Spatial Evaluation of a Hydrological Model on Dominant Runoff Generation Processes Using Soil Hydrologic Maps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setup and Parameterization
2.3. Synthetic Rainfall Events
2.4. Determination of Dominant Runoff Generation Process (DRP)
2.4.1. DRP by Reference Soil Hydrological Map
- (1)
- Saturated overland flow (SOF) describes the surface runoff, occurring when the storage capacity is exceeded due to saturation of the soil profile. The levels (or subclasses) describe the pace of the flow process from very fast (1) to delayed (2) and strongly delayed (3). Subclass SOF1 arises when the soil is saturated very fast. The subclasses SOF2 and SOF3 show an increasing saturation deficit, where saturation happens with a delay.
- (2)
- Subsurface flow (SSF) describes the flow processes within the soil profile, where precipitation water infiltrates through the soil surface. There, it can either be stored or continues to percolate until reaching the groundwater table. When a well-permeable soil horizon lies above a less permeable horizon, lateral subsurface runoff can also occur.
- (3)
- Deep percolation (DP) describes the percolation of water to deeper soil horizons.
2.4.2. Determining DRPs Using a Hydrological Model
- (1)
- When interflow (IF) is greater than 50% and DP is greater than 25% at the same time, or
- (2)
- If DP is greater than 50% and at the same time IF is greater than 25%, or
- (3)
- When DP is greater than 50% and at the same time the surface runoff (SR) is greater than 25%.
2.4.3. Reclassification of the Reference Map for DRPs
2.5. Quantitative Evaluation of Spatial Patterns of DRPs
3. Effects of Rainfall Intensities on Spatial Patterns of Simulated Runoff Processes
4. Spatial Evaluation of Simulated DRP Patterns
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Horton, P.; Schaefli, B.; Kauzlaric, M. Why Do We Have so Many Different Hydrological Models? A Review Based on the Case of Switzerland. WIREs Water 2022, 9, e1574. [Google Scholar] [CrossRef]
- Sitterson, J.; Knightes, C.; Parmar, R.; Wolfe, K.; Avant, B.; Muche, M. An Overview of Rainfall-Runoff Model Types. In Proceedings of the International Congress on Environmental Modelling and Software, Fort Collins, CO, USA, June 2018; Volume 41. [Google Scholar]
- Yang, Y.; Anderson, M.C.; Gao, F.; Hain, C.R.; Semmens, K.A.; Kustas, W.P.; Noormets, A.; Wynne, R.H.; Thomas, V.A.; Sun, G. Daily Landsat-Scale Evapotranspiration Estimation over a Forested Landscape in North Carolina, USA, Using Multi-Satellite Data Fusion. Hydrol. Earth Syst. Sci. 2017, 21, 1017. [Google Scholar] [CrossRef] [Green Version]
- Baroni, G.; Schalge, B.; Rakovec, O.; Kumar, R.; Schüler, L.; Samaniego, L.; Simmer, C.; Attinger, S. A Comprehensive Distributed Hydrological Modeling Intercomparison to Support Process Representation and Data Collection Strategies. Water Resour. Res. 2019, 55, 990–1010. [Google Scholar] [CrossRef]
- Krogh, S.A.; Pomeroy, J.W.; Marsh, P. Diagnosis of the Hydrology of a Small Arctic Basin at the Tundra-Taiga Transition Using a Physically Based Hydrological Model. J. Hydrol. 2017, 550, 685–703. [Google Scholar] [CrossRef]
