Streamflow Trends in Central Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Trend Analysis
3. Results
3.1. Minimum Streamflows
3.2. Mean Streamflows
3.3. Maximum Streamflows
3.4. Sen Slope
3.5. Mean Daily Flow Rate Trends
3.6. Relationship between Flow Rates and the Pacific Decadal Oscillation (PDO)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Core Writing Team; Pachauri, R.K.; Meyer, L.A. (Eds.) IPCC Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Ji, F.; Wu, Z.; Huang, J.; Chassignet, E.P. Evolution of Land Surface Air Temperature Trend. Nat. Clim. Chang. 2014, 4, 462–466. [Google Scholar] [CrossRef]
- Karl, T.R.; Arguez, A.; Huang, B.; Lawrimore, J.H.; McMahon, J.R.; Menne, M.J.; Peterson, T.C.; Vose, R.S.; Zhang, H.-M. Possible Artifacts of Data Biases in the Recent Global Surface Warming Hiatus. Science 2015, 348, 1469–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pizarro, R.; Balocchi, F.; Vera, M.; Aguilera, A.; Morales, C.; Valdés, R.; Sangüesa, C.; Vallejos, C.; Fuentes, R.; Abarza, A.; et al. Influencia del Cambio Climático en el Comportamiento de los Caudales Máximos en la Zona Mediterránea de Chile. Tecnol. Cienc. Agua 2013, 4, 5–19. [Google Scholar]
- Fuenzalida, H.; Villagrán, C.; Bernal, P.; Fuentes, E.; Santibáñez, F.; Peña, H.; Montesino, V.; Hajek, E.; Rutllant, J. Cambio Climático Global y Eventuales Procesos en Chile. Rev. Ambiente Desarro. 1989, 5, 37–42. [Google Scholar]
- Ivanova, Y.; Corredor, J. Evaluación de la Sensibilidad de los Caudales Máximos de Diseño Ante la Influencia del Cambio Climático. Av. Recur. Hidráulicos 2006, 13, 89–98. [Google Scholar]
- Waylen, P.; Woo, M. Prediction of Annual Floods Generated by Mixed Processes. Water Resour. Res. 1982, 18, 1283–1286. [Google Scholar] [CrossRef]
- Whitaker, A.; Alila, Y.; Beckers, J.; Toews, D. Evaluating Peak Flow Sensitivity to Clear-Cutting in Different Elevation Bands of a Snowmelt-Dominated Mountainous Catchment: Clear-Cutting and Snowmelt Peak Flows. Water Resour. Res. 2002, 38, 11-1–11-17. [Google Scholar] [CrossRef]
- Carrasco, J.F.; Casassa, G.; Quintana, J. Changes of the 0 °C Isotherm and the Equilibrium Line Altitude in Central Chile during the Last Quarter of the 20th Century/Changements de L’isotherme 0 °C et de la Ligne D’équilibre des Neiges Dans le Chili Central Durant le Dernier Quart du 20ème Siècle. Hydrol. Sci. J. 2005, 50, 11. [Google Scholar] [CrossRef]
- Carrasco, J.F.; Osorio, R.; Casassa, G. Secular Trend of the Equilibrium-Line Altitude on the Western Side of the Southern Andes, Derived from Radiosonde and Surface Observations. J. Glaciol. 2008, 54, 538–550. [Google Scholar] [CrossRef] [Green Version]
- Torres, H.; Brenning, A.; García, J.-L. Balance de Masa del Glaciar Cubierto del Pirámide (Chile Central, 33°S) Entre 1965 y 2000 Aplicando Métodos Geodésicos. Rev. Geogr. Espac. 2013, 3, 11. [Google Scholar] [CrossRef]
- Rosenbluth, B.; Fuenzalida, H.; Aceituno, P. Recent Temperatura Variations in Southern South America. Int. J. Climatol. 1997, 17, 67–85. [Google Scholar] [CrossRef]
- Ollero, A. El Curso Medio del Ebro: Geomorfología Fluvial, Ecogeografia y Riesgos; Consejo de Protección de la Naturaleza de Aragón: Zaragoza, Spain, 1996; ISBN 978-84-920441-4-6. [Google Scholar]
- Aparicio, F. Fundamentos de Hidrología de Superficie, 11th ed.; Limusa: Mexico City, Mexico, 1997. [Google Scholar]
