Comparison between MODFLOW Groundwater Modeling with Traditional and Distributed Recharge
Abstract
:1. Introduction
2. Materials and Methods
3. Study Area
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uchenna, U.P.; Lancia, M.; Viaroli, S.; Ugbaja, A.N.; Galluzzi, M.; Zheng, C. Groundwater Sustainability in African Metropolises: Case Study from Calabar, Nigeria. J. Hydrol. Reg. Stud. 2023, 45, 101314. [Google Scholar] [CrossRef]
- Cook, P.G.; Shanafield, M.; Andersen, M.S.; Bourke, S.; Cartwright, I.; Cleverly, J.; Currell, M.; Doody, T.M.; Hofmann, H.; Hugmann, R.; et al. Sustainable Management of Groundwater Extraction: An Australian Perspective on Current Challenges. J. Hydrol. Reg. Stud. 2022, 44, 101262. [Google Scholar] [CrossRef]
- Fotovat, M.; Porhemmat, J.; Sedghi, H.; Babazadeh, H. Evaluation of Weap-Modflow Model as an Integrated Water Resources Management Model for Sustainable Development (a Case Study: Gharesoo at Doab-Merek, Kermanshah, Iran). Civ. Eng. Infrastruct. J. 2019, 52, 167–183. [Google Scholar] [CrossRef]
- Alsevavni, I.N.; Almohseen, K.A. Integrated Application of (Modflow) and (Weap) Model in Nineveh Province. J. Univ. Duhok 2017, 20, 680–690. [Google Scholar] [CrossRef]
- Khadri, S.F.R.; Pande, C. Groundwater Flow Modeling for Calibrating Steady State Using MODFLOW Software: A Case Study of Mahesh River Basin, India. Model. Earth Syst. Environ. 2016, 2, 39. [Google Scholar] [CrossRef]
- Chen, M.; Izady, A.; Abdalla, O.A. An Efficient Surrogate-Based Simulation-Optimization Method for Calibrating a Regional MODFLOW Model. J. Hydrol. 2017, 544, 591–603. [Google Scholar] [CrossRef]
- Ochoa-González, G.H.; Carreón-Freyre, D.; Cerca, M.; López-Martínez, M. Assessment of Groundwater Flow in Volcanic Faulted Areas. A Study Case in Queretaro, Mexico. Geofís. Int. 2015, 54, 199–220. [Google Scholar] [CrossRef]
- Peñuela Arévalo, L.A.; Carrillo Rivera, J.J. Definición de Zonas de Recarga y Descarga de Agua Subterránea a Partir de Indicadores Superficiales: Centro—Sur de La Mesa Central, México. Investig. Geogr. 2013, 81, 18–32. [Google Scholar] [CrossRef]
- Sánchez-San Román, J. Hidrología Superficial y Subterránea, 1st ed.; Universidad de Salamanca: Salamanca, Spain, 2017. [Google Scholar]
- El Moneam, M.A. Review of Artificial Recharge Prospects for Augmentation of Groundwater in Egypt: A Case Study of El Bustan Extension Area. Ain Shams Eng. J. 2023, 14, 101995. [Google Scholar] [CrossRef]
- Hughes, J.D.; Russcher, M.J.; Langevin, C.D.; Morway, E.D.; McDonald, R.R. The MODFLOW Application Programming Interface for Simulation Control and Software Interoperability. Environ. Model. Softw. 2022, 148, 105257. [Google Scholar] [CrossRef]
- Jafari, T.; Kiem, A.S.; Javadi, S.; Nakamura, T.; Nishida, K. Fully Integrated Numerical Simulation of Surface Water-Groundwater Interactions Using SWAT-MODFLOW with an Improved Calibration Tool. J. Hydrol. Reg. Stud. 2021, 35, 100822. [Google Scholar] [CrossRef]
- Siddik, M.S.; Tulip, S.S.; Rahman, A.; Islam, M.N.; Haghighi, A.T.; Mustafa, S.M.T. The Impact of Land Use and Land Cover Change on Groundwater Recharge in Northwestern Bangladesh. J. Environ. Manag. 2022, 315, 115130. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Gleeson, T.; Wada, Y.; Wagener, T. Enhanced Groundwater Recharge Rates and Altered Recharge Sensitivity to Climate Variability through Subsurface Heterogeneity. Proc. Natl. Acad. Sci. USA 2017, 114, 2842–2847. [Google Scholar] [CrossRef]
- Ayvaz, M.T.; Elçi, A. Groundwater Recharge Rate and Zone Structure Estimation Using PSOLVER Algorithm. Groundwater 2014, 52, 434–447. [Google Scholar] [CrossRef]
