Declining Bank Erosion Rate Driven by Hydrological Alterations of a Small Sub-Alpine River
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Hydrological Changes in the Rába River (1950–2024)
4.2. Hydrological Changes in the Rába River (2022–2024) during the Field Surveys
4.3. Bank Erosion of the Studied Reach of the Rába between 1951 and 2022
4.4. Bank Erosion of the Selected Meanders of the Rába between 2022 and 2024
5. Discussion
5.1. Hydrological Alteration of the Rába River since 1950
5.2. The Relationship between Hydrology and Bank Erosion
5.3. Relationship between Hydrology and Bank Erosion: A Conceptual Model
5.4. Spatiality of Bank Erosion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Source (Survey Date) | Scale | Resolution (m/px) | Mean Horizontal Error (m) * | Discharge (m3/s) ** | Water Level (cm) ** | ||
---|---|---|---|---|---|---|---|
min | max | min | max | ||||
Topographical map (1951) | 1:25,000 | 0.8 ± 0.4 | no data | no data | −79 | 296 | |
Topographical map (1955–1956) | 1:25,000 | 0.8 ± 0.4 | no data | no data | −74 | 287 | |
Topographical map (1960–1961) | 1:10,000 | negligible | no data | no data | −83 | 200 | |
Aerial photograph (05–06 May 1967) | 0.2 | 0.4 ± 0.1 | no data | no data | −10 | −6 | |
Aerial photograph (20 Oct 1972) | 0.2 | 0.4 ± 0.1 | 15.7 | 18.8 | −28 | −22 | |
Topographical map (1983–1984) | 1:25,000 | negligible | 3.9 | 165 | −107 | 188 | |
Topographical map (1996–1998) | 1:10,000 | negligible | 9.2 | 457 | −84 | 390 | |
Orthophoto (07 Mar–02 Aug 2000) | 0.5 | negligible | 8.8 | 135 | −87 | 123 | |
Orthophoto (13 June–06 Sept 2005) | 0.5 | negligible | 7.6 | 368 | −89 | 376 | |
Orthophoto (02–11 Aug 2008) | 0.5 | negligible | 18.7 | 54 | −61 | −17 | |
Orthophoto (19–25 Aug 2012) | 0.4 | negligible | 12.8 | 15 | −85 | −80 | |
Orthophoto (08 May–10 July 2015) | 0.4 | negligible | 7.2 | 132 | −94 | 162 | |
Orthophoto (31 May–23 Aug 2018) | 0.4 | negligible | 12.9 | 119 | −82 | 79 | |
Orthophoto (06 July–15 Sept 2021) | 0.2 | negligible | 7.1 | 41 | −97 | −21 | |
Orthophoto (07 June–19 Aug 2022) | 0.2 | negligible | 5.3 | 87 | −107 | 68 |
Appendix B
Max Bank Erosion Rate | Mean Bank Erosion Rate | Min Bank Erosion Rate | Number of Overbank Flood Waves | Annual Duration of Overbank Flood Waves | Annual Duration of Low Stages | |
---|---|---|---|---|---|---|
Max bank erosion rate | 1 | |||||
Mean bank erosion rate | 0.788848 | 1 | ||||
Min bank erosion rate | 0.093697 | 0.473252 | 1 | |||
Number of overbank flood waves | 0.252245 | 0.524488 | 0.664256 | 1 | ||
Annual duration of overbank flood waves | 0.417448 | 0.704861 | 0.732955 | 0.930318 | 1 | |
Annual duration of low stages | −0.60288 | −0.82471 | −0.56998 | −0.82297 | −0.88489 | 1 |
References
- Knox, J.C. Large increases in flood magnitude in response to modest changes in climate. Nature 1993, 361, 430–432. [Google Scholar] [CrossRef]
- Knox, J.C. Long-term episodic changes in magnitudes and frequencies of floods in the upper Mississippi River valley. In Fluvial Processes and Environmental Change; Brown, A.G., Quine, T.A., Eds.; Wiley: Chichester, UK, 1999; pp. 255–282. [Google Scholar]
