza D, Morstadt JD-C, Polhmann V, Gallardo G, Aguilera K, Garcia Y, Rodriguez-Jarama F. Mapping Soil Erosion and Ecosystem Service Loss: Integrating RUSLE and NDVI Metrics to Support Conservation in El Cajas National Park, Ecuador. Hydrology. 2025; 12(11):279. https://doi.org/10.3390/hydrology12110279
Chicago/Turabian StylePortalanza, Diego, Javier Del-Cioppo Morstadt, Valeria Polhmann, Gabriel Gallardo, Karla Aguilera, Yoansy Garcia, and Fanny Rodriguez-Jarama. 2025. "Mapping Soil Erosion and Ecosystem Service Loss: Integrating RUSLE and NDVI Metrics to Support Conservation in El Cajas National Park, Ecuador" Hydrology 12, no. 11: 279. https://doi.org/10.3390/hydrology12110279
APA StylePortalanza, D., Morstadt, J. D.-C., Polhmann, V., Gallardo, G., Aguilera, K., Garcia, Y., & Rodriguez-Jarama, F. (2025). Mapping Soil Erosion and Ecosystem Service Loss: Integrating RUSLE and NDVI Metrics to Support Conservation in El Cajas National Park, Ecuador. Hydrology, 12(11), 279. https://doi.org/10.3390/hydrology12110279
 
        








 
       