- Ke, T.; Shu, L.; Chen, X. Modeling the Groundwater Recharge in Karst Aquifers by Using a Reservoir Model. Water Sci. Technol. 2013, 68, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Morales, J.; Fonseca, C.R.; Goméz-Albores, M.A.; Sampedro-Rosas, M.L.; Silva-Gómez, S.E. Proportional Variation of Potential Groundwater Recharge as a Result of Climate Change and Land-Use: A Study Case in Mexico. Land 2020, 9, 364. [Google Scholar] [CrossRef]
- Ahuanlla Huaccha, J.L.; Díaz Aguilar, R.D.; Vigo Rivera, J.E.; Callate Chura, R.A. Aplicación de Modflow 6 Con Model Mouse 4 Para El Modelamiento Del Flujo Subterráneo de La Microcuenca Macarí, Melgar—Perú. Rev. Investig. Cienc. Tecnol. Desarro. 2022, 7, 1–11. [Google Scholar] [CrossRef]
- Abbas, S.A.; Xuan, Y.; Bailey, R.T. Assessing Climate Change Impact on Water Resources in Water Demand Scenarios Using SWAT-MODFLOW-WEAP. Hydrology 2022, 9, 164. [Google Scholar] [CrossRef]
- Loukika, K.N.; Venkata Reddy, K.; Durga Rao, K.H.V.; Singh, A. Estimation of Groundwater Recharge Rate Using SWAT MODFLOW Model. In Applications of Geomatics in Civil Engineering, Proceedings of the ICGCE 2018, Phuket, Thailand, 10–12 January 2018; Springer: Singapore, 2020; pp. 143–154. [Google Scholar]
- Ware, H.H.; Mengistu, T.D.; Yifru, B.A.; Chang, S.W.; Chung, I.-M. Assessment of Spatiotemporal Groundwater Recharge Distribution Using SWAT-MODFLOW Model and Transient Water Table Fluctuation Method. Water 2023, 15, 2112. [Google Scholar] [CrossRef]
- Szymkiewicz, A.; Gumuła-Kawęcka, A.; Šimůnek, J.; Leterme, B.; Beegum, S.; Jaworska-Szulc, B.; Pruszkowska-Caceres, M.; Gorczewska-Langner, W.; Angulo-Jaramillo, R.; Jacques, D. Simulations of Freshwater Lens Recharge and Salt/Freshwater Interfaces Using the HYDRUS and SWI2 Packages for MODFLOW. J. Hydrol. Hydromech. 2018, 66, 246–256. [Google Scholar] [CrossRef]
- Noori, R.; Maghrebi, M.; Jessen, S.; Bateni, S.M.; Heggy, E.; Javadi, S.; Noury, M.; Pistre, S.; Abolfathi, S.; AghaKouchak, A. Decline in Iran’s Groundwater Recharge. Nat. Commun. 2023, 14, 6674. [Google Scholar] [CrossRef]
- Sallwey, J.; Bonilla Valverde, J.P.; Vásquez López, F.; Junghanns, R.; Stefan, C. Suitability Maps for Managed Aquifer Recharge: A Review of Multi-Criteria Decision Analysis Studies. Environ. Rev. 2019, 27, 138–150. [Google Scholar] [CrossRef]
- Niswonger, R.G.; Morway, E.D.; Triana, E.; Huntington, J.L. Managed Aquifer Recharge through Off-season Irrigation in Agricultural Regions. Water Resour. Res. 2017, 53, 6970–6992. [Google Scholar] [CrossRef]
- Russo, T.A.; Fisher, A.T.; Lockwood, B.S. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling. Groundwater 2015, 53, 389–400. [Google Scholar] [CrossRef]
- Maples, S.R.; Fogg, G.E.; Maxwell, R.M. Modeling Managed Aquifer Recharge Processes in a Highly Heterogeneous, Semi-Confined Aquifer System. Hydrogeol. J. 2019, 27, 2869–2888. [Google Scholar] [CrossRef]
- López, B.; Rosales, L.; Saavedra, O. Modelación Hidrogeológica en el Valle Central de Cochabamba-Bolivia. Investig. Desarro. 2023, 23, 23–39. [Google Scholar] [CrossRef]
- Dar, T.; Rai, N.; Bhat, A. Delineation of Potential Groundwater Recharge Zones Using Analytical Hierarchy Process (AHP). Geol. Ecol. Landsc. 2021, 5, 292–307. [Google Scholar] [CrossRef]
- Vasileva, T. An Assessment of Potential Groundwater Recharge Zones in Bulgaria. Geol. Balc. 2019, 48, 43–61. [Google Scholar] [CrossRef]