- Chow, V.T.; Maidment, D.; Mays, L. Hidrología Aplicada; McGraw-Hill: Bogotá, Columbia, 2000; ISBN 978-958-600-171-7. [Google Scholar]
- Vergara, M.; Ellis, E.; Cruz, J.; Alarcón, L.; Galván, U. La Conceptualización de las Inundaciones y la Percepción del Riesgo Ambiental. Política Cult. 2011, 36, 45–69. [Google Scholar]
- Rojas, O.; Mardones, M.; Arumí, J.L.; Aguayo, M. Una Revisión de Inundaciones Fluviales en Chile, Período 1574–2012: Causas, Recurrencia y Efectos Geográficos. Rev. Geogr. Norte Gd. 2014, 57, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Paoli, C.U.; Cacik, P.A.; Bolzicco, J.E. Análisis de Riesgo Conjunto en la Determinación de Crecidas de Proyecto de Regímenes Complejos. Ing. Agua 1998, 5, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Novoa, J.; Castillo, R.; Viada, J. Tendencia de Cambio Climático Mediante Análisis de Caudales Naturales: Cuenca del Río Claro (Chile Semiárido). An. Soc. Chil. Cienc. Geográficas 1996, 47–56. [Google Scholar]
- Novoa, J.; Robles, M.; Castillo, R.; López, D. Tendencias Potenciales de Riesgos Morfodinámicos Mediante Interpretación de Caudales Máximos IV Región de Coquimbo-Chile Semiárido. In Proceedings of the VI Congreso Internacional de Ciencias de la Tierra Chile, Santiago, Chile, 7–11 August 2000. [Google Scholar]
- Pellicciotti, F.; Burlando, P.; Van Vliet, K. Recent Trends in Precipitation and Streamflow in the Aconcagua River Basin, Central Chile. In Proceedings of the Glacier Mass Balance Changes and Meltwater Discharge; IAHS Press: Foz de Iguazú, Brazil, 2007; Volume 318, pp. 17–38. [Google Scholar]
- Martínez, C.; Fernández, A.; Rubio, P. Caudales y Variabilidad Climática en Una Cuenca de Latitudes Medias en Sudamérica: Río Aconcagua, Chile Central (33°S). Boletín Asoc. Geógrafos Españoles 2012, 58, 227–248. [Google Scholar] [CrossRef] [Green Version]
- Givovich, W. Derretimiento de las Nieves y Recursos Hídricos de la Zona Centro-Norte de Chile. Rev. Ambiente Desarro. 2006, 22, 58–67. [Google Scholar]
- Souvignet, M.; Oyarzún, R.; Verbist, K.M.J.; Gaese, H.; Heinrich, J. Hydro-Meteorological Trends in Semi-Arid North-Central Chile (29–32°S): Water Resources Implications for a Fragile Andean Region. Hydrol. Sci. J. 2012, 57, 479–495. [Google Scholar] [CrossRef] [Green Version]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Sarricolea, P.; Herrera-Ossandon, M.; Meseguer-Ruiz, Ó. Climatic Regionalisation of Continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Hussain, M.; Mahmud, I. PyMannKendall: A Python Package for Non Parametric Mann Kendall Family of Trend Tests. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Narum, S.R. Beyond Bonferroni: Less Conservative Analyses for Conservation Genetics. Conserv. Genet. 2006, 7, 783–787. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Lins, H.F.; Slack, J.R. Streamflow Trends in the United States. Geophys. Res. Lett. 1999, 26, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Choquette, A.F.; Hirsch, R.M.; Murphy, J.C.; Johnson, L.T.; Confesor, R.B. Tracking Changes in Nutrient Delivery to Western Lake Erie: Approaches to Compensate for Variability and Trends in Streamflow. J. Great Lakes Res. 2019, 45, 21–39. [Google Scholar] [CrossRef]
