Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. GRACE Mascon
2.1.2. Precipitation
2.1.3. TerraClimate
2.1.4. In Situ YMD Groundwater Hydrology Measurements and Land Use/Land Cover (LULC)
2.2. Methods
2.2.1. Data Preprocessing
2.2.2. ANN Model
2.2.3. AOI Delineation and LULC Integration
2.2.4. Statistical Analysis of Groundwater Hydrology, LULC Category, and Calculated Irrigation Volume Differences
3. Results
3.1. Observed Model Results
- Groundwater hydrology and LULC dynamics of the OUQ and OLQ AOIs (Tables S1–S4)
3.2. Predicted Model Results
- Groundwater hydrology and LULC Dynamics of the PUQ and PLQ AOIs (Tables S5–S8)
3.3. Comparisons Between OUQ vs. PUQ
3.3.1. Groundwater Hydrology Dynamics
3.3.2. LULC Dynamics
3.4. Comparisons Between OLQ vs. PLQ
3.4.1. Groundwater Hydrology Dynamics
3.4.2. LULC Dynamics
3.5. Correlation Analyses of Overall Model Behaviors
3.5.1. Groundwater Level Correlations (Table S9)
3.5.2. Groundwater Correlations for LULC Sub-Estimates (Table S9)
3.6. Correlative Relationships for Groundwater Levels and LULC Categories Among Models
3.6.1. OUQ vs. PUQ
3.6.2. OLQ vs. PLQ
3.7. Additional Correlative Relationships for Groundwater Levels and LULC Categories
3.7.1. OUQ vs. OLQ
3.7.2. PUQ vs. PLQ
3.8. Trends Across Models
3.9. Estimates of Irrigation Volume Differences Between Models
3.9.1. OUQ vs. PUQ (Tables S10–S12)
3.9.2. OLQ vs. PLQ (Tables S13–S15)
4. Discussion
4.1. Geospatial Considerations
4.2. Agroecological Management Considerations
4.2.1. Groundwater Hydrology and LULC Categories
4.2.2. Estimates of Irrigation Volume Differences
4.3. Examination of Pattern–Process Relationships for Agricultural and Non-Agricultural Categories Between and Across Models
4.3.1. Agricultural Categories
4.3.2. Non-Agricultural Categories
4.3.3. Uncertainty Considerations, Limitations, and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Mehta, P.; Siebert, S.; Kummu, M.; Deng, Q.; Ali, T.; Marston, L.; Xie, W.; Davis, K.F. Half of Twenty-First Century Global Irrigation Expansion Has Been in Water-Stressed Regions. Nat. Water 2024, 2, 254–261. [Google Scholar] [CrossRef]
- Warziniack, T.; Arabi, M.; Brown, T.C.; Froemke, P.; Ghosh, R.; Rasmussen, S.; Swartzentruber, R. Projections of Freshwater Use in the United States Under Climate Change. Earths Future 2022, 10, e2021EF002222. [Google Scholar] [CrossRef]
- USDA-NASS. 2018 Irrigation and Water Management Survey; Special Studies, Part 1. AC-17-SS-1; USDA National Agricultural Statistics Service (NASS): Harrisburg, PA, USA, 2019; Volume 3.
- Nie, W.; Zaitchik, B.F.; Rodell, M.; Kumar, S.V.; Arsenault, K.R.; Badr, H.S. Irrigation Water Demand Sensitivity to Climate Variability Across the Contiguous United States. Water Resour. Res. 2021, 57, 2020WR027738. [Google Scholar] [CrossRef]
- Haqiqi, I.; Bowling, L.; Jame, S.; Baldos, U.; Liu, J.; Hertel, T. Global Drivers of Local Water Stresses and Global Responses to Local Water Policies in the United States. Environ. Res. Lett. 2023, 18, 065007. [Google Scholar] [CrossRef]
- Omernik, J.M. Ecoregions of the Conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Omernik, J.M.; Griffith, G.E. Ecoregions of the Conterminous United States: Evolution of a Hierarchical Spatial Framework. Environ. Manag. 2014, 54, 1249–1266. [Google Scholar] [CrossRef]
- Lovelace, J.; Nielsen, M.; Read, A.; Murphy, C.; Maupin, M. Estimated Groundwater Withdrawals from Principal Aquifers in the United States, 2015; Circular 1464; U.S. Geological Survey: Reston, VA, USA, 2020; 70p.