- Krebs, G.; Camhy, D.; Muschalla, D. Hydro-Meteorological Trends in an Austrian Low-Mountain Catchment. Climate 2021, 9, 122. [Google Scholar] [CrossRef]
- Munka, C.; Cruz, G.; Caffera, R.M. Long term variation in rainfall erosivity in Uruguay: A preliminary Fournier approach. GeoJournal 2007, 70, 257–262. [Google Scholar] [CrossRef]
- Schneider, C.; Laize, C.L.R.; Acreman, M.C.; Floerke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Uber, M.; Haller, M.; Brendel, C.; Hillebrand, G.; Hoffmann, T. Past, present and future rainfall erosivity in central Europe based on convection-permitting climate simulations. Hydrol. Earth Syst. Sci. 2024, 28, 87–102. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Piégay, H.; Landon, N. Channel response to increased and decreased bedload supply from land use change: Contrasts between two catchments. Geomorphology 2002, 45, 35–51. [Google Scholar] [CrossRef]
- Wyzga, B. A review on channel incision in the Polish Carpathian rivers during the 20th century. Dev. Earth Surf. Proc. 2007, 11, 525–553. [Google Scholar] [CrossRef]
- Rasheed, N.J.; Al-Khafaji, A.S.; Alwan, I.A. Investigation of rivers planform change in a semi-arid region of high vulnerability to climate change: A case study of Tigris River and its tributaries in Iraq. Reg. Stud. Mar. Sci. 2023, 68, 2352–4855. [Google Scholar] [CrossRef]
- Radoane, M.; Obreja, F.; Cristea, I.; Mihailă, D. Changes in the channel-bed level of the eastern Carpathian rivers: Climatic vs. human control over the last 50 years. Geomorphology 2013, 193, 91–111. [Google Scholar] [CrossRef]
- Szalai, Z.; Balogh, J.; Jakab, G. Riverbank erosion in Hungary—With an outlook on environmental consequences. Hung. Geogr. Bull. 2013, 2, 233–245. [Google Scholar]
- Czigány, S.; Pirkhoffer, E.; Balassa, B.; Bugya, T.; Bötkös, T.; Gyenizse, P.; Nagyváradi, L.; Lóczy, D.; Geresdi, I. Flash floods as a natural hazard in Southern Transdanubia. Földrajzi Közlemények 2010, 134, 281–298. [Google Scholar]
- Gutiérrez, F.; Gutiérrez, M.; Sancho, C. Geomorphological and sedimentological analysis of a catastrophic flash flood in the Arás drainage basin. Geomorphology 1998, 22, 265–283. [Google Scholar] [CrossRef]
- Gorczyca, E.; Krzemien, K.; Wronska-Walach, D.; Sobucki, M. Channel changes due to extreme rainfalls int he Polish Carpathians. In Geomorphological Impacts of Extreme Weather; Lóczy, D., Ed.; Springer: Wellington, UK, 2013; pp. 23–37. [Google Scholar]
- Dixon, S.J.; Smith, G.H.S.; Best, J.L.; Nicholas, A.P.; Bull, J.M.; Vardy, M.E.; Sarker, M.H.; Goodbred, S. The planform mobility of river channel confluences: Insights from analysis of remotely sensed imagery. Earth-Sci. Rev. 2018, 176, 1–18. [Google Scholar] [CrossRef]
- Lehotsky, M.; Frandofer, M.; Novotny, J.; Rusnak, M.; Szmanda, J.B. Geomorphic/sedimentary responses of rivers to floods: Case studies from Slovakia. In Geomorphological Impacts of Extreme Weather; Lóczy, D., Ed.; Springer: Wellington, UK, 2013; pp. 37–53. [Google Scholar]