- Bhaskar, A.S.; Hopkins, K.G.; Smith, B.K.; Stephens, T.A.; Miller, A.J. Hydrologic Signals and Surprises in U.S. Streamflow Records during Urbanization. Water Resour. Res. 2020, 56, e2019WR027039. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water Governance in Chile: Availability, Management and Climate Change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Pizarro, R.; García-Chevesich, P.; Balocchi, F.; Pino, J.; Ibáñez, A.; Sangüesa, C.; Vallejos, C.; Mendoza, R.; Ingram, B.; Sharp, J.O. Comparative Analysis of Annual and Monthly Peak Flow Tendencies, Considering Two Periods in North-Central Chile. Tecnol. Cienc. Agua 2022, 13, 73–100. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A Climate Dynamics Perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Núñez, J.; Rivera, D.; Oyarzún, R.; Arumí, J.L. Influence of Pacific Ocean Multidecadal Variability on the Distributional Properties of Hydrological Variables in North-Central Chile. J. Hydrol. 2013, 501, 227–240. [Google Scholar] [CrossRef]
- Rodgers, K.; Roland, V.; Hoos, A.; Crowley-Ornelas, E.; Knight, R. An Analysis of Streamflow Trends in the Southern and Southeastern US from 1950–2015. Water 2020, 12, 3345. [Google Scholar] [CrossRef]
Region | Area (km2) | Climate | Mean Annual Precipitation (mm) |
---|---|---|---|
Coquimbo | 40,580 | Arid | 50–300 |
Metropolitana | 15,403 | Semiarid | 200–700 |
Maule | 30,296 | Subhumid | 500–2000 |
Ñuble | 13,179 | Humid | 1000–2000 |
Biobío | 24,022 | Humid | 1200–2000 |
Araucanía | 31,842 | Humid | 1500–2500 |
Zone | ID | 1969–2021 | 1975–2021 | 1984–2021 |
---|---|---|---|---|
Arid–semiarid | 1 | ✓ | ||
2 | ✓ | |||
3 | ✓ | ✓ | ✓ | |
4 | ✓ | ✓ | ✓ | |
5 | ✓ | ✓ | ✓ | |
6 | ✓ | ✓ | ||
7 | ✓ | |||
8 | ✓ | ✓ | ✓ | |
9 | ✓ | ✓ | ✓ | |
10 | ✓ | ✓ | ✓ | |
11 | ✓ | |||
12 | ✓ | ✓ | ||
13 | ✓ | |||
14 | ✓ | ✓ | ✓ | |
15 | ✓ | ✓ | ✓ | |
16 | ✓ | |||
Humid–subhumid | 17 | ✓ | ✓ | ✓ |
18 | ✓ | |||
19 | ✓ | |||
20 | ✓ | |||
21 | ✓ | ✓ | ✓ | |
22 | ✓ | ✓ | ✓ | |
23 | ✓ | ✓ | ✓ | |
24 | ✓ | ✓ | ✓ | |
25 | ✓ | |||
26 | ✓ | ✓ | ✓ | |
27 | ✓ | ✓ | ✓ | |
28 | ✓ | ✓ | ✓ | |
29 | ✓ | ✓ | ✓ | |
30 | ✓ | ✓ | ✓ | |
31 | ✓ |
Zone | Decile | 1969–2021 | 1975–2021 | 1984–2021 | Neg. Δ (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Pos. | Neg. | Pos. | Neg. | Pos. | Neg. | a | b | ||
Arid–semiarid | 1 | 0 | 110 | 0 | 390 | 0 | 481 | 337.3 | 23.3 |
2 | 0 | 43 | 0 | 337 | 0 | 421 | 879.1 | 24.9 | |
3 | 0 | 38 | 0 | 328 | 0 | 501 | 1218.4 | 52.7 | |
4 | 0 | 48 | 0 | 275 | 0 | 455 | 847.9 | 65.5 | |
5 | 0 | 58 | 0 | 227 | 0 | 434 | 648.3 | 91.2 | |
6 | 0 | 52 | 0 | 172 | 0 | 310 | 496.2 | 80.2 | |
7 | 0 | 23 | 0 | 176 | 0 | 236 | 926.1 | 34.1 | |
8 | 0 | 2 | 0 | 166 | 0 | 226 | 11,200 | 36.1 | |
9 | 0 | 20 | 0 | 132 | 0 | 234 | 1070 | 77.3 | |
10 | 8 | 31 | 6 | 115 | 7 | 153 | 393.5 | 33 | |
Humid–subhumid | 1 | 0 | 162 | 0 | 273 | 0 | 179 | 10.5 | −34.4 |
2 | 0 | 192 | 0 | 304 | 0 | 202 | 5.2 | −33.6 | |
3 | 0 | 219 | 0 | 297 | 0 | 205 | −6.4 | −31 | |
4 | 0 | 187 | 0 | 266 | 0 | 165 | −11.8 | −38 | |
5 | 0 | 222 | 0 | 296 | 0 | 154 | −30.6 | −48 | |
6 | 0 | 181 | 0 | 297 | 0 | 218 | 20.4 | −26.6 | |
7 | 0 | 121 | 0 | 255 | 0 | 198 | 63.6 | −22.4 | |
8 | 12 | 123 | 0 | 204 | 0 | 155 | 26 | −24 | |
9 | 33 | 90 | 1 | 188 | 0 | 188 | 108.9 | 0 | |
10 | 11 | 81 | 6 | 156 | 0 | 152 | 87.7 | −2.6 |
Arid–Semiarid | Humid–Subhumid | |||||
---|---|---|---|---|---|---|
Month | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 |
1 | 0.586 * | 0.205 | −0.429 * | 0.629 * | −0.076 | 0.082 |