- USDA-NASS. 2008 Irrigation and Water Management Survey; USDA National Agricultural Statistics Service (NASS): Harrisburg, PA, USA, 2009.
- Reba, M.L.; Massey, J.H.; Adviento-Borbe, M.A.; Leslie, D.; Yaeger, M.A.; Anders, M.; Farris, J. Aquifer Depletion in the Lower Mississippi River Basin: Challenges and Solutions. J. Contemp. Water Res. Educ. 2017, 162, 128–139. [Google Scholar] [CrossRef]
- Bhatta, D.; Paudel, K.P.; Li, B. Potential Economic Impacts of Groundwater Conservation in the Mississippi River Alluvial Aquifer (MRAA), Louisiana, USA. Nat. Resour. Model. 2021, 34, e12330. [Google Scholar] [CrossRef]
- Lo, T.H.; Pringle, H.C. (Lyle) A Quantitative Review of Irrigation Development in the Yazoo–Mississippi Delta from 1991 to 2020. Agronomy 2021, 11, 2548. [Google Scholar] [CrossRef]
- Yasarer, L.M.W.; Taylor, J.M.; Rigby, J.R.; Locke, M.A. Trends in Land Use, Irrigation, and Streamflow Alteration in the Mississippi River Alluvial Plain. Front. Environ. Sci. 2020, 8, 66. [Google Scholar] [CrossRef]
- Heintzman, L.J.; McIntyre, N.E.; Langendoen, E.J.; Read, Q.D. Cultivation and Dynamic Cropping Processes Impart Land-Cover Heterogeneity within Agroecosystems: A Metrics-Based Case Study in the Yazoo-Mississippi Delta (USA). Landsc. Ecol. 2024, 39, 29. [Google Scholar] [CrossRef]
- Momm, H.G.; Bingner, R.L.; Moore, K.; Herring, G. Integrated Surface and Groundwater Modeling to Enhance Water Resource Sustainability in Agricultural Watersheds. Agric. Water Manag. 2022, 269, 107692. [Google Scholar] [CrossRef]
- Feng, F.; Ghorbani, H.; Radwan, A.E. Predicting Groundwater Level Using Traditional and Deep Machine Learning Algorithms. Front. Environ. Sci. 2024, 12, 1291327. [Google Scholar] [CrossRef]
- Nelson, R.L. Water Rights for Groundwater Environments as an Enabling Condition for Adaptive Water Governance. Ecol. Soc. 2022, 27, 28. [Google Scholar] [CrossRef]
- Majumdar, S.; Smith, R.G.; Hasan, M.F.; Wilson, J.L.; White, V.E.; Bristow, E.L.; Rigby, J.R.; Kress, W.H.; Painter, J.A. Improving Crop-Specific Groundwater Use Estimation in the Mississippi Alluvial Plain: Implications for Integrated Remote Sensing and Machine Learning Approaches in Data-Scarce Regions. J. Hydrol. Reg. Stud. 2024, 52, 101674. [Google Scholar] [CrossRef]
- Ghaffari, Z.; Easson, G.; Yarbrough, L.D.; Awawdeh, A.R.; Jahan, M.N.; Ellepola, A. Using Downscaled GRACE Mascon Data to Assess Total Water Storage in Mississippi Alluvial Plain Aquifer. Sensors 2023, 23, 6428. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring Groundwater Storage Changes Using the Gravity Recovery and Climate Experiment (GRACE) Satellite Mission: A Review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Rateb, A.; Pool, D.R.; Sanford, W.; Save, H.; Sun, A.; Long, D.; Fuchs, B. Effects of Climate and Irrigation on GRACE-Based Estimates of Water Storage Changes in Major US Aquifers. Environ. Res. Lett. 2021, 16, 094009. [Google Scholar] [CrossRef]
- Miro, M.; Famiglietti, J. Downscaling GRACE Remote Sensing Datasets to High-Resolution Groundwater Storage Change Maps of California’s Central Valley. Remote Sens. 2018, 10, 143. [Google Scholar] [CrossRef]
