Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework
Abstract
:1. Introduction
2. Materials and Methods
2.1. Watershed Extraction and Topology
2.2. Watershed Functions
2.2.1. Data Interaction
2.2.2. Geomorphology
2.3. Hydrological Modeling
2.3.1. Shallow Landslides Sub-Model
2.3.2. Erosion Sub-Models
2.3.3. HydroFlash: Flash Flood Sub-Model
2.4. Q-Gis Plugin
3. Results and Discussion
3.1. Geomorphological Analysis
3.1.1. Hypsometric Curve and Width Function
3.1.2. Distributed Geomorphological Analysis
3.1.3. Advanced Analysis
3.2. Operations with Maps
3.3. Hydrological Model Simulations
3.3.1. Study Area and Modeling Goal
3.3.2. Scenarios Setup
3.3.3. Results and Discussion
3.3.4. Conservation Portfolios Expected Discharge Reduction
3.4. QGIS Plugin and the Sediment Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alaska Satellite Facility. Dataset: ASF DAAC 2015, ALOS PALSAR Radiometric Terrain Corrected High Res; Includes Material JAXA METI 2007; Alaska Satellite Facility: Fairbanks, AK, USA, 2011. [Google Scholar] [CrossRef]
- USGS. National Hydrography Dataset Plus High Resolution (NHDPlus HR)—USGS National Map Downloadable Data Collection. Available online: https://nhd.usgs.gov/NHDPlus_HR.html (accessed on 2 March 2023).
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Processes 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Earth Resources Observation and Science (EROS) Center. USGS HYDRO1K elevation derivative database. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-hydro1k (accessed on 2 March 2023). [CrossRef]
- Running, S.; Mu, Q.; Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. 2017. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD16A2 (accessed on 23 March 2023).
- Rocchio, L. Landsat Data Continuity Mission; NASA: Washington, DC, USA, 2011.
- Frankenberger, J.R.; Brooks, E.S.; Walter, M.T.; Walter, M.F.; Steenhuis, T.S. A GIS-based variable source area hydrology model. Hydrol. Processes 1999, 822, 805–822. [Google Scholar] [CrossRef]
- Conrad, O. SAGA 2.0.0b (System for Automated Geoscientific Analyses); GNU, General Public License (GPL), Geographisches Institut: Göttingen, Germany, 2005. [Google Scholar]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- QGIS Development Team. QGIS Geographic Information System. 2021. Available online: qgis.osgeo.org (accessed on 2 March 2023).
- Team, G.D. Geographic Resources Analysis Support System (GRASS GIS) Software, Version 7.2, 2017, Open Source Geospatial Foundation. Available online: https://grass.osgeo.org (accessed on 2 March 2023).
- Beven, K.; Freer, J. A dynamic topmodel. Hydrol. Processes 2001, 15, 1993–2011. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; VanLiew, M.W.; et al. Swat: Model Use, Calibration, and Validation. Asabe 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Kobold, M.; Brilly, M. The use of HBV model for flash flood forecasting. Nat. Hazards Earth Syst. Sci. 2006, 6, 407–417. [Google Scholar] [CrossRef] [Green Version]
- United States Army Corps of Engineers. Hydrologic Modeling System HEC-HMS User’s Manual (Version 4.4); United States Army Corps of Engineers: Washington, DC, USA, 2018.