- Mohajerani, H.; Zema, D.A.; Lucas-Borja, M.E.; Casper, M. Chapter 9—Understanding the Water Balance and Its Estimation Methods. In Precipitation; Rodrigo-Comino, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 193–221. ISBN 978-0-12-822699-5. [Google Scholar]
- Mohajerani, H.; Teschemacher, S.; Casper, M.C. A Comparative Investigation of Various Pedotransfer Functions and Their Impact on Hydrological Simulations. Water 2021, 13, 1401. [Google Scholar] [CrossRef]
- Koch, J.; Demirel, M.C.; Stisen, S. Climate Normalized Spatial Patterns of Evapotranspiration Enhance the Calibration of a Hydrological Model. Remote Sens. 2022, 14, 315. [Google Scholar] [CrossRef]
- Koch, J.; Siemann, A.; Stisen, S.; Sheffield, J. Spatial Validation of Large-Scale Land Surface Models against Monthly Land Surface Temperature Patterns Using Innovative Performance Metrics. J. Geophys. Res. Atmos. 2016, 121, 5430–5452. [Google Scholar] [CrossRef]
- Gaur, S.; Singh, B.; Bandyopadhyay, A.; Stisen, S.; Singh, R. Spatial Pattern-Based Performance Evaluation and Uncertainty Analysis of a Distributed Hydrological Model. Hydrol. Process. 2022, 36, e14586. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. High-Resolution Fields of Global Runoff Combining Observed River Discharge and Simulated Water Balances. Glob. Biogeochem. Cycles 2002, 16, 15-1–15-10. [Google Scholar] [CrossRef]
- Das, P.C.; Esraz-Ul-Zannat, M.D. Assessing the Impacts of Land Use–Land Cover Changes on Direct Surface Runoff: A Remote Sensing Approach in Khulna City. Water Sci. Technol. 2022, 85, 3122–3144. [Google Scholar] [CrossRef]
- Ahmadi-Sani, N.; Razaghnia, L.; Pukkala, T. Effect of Land-Use Change on Runoff in Hyrcania. Land 2022, 11, 220. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Plaza-Álvarez, P.A.; Zupanc, V.; Baartman, J.; Sagra, J.; González-Romero, J.; Moya, D.; de las Heras, J. Effects of Different Land Uses (Abandoned Farmland, Intensive Agriculture and Forest) on Soil Hydrological Properties in Southern Spain. Water 2019, 11, 503. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Rode, M.; Borchardt, D. Examining Runoff Generation Processes in the Selke Catchment in Central Germany: Insights from Data and Semi-Distributed Numerical Model. J. Hydrol. Reg. Stud. 2016, 7, 38–54. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Hellebrand, H.; Seeger, M.; Schobel, S. Identification and Regionalization of Dominant Runoff Processes—A GIS-Based and a Statistical Approach. Hydrol. Earth Syst. Sci. 2009, 13, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, S.; Naef, F.; Faeh, A.O.; Cordery, I. Formation of Runoff at the Hillslope Scale during Intense Precipitation. Hydrol. Earth Syst. Sci. 2007, 11, 907–922. [Google Scholar] [CrossRef] [Green Version]
- Casper, M.C.; Mohajerani, H.; Hassler, S.K.; Herdel, T.; Blume, T. Finding Behavioral Parameterization for a 1-D Water Balance Model by Multi-Criteria Evaluation. J. Hydrol. Hydromech. 2019, 67, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Farsi, N.; Mahjouri, N. Evaluating the Contribution of the Climate Change and Human Activities to Runoff Change under Uncertainty. J. Hydrol. 2019, 574, 872–891. [Google Scholar] [CrossRef]