- Andreo, B.; Vías, J.; López-Greta, J.A.; Carrasco, F.; Durán, J.J.; Jiménez, P. Propuesta Metodológica Para La Estimación de La Recarga En Acuíferos Carbonáticos. Bol. Geol. Min. 2004, 115, 177–186. [Google Scholar]
- Lara-Vásconez, N.X.; Cushquicullma-Colcha, D.F.; Guaiña-Yungán, J.I.; Espinoza, V.M.; Ati-Cutiupala, G.M. Identificación de Zonas Potenciales de Recarga y Descarga de Agua Subterránea En La Subcuenca Del Río Chambo Mediante Los Sistemas de Información Geográfica y El Análisis Multicriterio. Rev. Cient.-Acad. Multidiscip. 2021, 6, 122–148. [Google Scholar]
- Boyás Martínez, E.; Cervantes Victoria, G.I.; González Mora, M.F. Determinación de Sitios Potenciales de Recarga Artificial de Agua Subterránea EN LOS Acuíferos Que Conforman La Subregión Valle de México; Centro de Investigación en Ciencias de Información Geoespacial: México City, Mexico, 2020. [Google Scholar]
- Hernández-Juárez, R.A.; Martinez Rivera, L.M.; Peñuela-Arévalo, L.A.; Rivera-Reyes, S. Identificación de Zonas Potenciales de Recarga y Descarga de Agua Subterránea En La Cuenca Del Río Ayuquila-Armería Mediante El Uso de SIG y El Análisis Multicriterio. Investig. Geogr. 2020. [Google Scholar] [CrossRef]
- Singh, S.K.; Zeddies, M.; Shankar, U.; Griffiths, G.A. Potential Groundwater Recharge Zones within New Zealand. Geosci. Front. 2019, 10, 1065–1072. [Google Scholar] [CrossRef]
- Ardakani, A.H.H.; Shojaei, S.; Shahvaran, A.R.; Kalantari, Z.; Cerdà, A.; Tiefenbacher, J. Selecting Potential Locations for Groundwater Recharge by Means of Remote Sensing and GIS and Weighting Based on Boolean Logic and Analytic Hierarchy Process. Environ. Earth Sci. 2022, 81, 8. [Google Scholar] [CrossRef]
- Matus Silva, O.D. Elaboración Participativa de Una Metodología Para La Identificación de Zonas Potenciales de Recarga Hídrica En Subcuencas Hidrográficas, Aplicada a La Subcuenca Del Río Jucuapa, Matagalpa, Nicaragua. Master’s Thesis, CATIE, Turrialba, Costa Rica, 2007. [Google Scholar]
- Mussa, K.R.; Mjemah, I.C.; Machunda, R.L. Open-Source Software Application for Hydrogeological Delineation of Potential Groundwater Recharge Zones in the Singida Semi-Arid, Fractured Aquifer, Central Tanzania. Hydrology 2020, 7, 28. [Google Scholar] [CrossRef]
- Agarwal, R.; Garg, P.K. Remote Sensing and GIS Based Groundwater Potential Recharge Zones Mapping Using Multi-Criteria Decision-Making Technique. Water Resour. Manag. 2016, 30, 243–260. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005: The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2005. [Google Scholar]
- Chiang, W.-H. 3D-Groundwater Modeling with PMWIN, 2nd ed.; Springer: New York, NY, USA, 2005; ISBN 103-540-27590-8. [Google Scholar]
- Bagherzadeh, S.; Nobandegani, A.F.; Rahimi, Z.; Derakhshan, Z.; Rajabi, S.; Shirgahi, F.; Mohammadpour, A. Predicting the Alleviation of Nitrate Contamination in Aquifers by Conducting Management Scenarios Using the PMWIN Software: Application in the Andimeshk Plain, Iran. Groundw. Sustain. Dev. 2023, 20, 100883. [Google Scholar] [CrossRef]
- Talebi, S.; Rakhshandehro, G.; ParsiMehr, M.; Rezaei, S. Simulating Quar-Maharlu Aquifer in Fars Province, Iran, and Optimizing Artificial Recharge Using PMWIN Model. J. Adv. Environ. Health Res. 2022, 10, 105–118. [Google Scholar] [CrossRef]
- Stockholm Environment Institute. Guía Metodológica. Modelación Hidrológica y de Recursos Hídricos Con El Modelo WEAP; Centro de Cambio Global-Universidad Católica de Chile, Stockholm Environment Institute: Santiago, Chile, 2009. [Google Scholar]
- CONABIO. Portal de Geoinformación. 2022. Available online: http://www.conabio.gob.mx/informacion/gis/ (accessed on 19 February 2023).