- Salas, D.; Liang, X.; Navarro, M.; Liang, Y.; Luna, D. An open-data open-model framework for hydrological models’ integration, evaluation and application. Environ. Model. Softw. 2020, 126, 104622. [Google Scholar] [CrossRef]
- Hill, C.; DeLuca, C.; Balaji; Suarez, M.; Da Silva, A. The architecture of the Earth System Modeling Framework. Comput. Sci. Eng. 2004, 6, 18–28. [Google Scholar] [CrossRef]
- Gregersen, J.B.; Gijsbers, P.J.A.; Westen, S.J.P. OpenMI: Open modelling interface. J. Hydroinformatics 2007, 9, 175–191. [Google Scholar] [CrossRef] [Green Version]
- Peckham, S.D.; Hutton, E.W.H.; Norris, B. A component-based approach to integrated modeling in the geosciences: The design of CSDMS. Comput. Geosci. 2013, 53, 3–12. [Google Scholar] [CrossRef]
- Craig, J.R.; Brown, G.; Chlumsky, R.; Jenkinson, R.W.; Jost, G.; Lee, K.; Mai, J.; Serrer, M.; Sgro, N.; Shafii, M.; et al. Flexible watershed simulation with the Raven hydrological modelling framework. Environ. Model. Softw. 2020, 129, 104728. [Google Scholar] [CrossRef]
- Kraft, P.; Vaché, K.B.; Frede, H.G.; Breuer, L. CMF: A Hydrological Programming Language Extension For Integrated Catchment Models. Environ. Model. Softw. 2011, 26, 828–830. [Google Scholar] [CrossRef]
- Peterson, P. F2PY: A tool for connecting Fortran and Python programs. Int. J. Comput. Sci. Eng. 2009, 4, 296–305. [Google Scholar] [CrossRef]
- Rennó, C.D.; Nobre, A.D.; Cuartas, L.A.; Soares, J.V.; Hodnett, M.G.; Tomasella, J.; Waterloo, M.J. HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia. Remote Sens. Environ. 2008, 112, 3469–3481. [Google Scholar] [CrossRef]
- Loritz, R.; Kleidon, A.; Jackisch, C.; Westhoff, M.; Ehret, U.; Gupta, H.; Zehe, E. A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation. Hydrol. Earth Syst. Sci. 2019, 23, 3807–3821. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. Changing ideas in hydrology—The case of physically-based models. J. Hydrol. 1989, 105, 157–172. [Google Scholar] [CrossRef]
- Pandas Development Team. pandas-dev/pandas: Pandas. 2020. Available online: https://zenodo.org/record/7741580#.ZCOwsPZBy3A (accessed on 2 March 2023). [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with {NumPy}. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Tarboton, D.G.; Bras, R.L.; Rodriguez-Iturbe, I. On the extraction of channel networks from digital elevation data. Hydrol. Processes 1991, 5, 81–100. [Google Scholar] [CrossRef]
- Holmgren, P. Multiple flow direction algorithms for runoff modelling in grid based elevation models: An empirical evaluation. Hydrol. Processes 1994, 8, 327–334. [Google Scholar] [CrossRef]
- Vélez, J.I. Desarrollo de un Modelo Hidrológico Conceptual y Distribuido Orientado a la Simulación de Crecidas; Universitat Politècnica de València: Valencia, Spain, 2001; p. 266. [Google Scholar]
- Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240. [Google Scholar] [CrossRef]
- Velásquez, N.; Hoyos, C.D.; Vélez, J.I.; Zapata, E. Reconstructing the 2015 Salgar flash flood using radar retrievals and a conceptual modeling framework in an ungauged basin. Hydrol. Earth Syst. Sci. 2020, 24, 1367–1392. [Google Scholar] [CrossRef] [Green Version]
- Aristizábal, E.; Vélez, J.I.; Martínez, H.E.; Jaboyedoff, M. SHIA_Landslide: A distributed conceptual and physically based model to forecast the temporal and spatial occurrence of shallow landslides triggered by rainfall in tropical and mountainous basins. Landslides 2016, 13, 497–517. [Google Scholar] [CrossRef]
- Graham, J. Methods of stability analysis. In SLOPE INSTABILITY; Wiley: New York, NY, USA, 1984; pp. 171–215. [Google Scholar]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R) USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef] [Green Version]
- Julien, P.Y.; Systems, R. Runoff and Sediment Modeling with CASC2D, GIS and Radar Data. Parallel Sess. Parallel 1998, 15, 2–7. [Google Scholar]
- Johnson, B.E.; Julien, P.Y. The two-dimensional upland erosion model CASC2D-SED. Engineering 2000, 36, 31–42. [Google Scholar] [CrossRef]
- Salamanca, S. Efectos de Escala Espacial y Temporal en la Modelación Hidro-Sedimentológica Distribuida de una Cuenca Tropical; Caso de estudio San Lorenzo, Universidad Nacional de Colombia: Bogotá, Colombia, 2020. [Google Scholar]
- US Army Corps of Engineers (USACE). Hydrologic Modeling System Technical Reference Manual; US Army Corps of Engineers (USACE): Washington, DC, USA, 2000.