- Kiss, T.; Blanka, V. River channel response to climate- and human-induced hydrological changes: Case study on the meandering Hernád River, Hungary. Geomorphology 2012, 175, 115–125. [Google Scholar] [CrossRef]
- Kiss, T.; Blanka, V.; Andrási, G.; Hernesz, P. 2013. Extreme Weather and the Rivers of Hungary: Rates of Bank Retreat. In Geomorphological Impacts of Extreme Weather: Case Studies from Central and Eastern Europe; Lóczy, D., Ed.; Springer: Wellington, UK, 2013; pp. 83–99. [Google Scholar]
- Gilvear, D.; Winterbottom, S.; Sichingabula, H. Character of channel planform change and meander development: Luangwa River, Zambia. Earth Surf. Proc. Landf. 2000, 25, 421–436. [Google Scholar] [CrossRef]
- Ma, F.; Ye, A.; Gong, W.; Mao, Y.; Miao, C.; Di, Z. An estimate of human and natural contributions to flood changes of the Huai River. Glob. Planet. Change 2014, 119, 39–50. [Google Scholar] [CrossRef]
- Page, K.; Read, A.; Frazier, P.; Mount, N. The effect of altered flow regime on the frequency and duration of bankfull discharge: Murrumbidgee River, Australia. River Res. Appl. 2005, 21, 567–578. [Google Scholar] [CrossRef]
- Gautier, E.; Brunstein, D.; Vauchel, P.; Roulet, M.; Fuertes, O.; Guyot, J.L.; Darozzes, J.; Bourrel, L. Temporal relations between meander deformation, water discharge and sediment fluxes in the floodplain of the Rio Beni (Bolivian Amazonia). Earth Surf. Proc. Landf. 2006, 32, 230–248. [Google Scholar] [CrossRef]
- Kiss, T.; Sipos, G. Braid-scale geometry changes in a sand-bedded river: Significance of low stages. Geomorphology 2006, 84, 209–221. [Google Scholar] [CrossRef]
- Starkel, L. Change in the frequency of extreme events as the indicator of climatic change in the Holocene (in fluvial systems). Quat. Internat. 2002, 91, 25–32. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Bertoldi, W.; Corenblit, D. Changing river channels: The roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Sci. Rev. 2012, 111, 129–141. [Google Scholar] [CrossRef]
- Schumm, S.A. The Fluvial System; Wiley: New York, NY, USA, 1977; p. 338. [Google Scholar]
- Pfister, L.; Kwadijk, J.; Musy, A.; Bronstert, A.; Hoffmann, L. Climate change, land use change and runoff prediction in the Rhine-Meuse basins. River Res. Appl. 2004, 20, 229–241. [Google Scholar] [CrossRef]
- Haque, S.E.; Nahar, N.; Chowdhury, N.N.; Sayanno, T.K.; Haque, S. Geomorphological changes of river Surma due to climate change. Int. J. Energy Water Res. 2024. [Google Scholar] [CrossRef]
- Knox, J.C. Historical Valley Floor Sedimentation in the Upper Mississippi Valley. Ann. Ass. Am. Geogr. 1987, 77, 224–244. [Google Scholar] [CrossRef]
- Brooks, A.P.; Brierley, G.J. Geomorphologic responses of lower Bega River to catchment disturbance. Geomorphology 1997, 18, 291–304. [Google Scholar] [CrossRef]
- Madej, M.A. Changes in Channel-Stored Sediment, Redwood Creek, Northwestern California, 1947–1980; USGS Professional Paper; USGS: Reston, VA, USA, 1995. [Google Scholar]
- Lane, S.N.; Richards, K.S. Linking river channel form and process: Time, space and causality revisited. Earth Surf. Proc. Landf. 1997, 22, 249–260. [Google Scholar] [CrossRef]