- INEGI. Continuo de Elevaciones Mexicano (CEM). Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 22 August 2023).
- Arellano-Lara, F.; Escalante-Sandoval, C.A. Multivariate Delineation of Rainfall Homogeneous Regions for Estimating Quantiles of Maximum Daily Rainfall: A Case Study of Northwestern Mexico. Atmosfera 2014, 27, 47–60. [Google Scholar] [CrossRef]
- CICESE. Base de Datos Climatológica Nacional (Sistema CLICOM). Available online: http://clicom-mex.cicese.mx/mapa.html (accessed on 19 February 2023).
- CONAGUA. Aguas Subterráneas. Available online: https://sigagis.conagua.gob.mx/gas1/sections/Disponibilidad_Acuiferos.html (accessed on 22 August 2023).
- Smith, L.; Wheatcraft, S.W. Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; Chapter 6. [Google Scholar]
- Villanueva Martínez, M.; Iglesias López, A. Pozos y Acuíferos. Técnicas de Evaluación Mediante Ensayos de Bombeo; Instituto Geológico y Minero de España: Madrid, Spain, 1984; ISBN 84-7474-258-7. [Google Scholar]
- Servicio Geológico Mexicano. GeoInfoMEx. Available online: https://www.sgm.gob.mx/GeoInfoMexGobMx/# (accessed on 14 September 2023).
- CONAGUA. Base de Datos Del REPDA. Available online: https://app.conagua.gob.mx/consultarepda.aspx (accessed on 22 August 2023).
- Chen, F.-W.; Liu, C.-W. Estimation of the Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) in the Middle of Taiwan. Paddy Water Environ. 2012, 10, 209–222. [Google Scholar] [CrossRef]
- Gobierno de México Data México Morelia. Available online: https://www.economia.gob.mx/datamexico/es/profile/geo/morelia (accessed on 22 August 2023).
- CONAGUA. Gerencia de Planificación Hídrica; Sistema Nacional de Información del Agua Numeragua 2022; CONAGUA: Mexico City, Mexico, 2022. [Google Scholar]
- Fox, D.M.; Bryan, R.B.; Price, A.G. The Influence of Slope Angle on Final Infiltration Rate for Interrill Conditions. Geoderma 1997, 80, 181–194. [Google Scholar] [CrossRef]
- Sharma, K.D.; Singh, H.P.; Pareek, O.P. Rainwater Infiltration into a Bare Loamy Sand. Hydrol. Sci. J. 1983, 28, 417–424. [Google Scholar] [CrossRef]
Inputs | ML/Year | Outputs | ML/Year |
---|---|---|---|
Vertical Recharge | 169,672 | Pumping | 232,310 |
Induced Recharge | 38,500 | Springs | 58,780 |
Lateral Entrance | 88,000 | Evapotranspiration | 64,200 |
Total | 296,172 | Total | 355,290 |
Parameter | Characteristic | Reclassification Value |
---|---|---|
Hydrogeology | Low–Medium Permeability | 2 |
Medium–High Permeability | 4 | |
High Permeability | 6 | |
Fault Density | Very Low | 1 |
Low | 2 | |
Medium | 3 | |
High | 5 | |
Very High | 6 | |
Soil Type | Fine | 2 |
Medium | 4 | |
Alluvial | 6 | |
Soil Use | Agricultural | 2 |
Naked | 3 | |
Urban | 1 | |
Forest | 5 | |
Water Body | 6 | |
Scrub | 3 | |
Pasture | 3 | |
Drainage Density | Very Low | 1 |
Low | 2 | |
Medium | 3 | |
Moderate High | 4 | |
Slope | Smooth (<2%) | 7 |
Mild (<6%) | 6 | |
Inclined (<10%) | 5 | |
Moderate to Very Steep (>10%) | 4 | |
Precipitation | Very Low (654–752 mm) | 1 |
Low (752–849 mm) | 2 | |
Medium (849–946 mm) | 3 | |
Moderate High (946–1044 mm) | 4 | |
High (1044–1141 mm) | 5 | |
Very High (1141–1238 mm) | 6 | |
Too High (1238–1336 mm) | 7 |
Geology | Kmin (m/day) | Smax (Dimensionless Parameter) |
