Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Mann-Kendall Test
3. Results
3.1. Spatiotemporal Variation of Temperature and Hot and Cold Periods
3.2. Spatiotemporal Variation of Rainfall
3.3. Trend of Rainfall and Temperature over the Ceyhan Basin and the Sub-Basins
3.4. Intra-Annual Climate Distribution and Variability
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dams, J.; Nossent, J.; Senbeta, T.B.; Willems, P.; Batelaan, O. Multi-model approach to assess the impact of climate change on runoff. J. Hydrol. 2015, 529, 1601–1616. [Google Scholar] [CrossRef]
- Adu-Prah, S.; Appiah-Opoku, S.; Aboagye, D. Spatiotemporal evidence of recent climate variability in Ghana. Afr. Geogr. Rev. 2019, 38, 172–190. [Google Scholar] [CrossRef]
- Amin, M.Z.M.; Shaaban, A.J.; Ercan, A.; Ishida, K.; Kavvas, M.L.; Chen, Z.Q.; Jang, S. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically based hydrology modelo. Sci. Total Environ. 2017, 575, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Mogano, P.; Mokoele, N. South African Climate Change Adaptation Politics: Urban Governance Prospects. Int. J. Humanit. Soc. Sci. 2019, 11, 68–83. [Google Scholar]
- Madzivhandila, T.S.; Niyimbanira, F. Rural economies and livelihood activities in developing countries: Exploring prospects of the emerging climate change crisis. Int. J. Econ. Financ. Stud. 2020, 12, 239–254. [Google Scholar] [CrossRef]
- Van Huong, N.; Minh Nguyet, B.T.; Van Hung, H.; Minh Duc, H.; Van Chuong, N.; Do Tri, M.; Van Hien, P. Economic impact of climate change on agriculture: A case of Vietnam. AgBioForum 2022, 24, 1–12. [Google Scholar]
- Soylu Pekpostalci, D.; Tur, R.; Danandeh Mehr, A.; Vazifekhah Ghaffari, M.A.; Dąbrowska, D.; Nourani, V. Drought monitoring and forecasting across Turkey: A contemporary review. Sustainability 2023, 15, 6080. [Google Scholar] [CrossRef]
- Tan, Y.X.; Ng, J.L.; Huang, Y.F. A Review on Drought Index Forecasting and Their Modelling Approaches. Arch. Comput. Methods Eng. 2023, 30, 1111–1129. [Google Scholar] [CrossRef]
- Dunn, S.M.; Brown, I.; Sample, J.; Post, H. Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. J. Hydrol. 2012, 434, 19–35. [Google Scholar] [CrossRef]
- Pirnia, A.; Golshan, M.; Darabi, H.; Adamowski, J.; Rozbeh, S. Using the Mann–Kendall test and double mass curve method to explore stream flow changes in response to climate and human activities. J. Water Clim. Chang. 2018, 10, 725–742. [Google Scholar] [CrossRef]
- Li, F.; Zhang, G.; Xu, Y.J. Spatiotemporal variability of climate and streamflow in the Songhua River Basin, northeast China. J. Hydrol. 2014, 514, 53–64. [Google Scholar] [CrossRef]
- Ghazi, B.; Dutt, S.; Torabi Haghighi, A. Projection of Future Meteorological Droughts in Lake Urmia Basin, Iran. Water 2023, 15, 1558. [Google Scholar] [CrossRef]
- Chang, J.; Wang, Y.; Istanbulluoglu, E.; Bai, T.; Huang, Q.; Yang, D.; Huang, S. Impact of climate change and human activities on runoff in the Weihe River Basin, China. Quat. Int. 2015, 380, 169–179. [Google Scholar] [CrossRef]
- El-Khalifa, Z.S.; Zahran, H.F.; Ayoub, A. Climate Change Factors’ Impact on the Egyptian Agricultural Sector. Asian J. Agric. Rural. Dev. 2022, 12, 192–200. [Google Scholar] [CrossRef]
- Chong, K.L.; Huang, Y.F.; Koo, C.H.; Ahmed, A.N.; El-Shafie, A. Spatiotemporal variability analysis of standardized precipitation indexed droughts using wavelet transform. J. Hydrol. 2022, 605, 127299. [Google Scholar] [CrossRef]
- Adu-Prah, S.; Tetteh, E.K. Spatiotemporal analysis of climate variability impacts on malaria prevalence in Ghana. Appl. Geogr. 2015, 60, 266–273. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Ran, L.; Su, T. Climatic and anthropogenic impacts on runoff changes in the songhua river basin over the last 56 years (1955–2010), Northeastern China. Catena 2015, 127, 258–269. [Google Scholar] [CrossRef]