- Liu, J.; Luo, M.; Liu, T.; Bao, A.; De Maeyer, P.; Feng, X.; Chen, X. Local Climate Change and the Impacts on Hydrological Processes in an Arid Alpine Catchment in Karakoram. Water 2017, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; He, F.; Xiong, Y.J.; Qiu, G.Y. Effects of Land Use/Land Cover and Climate Changes on Surface Runoff in a Semi-Humid and Semi-Arid Transition Zone in Northwest China. Hydrol. Earth Syst. Sci. 2017, 21, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Fischer, T.; Lu, X. Larger Asian Rivers: Climate Change, River Flow, and Watershed Management. Quat. Int. 2010, 226, 1–3. [Google Scholar] [CrossRef]
- Antonetti, M.; Buss, R.; Scherrer, S.; Margreth, M.; Zappa, M. Mapping Dominant Runoff Processes: An Evaluation of Different Approaches Using Similarity Measures and Synthetic Runoff Simulations. Hydrol. Earth Syst. Sci. 2016, 20, 2929–2945. [Google Scholar] [CrossRef] [Green Version]
- Schmocker-Fackel, P.; Naef, F.; Scherrer, S. Identifying Runoff Processes on the Plot and Catchment Scale. Hydrol. Earth Syst. Sci. Discuss. 2006, 3, 2063–2100. [Google Scholar] [CrossRef] [Green Version]
- Semenova, O.; Beven, K. Barriers to Progress in Distributed Hydrological Modelling. Hydrol. Process. 2015, 29, 2074–2078. [Google Scholar] [CrossRef] [Green Version]
- Tetzlaff, D.; Buttle, J.; Carey, S.K.; McGuire, K.; Laudon, H.; Soulsby, C. Tracer-Based Assessment of Flow Paths, Storage and Runoff Generation in Northern Catchments: A Review. Hydrol. Process. 2015, 29, 3475–3490. [Google Scholar] [CrossRef] [Green Version]
- Kuczera, G.; Renard, B.; Thyer, M.; Kavetski, D. There Are No Hydrological Monsters, Just Models and Observations with Large Uncertainties! Hydrol. Sci. J. 2010, 55, 980–991. [Google Scholar] [CrossRef] [Green Version]
- Beven, K. A Manifesto for the Equifinality Thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Haag, I.; Luce, A.; Henn, N.; Demuth, N. Consideration of spatially differentiated runoff process maps in the water balance model LARSIM. Forum Hydrol. Wasserbewirtsch. 2016, 36, 51–62. [Google Scholar]
- Scherrer, S.; Naef, F. A Decision Scheme to Indicate Dominant Hydrological Flow Processes on Temperate Grassland. Hydrol. Process. 2003, 17, 391–401. [Google Scholar] [CrossRef]
- Bremicker, M. Das Wasserhaushaltsmodell LARSIM: Modellgrundlagen Und Anwendungsbeispiele; Institution für Hydrologie der University Freiburg: Freiburg, Germany, 2000. [Google Scholar]
- Steinrücken, U.; Behrens, T. Bodenhydrologische Karte—Nahe-Rheinland-Pfalz Südwest: Stand 04/2010; LUWG-Bericht; LUWG: Mainz, Germany, 2010. [Google Scholar]
- Demirel, M.C.; Mai, J.; Mendiguren, G.; Koch, J.; Samaniego, L.; Stisen, S. Combining Satellite Data and Appropriate Objective Functions for Improved Spatial Pattern Performance of a Distributed Hydrologic Model. Hydrol. Earth Syst. Sci. 2018, 22, 1299. [Google Scholar] [CrossRef] [Green Version]
- Casper, M.C.; Grigoryan, G.; Gronz, O.; Gutjahr, O.; Heinemann, G.; Ley, R.; Rock, A. Analysis of Projected Hydrological Behavior of Catchments Based on Signature Indices. Hydrol. Earth Syst. Sci. 2012, 16, 409–421. [Google Scholar] [CrossRef] [Green Version]