- Van De Wiel, M.J.; Coulthard, T.J.; Macklin, M.G.; Lewin, J. Modelling the response of river systems to environmental change: Progress, problems and prospects for palaeo-environmental reconstructions. Earth-Sci. Rev. 2011, 104, 167–185. [Google Scholar] [CrossRef]
- Phillips, J.D. Nonlinear dynamical systems in geomorphology: Revolution or evolution? Geomorphology 1992, 5, 219–229. [Google Scholar] [CrossRef]
- Hooke, J.M. Styles of channel change. In Applied Fluvial Geomorphology for Engineering and Management; Thorne, C.R., Hey, R.D., Newson, M.D., Eds.; Wiley: Chichester, UK, 1997; pp. 237–268. [Google Scholar]
- Kis, A.; Szabó, P.; Pongrácz, R. Spatial and temporal analysis of drought-related climate indices for Hungary for 1971–2100. Hung. Geogr. Bull. 2023, 72, 223–238. [Google Scholar] [CrossRef]
- Kocsis, R.; Pongrácz, I.; Hatvani, G.; Magyar, N.; Anda, A.; Kovács-Székely, I. Seasonal trends in the Early Twentieth Century Warming (ETCW) in a centennial instrumental temperature record from Central Europe. Hung. Geogr. Bull. 2024, 73, 3–16. [Google Scholar] [CrossRef]
- Bergmann, H.; Kollmann, W.; Vasvári, V.; Ambrózy, P.; Domokos, M.; Goda, L.; Laczay, I.; Neppel, F.; Szilágyi, E. Hydrologische Monographie des Einzugsgebietes der Oberen Raab; Series on Water Management; Technischen Universität Graz: Graz, Austria, 1996; p. 257. [Google Scholar]
- Peßenteiner, S.; Hohmann, C.; Kirchengast, G.; Schöner, W. High-resolution climate datasets in hydrological impact studies: Assessing their value in alpine and pre-alpine catchments in southeastern Austria. J. Hydrol. Reg. Stud. 2021, 38, 100962. [Google Scholar] [CrossRef]
- UNECE. Second Assessment of Transboundary Rivers, Lakes and Groundwaters IV/5: Drainage basin of the Black Sea. 2011. Available online: https://unece.org/DAM/env/water/publications/assessment/English/I_PartIV_Chapter5_En.pdf (accessed on 25 July 2024).
- Csoma, J. Hydrology of the Rába River. [A Rába Hidrográfiája]. Vízrajzi Atlasz 1972, 14, 8–15. (In Hungarian) [Google Scholar]
- VKKI. Water Catchment Management Plan of the Rába River. West–Transdanubian Water Directorate, Szombathely, Hungary. 2010, p. 245. Available online: http://www2.vizeink.hu/files3/1_3_Raba.pdf (accessed on 24 July 2024).
- Gringorten, I.I. A plotting rule for extreme probability paper. J. Geophys. Res. 1963, 68, 813–814. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: https://www.R-project.org/ (accessed on 24 July 2024).
- James, N.A.; Matteson, D.S. An R package for nonparametric multiple change point analysis of multivariate data. J. Stat. Softw. 2014, 62, 1–25. [Google Scholar] [CrossRef]
- Pusztai-Eredics, A.; Varga, N.; Kovács, G. Topographical sources in Hungary used for settlement development studies: Modern topographical and geoinformatical data sources. Savaria Természettu Sport. Közl 2024, 21, 49–70. (In Hungarian) [Google Scholar]
- Available online: https://arken.nmbu.no/~havatv/gis/qgisplugins/NNJoin/ (accessed on 22 July 2024).