- Wen, X.; Wu, X.; Gao, M. Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951–2015. Atmos. Res. 2017, 197, 132–149. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Hrnjica, B.; Bonacci, O.; Torabi Haghighi, A. Innovative and successive average trend analysis of temperature and precipitation in Osijek, Croatia. Theor. Appl. Climatol. 2021, 145, 875–890. [Google Scholar] [CrossRef]
- Panditharathne, R.; Gunathilake, M.B.; Chathuranika, I.M.; Rathnayake, U.; Babel, M.S.; Jha, M.K. Trends and Variabilities in Rainfall and Streamflow: A Case Study of the Nilwala River Basin in Sri Lanka. Hydrology 2023, 10, 8. [Google Scholar] [CrossRef]
- Abou Zaki, N.; Torabi Haghighi, A.; Rossi, P.M.; Tourian, M.J.; Bakhshaee, A.; Kløve, B. Evaluating impacts of irrigation and drought on river, groundwater and a terminal wetland in the Zayanderud Basin, Iran. Water 2020, 12, 1302. [Google Scholar] [CrossRef]
- Diani, K.; Kacimi, I.; Zemzami, M.; Tabyaoui, H.; Haghighi, A.T. Evaluation of meteorological drought using the Standardized Precipitation Index (SPI) in the High Ziz River basin, Morocco. Limnol. Rev. 2019, 19, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Dabanlı, İ. A climate change impact: Variation in precipitation patterns, and increased drought risk in Turkey. Sak. Univ. J. Sci. 2019, 23, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Altın, T.B.; Sarış, F.; Altın, B.N. Determination of drought intensity in Seyhan and Ceyhan River Basins, Turkey, by hydrological drought analysis. Theor. Appl. Climatol. 2020, 139, 95–107. [Google Scholar] [CrossRef]
- Gumus, V.; Simsek, O.; Avsaroglu, Y.; Agun, B. Spatio-temporal trend analysis of drought in the GAP Region, Turkey. Nat. Hazards 2021, 109, 1759–1776. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Vaheddoost, B. Identification of the trends associated with the SPI and SPEI indices across Ankara, Turkey. Theor. Appl. Climatol. 2020, 139, 1531–1542. [Google Scholar] [CrossRef]
- Eris, E.; Cavus, Y.; Aksoy, H.; Burgan, H.I.; Aksu, H.; Boyacioglu, H. Spatiotemporal analysis of meteorological drought over Kucuk Menderes River Basin in the Aegean Region of Turkey. Theor. Appl. Climatol. 2020, 142, 1515–1530. [Google Scholar] [CrossRef]
- Mersin, D.; Gulmez, A.; Safari, M.J.S.; Vaheddoost, B.; Tayfur, G. Drought Assessment in the Aegean Region of Turkey. Pure Appl. Geophys. 2022, 179, 3035–3053. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions. Climate 2023, 11, 106. [Google Scholar] [CrossRef]
- Mersin, D.; Tayfur, G.; Vaheddoost, B.; Safari, M.J.S. Historical Trends Associated with Annual Temperature and Precipitation in Aegean Turkey, Where Are We Heading? Sustainability 2022, 14, 13380. [Google Scholar] [CrossRef]
- Haghighi, A.T.; Yaraghi, N.; Sönmez, M.E.; Darabi, H.; Kum, G.; Çelebi, A.; Kløve, B. An index-based approach for assessment of upstream-downstream flow regime alteration. J. Hydrol. 2021, 600, 126697. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.; Liu, C. Comparison of the MK test and EMD method for trend identification in hydrological time series. J. Hydrol. 2014, 510, 293–298. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Li, B. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor. Appl. Climatol. 2013, 111, 537–545. [Google Scholar] [CrossRef]
- Rosmanna, T.; Domíngueza, E.; Chavarro, J. Comparing trends in hydro-meteorological average and extreme data sets around the world at different time scales. J. Hydrol. Reg. Stud. 2015, 5, 200–212. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Li, J.; Zhao, J.; Gao, S.; Chen, Y. Climate variations in northern Xinjiang of China over the past 50 years under global warming. Quatern. Int. 2015, 358, 83–92. [Google Scholar] [CrossRef]