- Richards, L.A. Capillary Conduction of Liquids through Porous Mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils 1. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Boden, A.-h.-A.G. Bodenkundliche Kartieranleitung. KA5; Schweizerbart Science Publishers: Stuttgart, Germany, 2005; ISBN 978-3-510-95920-4. [Google Scholar]
- Wösten, J.; Lilly, A.; Nemes, A.; Le Bas, C. Development and Use of a Database of Hydraulic Properties of European Soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Renger, M.; Bohne, K.; Facklam, M.; Harrach, T.; Riek, W.; Schäfer, W.; Wessolek, G.; Zacharias, S. Ergebnisse Und Vorschläge Der DBG-Arbeitsgruppe Kennwerte Des Bodengefüges. Zur Schätzung Bodenphysikalischer Kennwerte 2009, 40, 4–51. [Google Scholar]
- Weynants, M.; Vereecken, H.; Javaux, M. Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model. Vadose Zone J. 2009, 8, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, S.; Wessolek, G. Excluding Organic Matter Content from Pedotransfer Predictors of Soil Water Retention. Soil Sci. Soc. Am. J. 2007, 71, 43–50. [Google Scholar] [CrossRef]
- Teepe, R.; Dilling, H.; Beese, F. Estimating Water Retention Curves of Forest Soils from Soil Texture and Bulk Density. J. Plant Nutr. Soil Sci. 2003, 166, 111–119. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G. Weighted Recalibration of the Rosetta Pedotransfer Model with Improved Estimates of Hydraulic Parameter Distributions and Summary Statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Scherrer, S. Bestimmungsschlüssel zur Identifikation von Hochwasserrelevanten Flächen: Landesamt für Umwelt; Wasserwirtschaft; Landesamtes für Umwelt, Wasserwirtschaft und Gewerbeaufsicht: Mainz, Germany, 2006; p. 126. [Google Scholar]
- Behrens, T.; Zhu, A.-X.; Schmidt, K.; Scholten, T. Multi-Scale Digital Terrain Analysis and Feature Selection for Digital Soil Mapping. Geoderma 2010, 155, 175–185. [Google Scholar] [CrossRef]
- Behrens, T.; Förster, H.; Scholten, T.; Steinrücken, U.; Spies, E.-D.; Goldschmitt, M. Digital Soil Mapping Using Artificial Neural Networks. J. Plant Nutr. Soil Sci. 2005, 168, 21–33. [Google Scholar] [CrossRef]
- Behrens, T.; Scholten, T. Digital Soil Mapping in Germany—A Review. J. Plant Nutr. Soil Sci. 2006, 169, 434–443. [Google Scholar] [CrossRef]
- Gronz, O. Nutzung von Abflussprozessinformation in LARSIM; Universität Trier: Trier, Germany, 2013. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Pavlin, L.; Széles, B.; Strauss, P.; Blaschke, A.P.; Blöschl, G. Event and Seasonal Hydrologic Connectivity Patterns in an Agricultural Headwater Catchment. Hydrol. Earth Syst. Sci. 2021, 25, 2327–2352. [Google Scholar] [CrossRef]
- Pirastru, M.; Niedda, M. Evaluation of the Soil Water Balance in an Alluvial Flood Plain with a Shallow Groundwater Table. Hydrol. Sci. J. 2013, 58, 898–911. [Google Scholar] [CrossRef] [Green Version]
- Krause, S.; Bronstert, A. The Impact of Groundwater–Surface Water Interactions on the Water Balance of a Mesoscale Lowland River Catchment in Northeastern Germany. Hydrol. Process. 2007, 21, 169–184. [Google Scholar] [CrossRef]