2 | 0.449 * | 0.281 | 0.081 | 0.56 * | −0.075 | 0.187 |
3 | 0.307 | 0.007 | 0.087 | 0.369 * | −0.157 | −0.356 * |
4 | 0.181 | −0.107 | −0.086 | 0.351 | −0.04 | −0.521 * |
5 | −0.017 | −0.033 | 0.054 | 0.452 * | −0.283 | 0.109 |
6 | 0.148 | 0.096 | −0.127 | 0.224 | −0.288 | −0.112 |
7 | 0.358 * | 0.044 | 0.219 | 0.104 | −0.211 | 0.435 * |
8 | 0.431 * | 0.036 | 0.177 | 0.286 | 0.416 * | −0.096 |
9 | 0.353 | −0.046 | 0.058 | 0.244 | −0.421 * | 0.038 |
10 | 0.199 | 0.023 | 0.226 | −0.205 | −0.193 | −0.025 |
11 | 0.294 | 0.174 | −0.007 | 0.2 | −0.035 | 0.142 |
12 | 0.499 * | −0.16 | 0.132 | 0.585 * | −0.065 | −0.105 |
Arid–Semiarid | Humid–Subhumid | |||||
---|---|---|---|---|---|---|
Month | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 |
1 | 0.58 * | 0.384 * | −0.051 | 0.53 * | −0.147 | −0.209 |
2 | 0.44 * | −0.24 | −0.078 | 0.444 * | −0.427 * | 0.218 |
3 | 0.304 | −0.172 | 0.103 | 0.253 | −0.522 * | 0.219 |
4 | 0.176 | −0.132 | −0.137 | 0.43 * | −0.035 | 0.006 |
5 | −0.086 | 0.109 | −0.167 | −0.006 | −0.032 | −0.046 |
6 | 0.319 | 0.086 | −0.051 | 0.347 | 0.157 | 0.023 |
7 | 0.34 | −0.068 | 0.04 | 0.13 | −0.108 | 0.344 |
8 | 0.411 * | −0.166 | −0.167 | 0.058 | 0.372 * | 0.121 |
9 | 0.276 | −0.17 | 0.146 | 0.177 | 0.34 | 0.227 |
10 | 0.188 | 0.09 | 0.215 | 0.243 | 0.04 | −0.039 |
11 | 0.242 | 0.239 | 0.216 | −0.285 | 0.126 | 0.358 |
12 | 0.458 * | −0.11 | 0.133 | 0.494 * | −0.17 | −0.141 |
Arid–Semiarid | Humid–Subhumid | |||||
---|---|---|---|---|---|---|
Month | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 |
1 | 0.544 * | 0.093 | −0.238 | 0.287 | 0.353 | −0.398 * |
2 | 0.485 * | −0.065 | −0.4 * | 0.092 | −0.64 * | −0.143 |
3 | 0.396 * | −0.159 | −0.118 | 0.199 | 0.227 | 0.278 |
4 | 0.127 | 0.182 | −0.107 | 0.226 | −0.196 | −0.002 |
5 | −0.209 | −0.003 | −0.359 * | −0.141 | −0.170 | −0.166 |
6 | 0.251 | 0.097 | 0.085 | 0.33 * | 0.451 * | 0.194 |
7 | 0.233 | 0.006 | 0.001 | 0.137 | −0.119 | 0.034 |
8 | 0.462 * | −0.006 | −0.116 | −0.065 | −0.001 | 0.421 * |
9 | 0.184 | 0.054 | 0.022 | 0.224 | −0.111 | 0.202 |
10 | 0.281 | 0.044 | 0.06 | 0.371 * | 0.128 | −0.277 |
11 | 0.222 | −0.246 | −0.256 | 0.241 | −0.022 | 0.379 * |
12 | 0.460 * | 0.008 | −0.209 | 0.446 * | −0.626 * | −0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangüesa, C.; Pizarro, R.; Ingram, B.; Balocchi, F.; García-Chevesich, P.; Pino, J.; Ibáñez, A.; Vallejos, C.; Mendoza, R.; Bernal, A.; et al. Streamflow Trends in Central Chile. Hydrology 2023, 10, 144. https://doi.org/10.3390/hydrology10070144
Sangüesa C, Pizarro R, Ingram B, Balocchi F, García-Chevesich P, Pino J, Ibáñez A, Vallejos C, Mendoza R, Bernal A, et al. Streamflow Trends in Central Chile. Hydrology. 2023; 10(7):144. https://doi.org/10.3390/hydrology10070144
Chicago/Turabian StyleSangüesa, Claudia, Roberto Pizarro, Ben Ingram, Francisco Balocchi, Pablo García-Chevesich, Juan Pino, Alfredo Ibáñez, Carlos Vallejos, Romina Mendoza, Alejandra Bernal, and et al. 2023. "Streamflow Trends in Central Chile" Hydrology 10, no. 7: 144. https://doi.org/10.3390/hydrology10070144
APA StyleSangüesa, C., Pizarro, R., Ingram, B., Balocchi, F., García-Chevesich, P., Pino, J., Ibáñez, A., Vallejos, C., Mendoza, R., Bernal, A., Valdés-Pineda, R., & Pérez, F. (2023). Streamflow Trends in Central Chile. Hydrology, 10(7), 144. https://doi.org/10.3390/hydrology10070144