- Zabolotnia, T.; Parajka, J.; Gorbachova, L.; Széles, B.; Blöschl, G.; Aksiuk, O.; Tong, R.; Komma, J. Fluctuations of Winter Floods in Small Austrian and Ukrainian Catchments. Hydrology 2022, 9, 38. [Google Scholar] [CrossRef]
- Nabih, S.; Tzoraki, O.; Zanis, P.; Tsikerdekis, T.; Akritidis, D.; Kontogeorgos, I.; Benaabidate, L. Alteration of the Ecohydrological Status of the Intermittent Flow Rivers and Ephemeral Streams due to the Climate Change Impact (Case Study: Tsiknias River). Hydrology 2021, 8, 43. [Google Scholar] [CrossRef]
- Foerst, M.; Rüther, N. Bank Retreat and Streambank Morphology of a Meandering River during Summer and Single Flood Events in Northern Norway. Hydrology 2018, 5, 68. [Google Scholar] [CrossRef]
- Gkiatas, G.T.; Koutalakis, P.D.; Kasapidis, I.K.; Iakovoglou, V.; Zaimes, G.N. Monitoring and Quantifying the Fluvio-Geomorphological Changes in a Torrent Channel Using Images from Unmanned Aerial Vehicles. Hydrology 2022, 9, 184. [Google Scholar] [CrossRef]
- Brunsden, D. A critical assessment of the sensitivity concept in geomorphology. Catena 2001, 42, 99–123. [Google Scholar] [CrossRef]
- García-Martínez, B.; Rinaldi, M. Changes in meander geometry over the last 250 years along the lower Guadalquivir River (southern Spain) in response to hydrological and human factors. Geomorphology 2022, 410, 108284. [Google Scholar] [CrossRef]
- Bertalan, L.; Rodrigo-Comino, J.; Surian, N.; Šulc Michalková, M.; Kovács, Z.; Szabó, S. Detailed assessment of spatial and temporal variations in river channel changes and meander evolution as a preliminary work for effective floodplain management. The example of Sajó River, Hungary. J. Environ. Manag. 2019, 248, 109277. [Google Scholar] [CrossRef] [PubMed]
- Kovács, G.; Pusztai-Eredics, A.; Varga, N. Topographical sources in Hungary used for settlement development studies: Topographical maps made after 1950. In Teremtő Tudomány; Horváthné Molnár, K., Fűzfa, B., Eds.; Savaria University Press: Szombathely, Hungary, 2024; pp. 80–94. (In Hungarian) [Google Scholar]
Survey Period | Period 1 | Period 2 | Period 3 | Period 4 | Period 5 | Period 6 |
---|---|---|---|---|---|---|
Apr–Aug 2022 | Aug–Dec 2022 | Dec 2022–Apr 2023 | Apr–Aug 2023 | Aug–Dec 2023 | Dec 2023–Apr 2024 | |
mean bank erosion | 0.5 ± 0.2 | 0.3 ± 0.1 | 0.7 ± 0.2 | 2.8 ± 1.6 | 1.0 ± 0.6 | 0.4 ± 0.4 |
greatest mean bank erosion (ID of meander) | 0.9 (G) | 0.5 (H) | 1.1 (G) | 6.9 (C) | 3.4 (H) | 1.9 (6) |
maximum local bank erosion | 1.6 (G) | 0.8 (G) | 2.2 (G) | 19.8 (A) | 4.6 (H) | 4.0 (H) |
number of bends with bank erosion higher than 0.8 m | 2 | 0 | 5 | 20 | 14 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusztai-Eredics, A.; Kiss, T. Declining Bank Erosion Rate Driven by Hydrological Alterations of a Small Sub-Alpine River. Hydrology 2024, 11, 114. https://doi.org/10.3390/hydrology11080114
Pusztai-Eredics A, Kiss T. Declining Bank Erosion Rate Driven by Hydrological Alterations of a Small Sub-Alpine River. Hydrology. 2024; 11(8):114. https://doi.org/10.3390/hydrology11080114
Chicago/Turabian StylePusztai-Eredics, Alexandra, and Tímea Kiss. 2024. "Declining Bank Erosion Rate Driven by Hydrological Alterations of a Small Sub-Alpine River" Hydrology 11, no. 8: 114. https://doi.org/10.3390/hydrology11080114
APA StylePusztai-Eredics, A., & Kiss, T. (2024). Declining Bank Erosion Rate Driven by Hydrological Alterations of a Small Sub-Alpine River. Hydrology, 11(8), 114. https://doi.org/10.3390/hydrology11080114