---|---|---|
Andesite | 0.001 | 0.05 |
Basalt | 10 | 0.05 |
Dacite | 0.001 | 0.005 |
Granite | 3.3 | 0.18 |
Lacustine | 3.3 | 0.06 |
Lahar | 0.0001 | 0.005 |
Limestone | 0.001 | 0.06 |
Pyroclastic | 0.0001 | 0.005 |
Rhyolite | 0.00001 | 0.005 |
Sandstone–Medium | 3.3 | 0.15 |
Tuff | 0.001 | 0.05 |
Piezometric Levels | |||||||||
---|---|---|---|---|---|---|---|---|---|
Observed | Traditional Modeling | Variation in PGR vs. Traditional | |||||||
Well | 2008 | 2017 | 2022 | 2008 | 2017 | 2022 | 2008 | 2017 | 2022 |
1 | 1836.00 | 1833.33 | 1810.50 | 1829.791 | 1830.234 | 1830.950 | −0.002 | 0.996 | 0.961 |
2 | 1832.00 | 1828.19 | 1826.65 | 1822.693 | 1818.449 | 1817.928 | 0.003 | 0.115 | 0.067 |
3 | N/D | 1810.40 | 1797.40 | 1821.254 | 1820.944 | 1820.488 | 0.001 | 1.827 | 1.524 |
4 | 1867.00 | 1817.45 | 1800.13 | 1850.948 | 1882.355 | 1886.643 | 0.001 | 0.855 | 0.852 |
5 | 1851.00 | 1836.04 | 1829.31 | 1850.479 | 1858.26 | 1861.753 | −0.001 | 0.182 | 0.163 |
6 | 1856.94 | 1832.60 | 1838.63 | 1857.079 | 1851.665 | 1851.123 | 0.001 | 0.460 | 0.471 |
7 | 1838.89 | 1823.23 | 1820.44 | 1827.840 | 1826.720 | 1826.295 | 0.002 | 0.138 | 0.154 |
8 | 1847.00 | 1814.34 | 1814.75 | 1821.027 | 1822.072 | 1822.530 | −0.007 | 0.215 | 0.226 |
9 | N/D | 1826.50 | 1828.30 | 1821.198 | 1825.346 | 1825.665 | −0.002 | 1.177 | 0.755 |
10 | 1847.94 | 1836.34 | 1837.00 | 1848.213 | 1850.770 | 1851.927 | 0.000 | 0.011 | 0.012 |
Well | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Traditional Recharge | ||||||||||
2008 | 0.3% | 0.5% | 0.9% | 0.0% | 0.0% | 0.6% | 1.4% | 0.0% | ||
2017 | 0.2% | 0.5% | −0.6% | −3.6% | −1.2% | −1.0% | −5.3% | −0.4% | 0.1% | −0.8% |
2022 | −1.1% | 0.5% | −1.3% | −4.8% | −1.8% | −0.7% | −5.8% | −0.4% | 0.1% | −0.8% |
PGR Recharge | ||||||||||
2008 | 0.3% | 0.5% | 0.9% | 0.0% | 0.0% | −1.1% | 1.4% | 0.0% | ||
2017 | 0.1% | 0.5% | −0.7% | −3.6% | −1.2% | −1.1% | −5.3% | −0.4% | 0.0% | −0.8% |
2022 | −1.2% | 0.5% | −1.4% | −4.9% | −1.8% | −0.7% | −5.7% | −0.4% | 0.1% | −0.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Farfán, M.d.M.; García-Romero, L.; Martínez-Cinco, M.A.; Hernández-Hernández, M.A.; Sánchez-Quispe, S.T. Comparison between MODFLOW Groundwater Modeling with Traditional and Distributed Recharge. Hydrology 2024, 11, 9. https://doi.org/10.3390/hydrology11010009
Navarro-Farfán MdM, García-Romero L, Martínez-Cinco MA, Hernández-Hernández MA, Sánchez-Quispe ST. Comparison between MODFLOW Groundwater Modeling with Traditional and Distributed Recharge. Hydrology. 2024; 11(1):9. https://doi.org/10.3390/hydrology11010009
Chicago/Turabian StyleNavarro-Farfán, María del Mar, Liliana García-Romero, Marco Antonio Martínez-Cinco, Mario Alberto Hernández-Hernández, and Sonia Tatiana Sánchez-Quispe. 2024. "Comparison between MODFLOW Groundwater Modeling with Traditional and Distributed Recharge" Hydrology 11, no. 1: 9. https://doi.org/10.3390/hydrology11010009
APA StyleNavarro-Farfán, M. d. M., García-Romero, L., Martínez-Cinco, M. A., Hernández-Hernández, M. A., & Sánchez-Quispe, S. T. (2024). Comparison between MODFLOW Groundwater Modeling with Traditional and Distributed Recharge. Hydrology, 11(1), 9. https://doi.org/10.3390/hydrology11010009