- Chen, L.; He, Q.; Liu, K.; Li, J.; Jing, C. Downscaling of GRACE-Derived Groundwater Storage Based on the Random Forest Model. Remote Sens. 2019, 11, 2979. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Wang, M. Downscaling Groundwater Storage Data in China to a 1-Km Resolution Using Machine Learning Methods. Remote Sens. 2021, 13, 523. [Google Scholar] [CrossRef]
- Vishwakarma, B.D.; Zhang, J.; Sneeuw, N. Downscaling GRACE Total Water Storage Change Using Partial Least Squares Regression. Sci. Data 2021, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.M.; Dang, T.D.; Anh, D.T. Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sens. 2021, 13, 3513. [Google Scholar] [CrossRef]
- Ali, S.; Ran, J.; Khorrami, B.; Wu, H.; Tariq, A.; Jehanzaib, M.; Khan, M.M.; Faisal, M. Downscaled GRACE/GRACE-FO Observations for Spatial and Temporal Monitoring of Groundwater Storage Variations at the Local Scale Using Machine Learning. Groundw. Sustain. Dev. 2024, 25, 101100. [Google Scholar] [CrossRef]
- Zaitchik, B.F.; Rodell, M.; Reichle, R.H. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. J. Hydrometeorol. 2008, 9, 535–548. [Google Scholar] [CrossRef]
- Khorrami, B.; Ali, S.; Gündüz, O. Investigating the Local-Scale Fluctuations of Groundwater Storage by Using Downscaled GRACE/GRACE-FO JPL Mascon Product Based on Machine Learning (ML) Algorithm. Water Resour. Manag. 2023, 37, 3439–3456. [Google Scholar] [CrossRef]
- Li, P.; Yu, H.; Zhou, P.; Zhang, P.; Wang, R. Downscaling Inversion of GRACE-Derived Groundwater Storage Changes Based on Ensemble Learning. Int. J. Digit. Earth 2023, 16, 2998–3022. [Google Scholar] [CrossRef]
- Ambinakudige, S.; Intsiful, A. Spatiotemporal Analyses of Changing Cropping Patterns and Crop Rotations in the Mississippi Delta. J. Miss. Acad. Sci. 2020, 65, 228–236. [Google Scholar]
- Le, A.; Pricope, N. Increasing the Accuracy of Runoff and Streamflow Simulation in the Nzoia Basin, Western Kenya, through the Incorporation of Satellite-Derived CHIRPS Data. Water 2017, 9, 114. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Han, W.; Yang, Z.; Di, L.; Mueller, R. CropScape: A Web Service Based Application for Exploring and Disseminating US Conterminous Geospatial Cropland Data Products for Decision Support. Comput. Electron. Agric. 2012, 84, 111–123. [Google Scholar] [CrossRef]
- Sun, A.Y. Predicting Groundwater Level Changes Using GRACE Data: Predicting Groundwater Level Changes Using Grace Data. Water Resour. Res. 2013, 49, 5900–5912. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, W.; Nie, N.; Guo, Y. Long-Term Groundwater Storage Variations Estimated in the Songhua River Basin by Using GRACE Products, Land Surface Models, and in-Situ Observations. Sci. Total Environ. 2019, 649, 372–387. [Google Scholar] [CrossRef]
- Pulla, S.T.; Yasarer, H.; Yarbrough, L.D. GRACE Downscaler: A Framework to Develop and Evaluate Downscaling Models for GRACE. Remote Sens. 2023, 15, 2247. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wei, T.; Simko, V. corrplot: Visualization of a Correlation Matrix (Version 0.92). GitHub. 2022. Available online: https://github.com/taiyun/corrplot (accessed on 12 June 2024).