- Kirpich, Z. Time of concentration of small agricultural watersheds. Civ. Eng. 1940, 10, 362. [Google Scholar]
- Giandotti, M. Previsione Delle Piene e Delle Magre Dei Corsi d’acqua; 1934. [Google Scholar]
- Johnstone, D.; Cross, W.P. Elements of Applied Hydrology; Ronald Press: New York, NY, USA, 1949. [Google Scholar]
- Ventura, G. Bonificazione della bassa pianura bolognese: Studio sui coefficienti udometrici. Tipo-Litogr. Del Genio Civ. 1905, 43, 3–36. [Google Scholar]
- Temez, J.R. Calculo Hidrometeoorologico de Caudales Maximos en Pequenas Cuencas Naturale; Dirección General de Carreteras: Madrid, Spain, 1978. [Google Scholar]
- NOAA. High-Resolution Rapid Refresh (HRRR) Model Temperature Data for 10 March 2023, at 12:00 PM Eastern Time; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2023.
- Corpocaldas. Plan de Ordenamiento y Manejo de la Cuenca Hidrográfica del Rio Chinchiná; Corpocaldas: Manizales, Colombia, 2014.
- Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling With GIS; Computer Methods in Geosciences; Pergamon: Ottawa, ON, Canada, 1994. [Google Scholar]
- Soares-Filho, B.; Rodrigues, H.; Costa, W. Modelamiento de Dinámica Ambiental Con Dinamica EGO; Centro de Sensoriamento Remoto/Universidade Federal de Minas Gerais: Belo Horizonte, Brazil, 2009. [Google Scholar]
- Yepes, A.P.; del Valle, J.I.; Jaramillo, S.L.; Orrego, S.A. Recuperación estructural en bosques sucesionales andinos de Porce (Antioquia, Colombia). Rev. Biol. Trop. 2010, 58, 427–445. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Didan, K.; Huete, A. MODIS Vegetation Index Product Series Collection 5 Change Summary; MODIS VI C5 Changes; The University of Arizona: Tucson, AZ, USA, 2006. [Google Scholar]
- Chen, S.-T.; Yu, P.-S.; Tang, Y.-H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385, 13–22. [Google Scholar] [CrossRef]
- Yao, T.; Journel, A.G. Automatic Modeling of (Cross) Covariance Tables Using Fast Fourier Transform. Math. Geol. 1998, 30, 589–615. [Google Scholar] [CrossRef]
- Velasco-Forero, C.A.; Sempere-Torres, D.; Cassiraga, E.F.; Jaime Gómez-Hernández, J. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data. Adv. Water Resour. 2009, 32, 986–1002. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Maraun, D. Bias correcting climate change simulations—A critical review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Arias, P.A.; Garreaud, R.; Poveda, G.; Espinoza, J.C.; Molina-Carpio, J.; Masiokas, M.; Viale, M.; Scaff, L.; van Oevelen, P.J. Hydroclimate of the Andes Part II: Hydroclimate Variability and Sub-Continental Patterns. Front. Earth Sci. 2021, 8, 666. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Oil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Vélez, J.J.; Puricelli, M.; López Unzu, F.; Francés, F. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol. Earth Syst. Sci. 2009, 13, 229–246. [Google Scholar] [CrossRef] [Green Version]
- Houska, T.; Kraft, P.; Chamorro-Chavez, A.; Breuer, L. SPOTting Model Parameters Using a Ready-Made Python Package. PLoS ONE 2015, 10, e0145180. [Google Scholar] [CrossRef] [Green Version]
- Jimenez, M.; Velasquez, N.; Jimenez, J.; Barco, J.; Blessent, D.; Lopez, I.; Cordoba, S.; Valenzuela, C.; Therrien, R.; Munera, J.; et al. Coupling hydrological and hydrogeological models to simulate groundwater flow in a tropical aquifer under wet and dry scenarios. J. Hydrol. Reg. Stud. 2021, sumbited. [Google Scholar]
- Mantilla, R.; Perez, G.; Velasquez, N.; Wright, D.B.; Yu, G. Regional Flood Frequency Analysis Using Physics-based Hydrologic Modeling. Water Resour. Res. 2022; submitted. [Google Scholar]
- Álvarez-Villa, O.D.; Giraldo, J.A.; Cortés, M.; Franco, D.; Peña, N.; Rogeliz, C. Spatiotemporal dynamics of above-ground biomass in a high tropical montane basin. Environ. Model. Softw. submitted.