- Hefzul Bari, S.; Rahman, T.U.; Hoque Azizul, M.; Hussain, M. Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmos. Res. 2016, 176–177, 148–158. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Postolache, F. Are the Regional Precipitation and Temperature Series Correlated? Case Study from Dobrogea, Romania. Hydrology 2023, 10, 109. [Google Scholar] [CrossRef]
- Hayes, M.J.; Svoboda, M.D.; Wiihite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Mallya, G.; Mishra, V.; Niyogi, D.; Tripathi, S.; Govindaraju, R.S. Trends and variability of droughts over the Indian monsoon region. Weather. Clim. Extrem. 2016, 12, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Torabi Haghighi, A.; Abou Zaki, N.; Rossi, P.M.; Noori, R.; Hekmatzadeh, A.A.; Saremi, H.; Kløve, B. Unsustainability syndrome—From meteorological to agricultural drought in arid and semi-arid regions. Water 2020, 12, 838. [Google Scholar] [CrossRef] [Green Version]
- McCormick, M.; Thomason, L.; Trepte, C. Atmospheric effects of the Mt Pinatubo eruption. Nature 1995, 373, 399–404. [Google Scholar] [CrossRef]
- Çuhadar, M.; Atiş, E. Drought Analysis in Ceyhan Basin Using Standardized Precipitation Index. J. Inst. Sci. Technol. 2019, 9, 2303–2312. [Google Scholar] [CrossRef] [Green Version]
Station | Longitude | Latitude | Mean Annual Temperature (°C) | Mean Annual Precipitation (mm) |
---|---|---|---|---|
Sariz | 36.503 | 39.478 | 7.46 | 509.38 |
Develi | 35.479 | 38.374 | 11.06 | 368.43 |
Pinarbaşi | 36.390 | 38.725 | 7.77 | 407.69 |
Tomarza | 35.791 | 38.452 | 8.16 | 395.68 |
Osmaniye | 36.253 | 37.102 | 18.52 | 828.28 |
Yumurtalik | 35.790 | 36.768 | 19.12 | 810.26 |
Karataş | 35.389 | 36.568 | 19.16 | 782.52 |
Kozan | 35.818 | 37.433 | 19.46 | 837.57 |
Karaisali | 35.062 | 37.250 | 18.61 | 882.72 |
Ceyhan | 35.795 | 37.015 | 17.99 | 718.38 |
Adana | 35.298 | 36.983 | 19.28 | 667.64 |
Afsin | 36.919 | 38.240 | 10.56 | 431.71 |
Elbistan | 37.198 | 38.203 | 10.90 | 398.81 |
Goksun | 36.482 | 38.024 | 8.93 | 601.05 |
Kahramanmaraş | 36.915 | 37.576 | 16.84 | 742.74 |
Standardized Precipitation Index (SPI) | Standardized Temperature Index (STI) | ||||
---|---|---|---|---|---|
Conditions | Threshold | Color | Conditions | Threshold | Color |
Extreme Wet | SPI ≥ 2.5 | Extreme Hot | STI ≥ 2.5 | ||
Severe Wet | 1.5 ≤ SPI < 2.5 | Severe Hot | 1.5 ≤ STI < 2.5 | ||
Mild Wet | 0.5 ≤ SPI < 1.5 | Mild Hot | 0.5 ≤ STI < 1.5 | ||
Normal Wet | 0.0 ≤ SPI < 0.5 | Normal Hot | 0.0 ≤ STI < 0.5 | ||
Normal Drought | −0.5 ≤ SPI < 0.0 | Normal Cold | −0.5 ≤ STI < 0.0 | ||
Mild Drought | −1.5 ≤ SPI < −0.5 | Mild Cold | −1.5 ≤ STI < −0.5 | ||
Severe Drought | −2.5 ≤ SPI < −1.5 | Severe Cold | −2.5 ≤ STI < −1.5 | ||
Extreme Drought | SPI < −2.5 | Extreme Cold | STI < −2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darabi, H.; Danandeh Mehr, A.; Kum, G.; Sönmez, M.E.; Dumitrache, C.A.; Diani, K.; Celebi, A.; Torabi Haghighi, A. Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices. Hydrology 2023, 10, 157. https://doi.org/10.3390/hydrology10080157
Darabi H, Danandeh Mehr A, Kum G, Sönmez ME, Dumitrache CA, Diani K, Celebi A, Torabi Haghighi A. Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices. Hydrology. 2023; 10(8):157. https://doi.org/10.3390/hydrology10080157
Chicago/Turabian StyleDarabi, Hamid, Ali Danandeh Mehr, Gülşen Kum, Mehmet Emin Sönmez, Cristina Alina Dumitrache, Khadija Diani, Ahmet Celebi, and Ali Torabi Haghighi. 2023. "Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices" Hydrology 10, no. 8: 157. https://doi.org/10.3390/hydrology10080157
APA StyleDarabi, H., Danandeh Mehr, A., Kum, G., Sönmez, M. E., Dumitrache, C. A., Diani, K., Celebi, A., & Torabi Haghighi, A. (2023). Hydroclimatic Trends and Drought Risk Assessment in the Ceyhan River Basin: Insights from SPI and STI Indices. Hydrology, 10(8), 157. https://doi.org/10.3390/hydrology10080157