- Jung, M.; Burt, T.P.; Bates, P.D. Toward a Conceptual Model of Floodplain Water Table Response. Water Resour. Res. 2004, 40, W12409. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Hu, Q.; Jiang, M. Analysis of Runoff Generation Driving Factors Based on Hydrological Model and Interpretable Machine Learning Method. J. Hydrol. Reg. Stud. 2022, 42, 101139. [Google Scholar] [CrossRef]
- Nanda, A.; Sen, S. A Complex Network Theory Based Approach to Better Understand the Infiltration-Excess Runoff Generation Thresholds. J. Hydrol. 2021, 603, 127038. [Google Scholar] [CrossRef]
- Detty, J.M.; McGuire, K.J. Topographic Controls on Shallow Groundwater Dynamics: Implications of Hydrologic Connectivity between Hillslopes and Riparian Zones in a till Mantled Catchment. Hydrol. Process. 2010, 24, 2222–2236. [Google Scholar] [CrossRef]
- Ran, G.; Jian, S.; Wu, Q.; Zhang, L.; Hu, C. Exploring the Dominant Runoff Processes in Two Typical Basins of the Yellow River, China. Water 2020, 12, 3055. [Google Scholar] [CrossRef]
- Klaus, J.; Jackson, C.R. Interflow Is Not Binary: A Continuous Shallow Perched Layer Does Not Imply Continuous Connectivity. Water Resour. Res. 2018, 54, 5921–5932. [Google Scholar] [CrossRef] [Green Version]
- Paschalis, A.; Bonetti, S.; Guo, Y.; Fatichi, S. On the Uncertainty Induced by Pedotransfer Functions in Terrestrial Biosphere Modeling. Water Resour. Res. 2022, 58, e2021WR031871. [Google Scholar] [CrossRef]
- Weihermüller, L.; Lehmann, P.; Herbst, M.; Rahmati, M.; Verhoef, A.; Or, D.; Jacques, D.; Vereecken, H. Choice of Pedotransfer Functions Matters When Simulating Soil Water Balance Fluxes. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002404. [Google Scholar] [CrossRef]
- Beven, K.; Smith, P. Concepts of Information Content and Likelihood in Parameter Calibration for Hydrological Simulation Models. J. Hydrol. Eng. 2015, 20, A4014010. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Savenije, H.; Blöschl, G.; McDonnell, J.; Sivapalan, M.; Pomeroy, J.; Arheimer, B.; Blume, T.; Clark, M.; Ehret, U.; et al. A Decade of Predictions in Ungauged Basins (PUB)—A Review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Beven, K.J. Preferential Flows and Travel Time Distributions: Defining Adequate Hypothesis Tests for Hydrological Process Models. Hydrol. Process. 2010, 24, 1537–1547. [Google Scholar] [CrossRef]
- Dembélé, M.; Hrachowitz, M.; Savenije, H.H.G.; Mariéthoz, G.; Schaefli, B. Improving the Predictive Skill of a Distributed Hydrological Model by Calibration on Spatial Patterns with Multiple Satellite Data Sets. Water Resour. Res. 2020, 56, e2019WR026085. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.; Sivapalan, M.; et al. Twenty-Three Unsolved Problems in Hydrology (UPH)—A Community Perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef] [Green Version]
PTF Combination | Van Genuchten Parameters | Soil Hydraulic Conductivity Ksat |
---|---|---|
1 | Wösten et al. (1999) [38] | Ad-hoc-AG Boden (2005) KA5 [37] |
2 | Renger et al. (2009) [39] | Ad-hoc-AG Boden (2005) KA5 [37] |
3 | Weynants et al. (2009) [40] | Ad-hoc-AG Boden (2005) KA5 [37] |
4 | Zacharias and Wessolek (2007) [41] | Ad-hoc-AG Boden (2005) KA5 [37] |
5 | Teepe et al. (2003) [42] | Ad-hoc-AG Boden (2005) KA5 [37] |
6 | Zhang and Schaap (2017): Rosetta H2w [43] | Ad-hoc-AG Boden (2005) KA5 [37] |