- Hutton, E.; Piper, M.; Tucker, G. The Basic Model Interface 2.0: A standard interface for coupling numerical models in the geosciences. J. Open Source Softw. 2020, 5, 2317. [Google Scholar] [CrossRef]
Function Name | Description | Result |
---|---|---|
Transform_Map2Basin | Converts raster data and resamples it to the cells of the basin. | Basin.array |
Transform_Basin2Map | Converts any basin variable to a map and writes it to the disk. | Gdal raster |
Transform_Hills2Basin | Maps a hillslope variable to their corresponding cells. | Basin.array |
Transform_Basin2Polygon | Saves a discrete cell variable into a collection of polygons. | Polygon |
Transform_Basin2Hills | Maps a cell’s variable to their corresponding hillslopes. | Hills.array |
Function Name | Description | Results |
---|---|---|
GetGeo_Parameters | Computes a collection of geomorphological parameters such as the watershed area, its mean slope, main channel length, hypsometric curve, stream density, and concentration time. | GeoParameters: area, slope, centroid, length. Travel_time: Mean travel time computed using different equations. |
GetGeo_Cell_Basics | Computes each watershed cell’s upstream area, length, slope, and height. | CellAcum: Upstream cell accumulation [-]. CellLong: Length of each cell [m]. CellSlope: Slope of each cell [m/m]. CellHeight: Elevation of each cell [m]. |
GetGeo_StreamOrder | Computes the Horton stream order of each network element. | CellHorton_Hill: Horton order of each hillslope. CellHorton_Stream: Horton order of each stream. |
Function Name | Description | Results |
---|---|---|
GetGeo_IsoChrones | Computes an approximation of the travel time of each cell using as an argument the travel time estimated for the watershed. | CellTravelTime: the travel time of each cell [h]. |
GetGeo_WidthFunction | Computes the width function of the watershed as the distance between each element and the outlet. | Width_distance: distance between each network element and the outlet. |
GetGeo_Ppal_hipsometric | Computes the hypsometric curve along the main channel of the watershed and among all the watershed elements. | Hipso_ppal: Hipsometric curve along the main channel. |
GetGeo_IT | Computes the topographic index (IT) for each cell of the watershed. | Hipso_basin: Hipsometric curve using all the cells. |
GetGeo_HAND_and_ rDUNE | Computes HAND and rDUNE values for each cell. | IT: the topographic index |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velásquez, N.; Vélez, J.I.; Álvarez-Villa, O.D.; Salamanca, S.P. Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology 2023, 10, 76. https://doi.org/10.3390/hydrology10040076
Velásquez N, Vélez JI, Álvarez-Villa OD, Salamanca SP. Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology. 2023; 10(4):76. https://doi.org/10.3390/hydrology10040076
Chicago/Turabian StyleVelásquez, Nicolás, Jaime Ignacio Vélez, Oscar D. Álvarez-Villa, and Sandra Patricia Salamanca. 2023. "Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework" Hydrology 10, no. 4: 76. https://doi.org/10.3390/hydrology10040076
APA StyleVelásquez, N., Vélez, J. I., Álvarez-Villa, O. D., & Salamanca, S. P. (2023). Comprehensive Analysis of Hydrological Processes in a Programmable Environment: The Watershed Modeling Framework. Hydrology, 10(4), 76. https://doi.org/10.3390/hydrology10040076