- Massey, J.H.; Mark Stiles, C.; Epting, J.W.; Shane Powers, R.; Kelly, D.B.; Bowling, T.H.; Leighton Janes, C.; Pennington, D.A. Long-Term Measurements of Agronomic Crop Irrigation Made in the Mississippi Delta Portion of the Lower Mississippi River Valley. Irrig. Sci. 2017, 35, 297–313. [Google Scholar] [CrossRef]
- Feng, G.; Jin, W.; Ouyang, Y.; Huang, Y. The Role of Changing Land Use and Irrigation Scheduling in Groundwater Depletion Mitigation in a Humid Region. Agric. Water Manag. 2024, 291, 108606. [Google Scholar] [CrossRef]
- USDA-NASS. 2023 December Agricultural and Row Crops County Agricultural Production Survey; USDA National Agricultural Statistics Service (NASS): Harrisburg, PA, USA, 2024.
- Henry, C.G.; Hirsh, S.L.; Anders, M.M.; Vories, E.D.; Reba, M.L.; Watkins, K.B.; Hardke, J.T. Annual Irrigation Water Use for Arkansas Rice Production. J. Irrig. Drain. Eng. 2016, 142, 05016006. [Google Scholar] [CrossRef]
- Ochs, C.; Kleiss, B.A.; Killgore, K.J. Chapter 12—Resilience of Ecosystem Services of a Large River-Floodplain Complex: The Lower Mississippi River System. In Resilience and Riverine Landscapes; Thoms, M., Fuller, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 247–268. ISBN 978-0-323-91716-2. [Google Scholar]
- Gratzer, M.C.; Davidson, G.R.; O’Reilly, A.M.; Rigby, J.R. Groundwater Recharge from an Oxbow Lake-wetland System in the Mississippi Alluvial Plain. Hydrol. Process. 2020, 34, 1359–1370. [Google Scholar] [CrossRef]
- Engle, C.R.; Hanson, T.; Kumar, G. Economic History of U.S. Catfish Farming: Lessons for Growth and Development of Aquaculture. Aquac. Econ. Manag. 2022, 26, 1–35. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Clinton, S.; Jefferson, A.; Manda, A.; McMillan, S. Urbanization Effects on Watershed Hydrology and In-Stream Processes in the Southern United States. Water 2010, 2, 605–648. [Google Scholar] [CrossRef]
- Lerner, D.N. Identifying and Quantifying Urban Recharge: A Review. Hydrogeol. J. 2002, 10, 143–152. [Google Scholar] [CrossRef]
- Leaf, A.T.; Duncan, L.L.; Haugh, C.J.; Hunt, R.J.; Rigby, J.R. Simulating Groundwater Flow in the Mississippi Alluvial Plain with a Focus on the Mississippi Delta; U.S. Geological Survey Scientific Investigations Report 2023–5100; U.S. Geological Survey: Reston, VA, USA, 2023; 143p. Available online: https://pubs.usgs.gov/publication/sir20235100/full (accessed on 4 March 2024). [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heintzman, L.J.; Ghaffari, Z.; Awawdeh, A.R.; Barrett, D.E.; Yarbrough, L.D.; Easson, G.; Moore, M.T.; Locke, M.A.; Yasarer, H.I. Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA). Hydrology 2024, 11, 186. https://doi.org/10.3390/hydrology11110186
Heintzman LJ, Ghaffari Z, Awawdeh AR, Barrett DE, Yarbrough LD, Easson G, Moore MT, Locke MA, Yasarer HI. Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA). Hydrology. 2024; 11(11):186. https://doi.org/10.3390/hydrology11110186
Chicago/Turabian StyleHeintzman, Lucas J., Zahra Ghaffari, Abdel R. Awawdeh, Damien E. Barrett, Lance D. Yarbrough, Greg Easson, Matthew T. Moore, Martin A. Locke, and Hakan I. Yasarer. 2024. "Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA)" Hydrology 11, no. 11: 186. https://doi.org/10.3390/hydrology11110186
APA StyleHeintzman, L. J., Ghaffari, Z., Awawdeh, A. R., Barrett, D. E., Yarbrough, L. D., Easson, G., Moore, M. T., Locke, M. A., & Yasarer, H. I. (2024). Assessing Differences in Groundwater Hydrology Dynamics Between In Situ Measurements and GRACE-Derived Estimates via Machine Learning: A Test Case of Consequences for Agroecological Relationships Within the Yazoo–Mississippi Delta (USA). Hydrology, 11(11), 186. https://doi.org/10.3390/hydrology11110186