7 | Zhang and Schaap (2017): Rosetta H3w [43] | Ad-hoc-AG Boden (2005) KA5 [37] |
8 | Wösten et al. (1999) [38] | Wösten et al. (1999) [38] |
9 | Renger et al. (2009) [39] | Renger et al. (2009) [39] |
10 | Zhang and Schaap (2017): Rosetta H2w [43] | Zhang and Schaap (2017): Rosetta H2w [43] |
11 | Zhang and Schaap (2017): Rosetta H3w [43] | Zhang and Schaap (2017): Rosetta H3w [43] |
Rainfall Duration (Hours) | Rainfall Intensity (mm/h) |
---|---|
3 | 33.33 |
4 | 25 |
5 | 20 |
6 | 16.66 |
7 | 14.29 |
8 | 12.5 |
9 | 11.11 |
10 | 10 |
DRP Class | Description |
---|---|
SOF 1 | Saturated overland flow Level 1 |
SOF 2 | Saturated overland flow Level 2 |
SOF 3 | Saturated overland flow Level 3 |
SSF 1 | Subsurface flow Level 1 |
SSF 2 | Subsurface flow Level 2 |
SSF 3 | Subsurface flow Level 3 |
DP | Deep percolation |
DRP Class | Description |
---|---|
1 | DP > 75, and/or DP > SR and DP > IF |
1.5 | IF > 50 and DP > 25 DP > 50 and IF > 25 DP > 50 and SR > 25 |
2 | IF > 75 IF > 50 and IF > DP IF > SR and IF > DP |
2.5 | SR > 50 and DP > 25 IF > 50 and SR > 25 |
3 | SR > 75 SR > 50 and IF > 25 SR > IF and SR > DP |
DRP Classes in Reference Hydrological Map | Corresponding DRP Classes in WaSiM Model |
---|---|
DP | 1 |
SSF 3 | 1.5 |
SSF 1 and SSF 2 | 2 |
SOF 3 | 2.5 |
SOF 1 and SOF 2 | 3 |
PTFs Rainfall Intensity | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
100 mm/3 h | −0.36 | −0.64 | −0.60 | 0.05 | −0.34 | −0.35 | −0.39 | −0.66 | −0.62 | −0.10 | −0.49 |
100 mm/4 h | −1.13 | −0.52 | −0.37 | −0.01 | −0.28 | −0.02 | −0.23 | −0.36 | −0.49 | 0.00 | −0.37 |
100 mm/5 h | −5.01 | −0.19 | −0.34 | 0.11 | 0.06 | −0.04 | 0.17 | −0.35 | −0.48 | −0.41 | −0.39 |
100 mm/6 h | −6.19 | −0.36 | −0.33 | 0.11 | 0.15 | −0.36 | −0.01 | −0.43 | −0.18 | −0.89 | −0.22 |
100 mm/7 h | −7.22 | −0.07 | 0.15 | 0.12 | 0.32 | −0.49 | −0.05 | 0.00 | 0.20 | −0.98 | 0.02 |
100 mm/8 h | −7.26 | −0.21 | 0.20 | 0.07 | 0.27 | −0.69 | −0.04 | −0.03 | −0.12 | −1.07 | 0.01 |
100 mm/9 h | −7.38 | 0.15 | 0.22 | 0.07 | 0.23 | −0.81 | −0.25 | 0.06 | −0.03 | −1.18 | 0.02 |
100 mm/10 h | −7.44 | 0.13 | 0.09 | 0.13 | 0.17 | −0.90 | −0.30 | 0.01 | −0.18 | −1.28 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohajerani, H.; Jackel, M.; Salm, Z.; Schütz, T.; Casper, M.C. Spatial Evaluation of a Hydrological Model on Dominant Runoff Generation Processes Using Soil Hydrologic Maps. Hydrology 2023, 10, 55. https://doi.org/10.3390/hydrology10030055
Mohajerani H, Jackel M, Salm Z, Schütz T, Casper MC. Spatial Evaluation of a Hydrological Model on Dominant Runoff Generation Processes Using Soil Hydrologic Maps. Hydrology. 2023; 10(3):55. https://doi.org/10.3390/hydrology10030055
Chicago/Turabian StyleMohajerani, Hadis, Mathias Jackel, Zoé Salm, Tobias Schütz, and Markus C. Casper. 2023. "Spatial Evaluation of a Hydrological Model on Dominant Runoff Generation Processes Using Soil Hydrologic Maps" Hydrology 10, no. 3: 55. https://doi.org/10.3390/hydrology10030055
APA StyleMohajerani, H., Jackel, M., Salm, Z., Schütz, T., & Casper, M. C. (2023). Spatial Evaluation of a Hydrological Model on Dominant Runoff Generation Processes Using Soil Hydrologic Maps. Hydrology, 10(3), 55. https://doi.org/10.3390/hydrology10030055