Environmental Dispersion of Toxic Effluents from Waste Polyethylene Fires: Simulations with ALOFT
Abstract
1. Introduction
2. Background
2.1. Evolution of Fire Prevention Regulations
- Generality: the code outlines the fire safety design methodologies that can be applied to all activities;
- Simplicity: it emphasizes that easier, more feasible and understandable solutions are preferred, as they are also easier to maintain;
- Modularity: the complexity of the subject is divided into easy modules, which are aimed at guiding the designer to the appropriate design for any specific activity;
- Flexibility: each fire safety performance for an activity corresponds to multiple prescriptive or performance design solutions. The recognized methods are defined here, so that the designer can independently conceive and demonstrate the validity of the alternative design solution in compliance with the fire safety objectives;
- Standardization and integration: it ensures that the language of fire prevention complies with international standards. Provisions from pre-existing Italian documents are also integrated;
- Inclusion: the different disabilities (e.g., motor, sensory, cognitive), temporary or permanent, of those involved in the activities, are of course considered an integral part of fire safety design;
- Evidence-based content: the content is based on the research, evaluation, and systematic use of the data, originating from national and international research within fire safety;
- Updatability: the whole code is created in a way that allows for effortless modifications so that it can evolve with the continuous advancement of technology and knowledge.
2.2. The Combustion of Plastics
3. Methodology
3.1. Plume Dynamics
3.2. Plume Trajectory Model
- is density;
- is the velocity vector ();
- is pressure;
- is the gravity vector;
- is the constant-pressure specific heat;
- is the absolute temperature;
- is the thermal conductivity;
- is the time;
- is the prescribed volumetric heat release rate;
- is the gas constant equal to the difference of the specific heats ();
- is the standard stress tensor for compressible fluids.
- is the maximum concentration;
- is the critical concentration;
- is the mass generation rate of any combustion product interest (μg/s);
- Q is the heat release rate (W);
- is the wind speed (m/s);
- is the equivalent wind speed (m/s);
- is the temperature lapse rate (°C/m);
- is the dry adiabatic lapse rate −0.0097 (°C/m);
- is the ground temperature (K);
- is the distance of maximum concentration downwind of the fire (m);
- is the distance of critical concentration downwind of the fire (m).
3.3. Data Input
4. Results and Discussion
4.1. Emissions of Particulate Matter—PM10
- A more stable atmospheric stability class (F) and lower wind velocities affect dispersion, making it more stable and thus able to reach greater distances;
- Finally, an increase in the surface area of the fires increases the production of combustion products; therefore, the quantities of effluents dispersed are greater.
4.2. Emissions of Volatile Organic Compounds (VOCs)
5. Conclusions
6. Future Developments and Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiland, S.; Hickmann, T.; Lederer, M.; Marquardt, J.; Schwindenhammer, S. The 2030 agenda for sustainable development: Transformative change through the sustainable development goals? Politi Gov. 2021, 9, 90–95. [Google Scholar] [CrossRef]
- Department of Economic and Social Affairs. Goal 12, Ensure Sustainable Consumption and Production Patterns. Available online: https://sdgs.un.org/goals/goal12 (accessed on 2 February 2025).
- Reno, J. Waste and Waste Management. Annu. Rev. Anthr. 2015, 44, 557–572. [Google Scholar] [CrossRef]
- Ahmed, R. Innovative Waste Management Solutions: A Global Perspective Challenges and Opportunities and the Bangladesh Context. Preprints 2024. [Google Scholar] [CrossRef]
- Demirbas, A. Waste management, waste resource facilities and waste conversion processes. Energy Convers. Manag. 2011, 52, 1280–1287. [Google Scholar] [CrossRef]
- Eurostat Waste Generation and Treatment. Available online: https://ec.europa.eu/ (accessed on 29 October 2022).
- Ibrahim, M.A.; Göransson, G.; Kaczala, F.; Hogland, W.; Marques, M. Characterization of municipal solid waste temporary storage sites: Risks posed to surrounding areas as a consequence of fire incidents. Waste Manag. 2013, 33, 2296–2306. [Google Scholar] [CrossRef]
- Mikalsen, R.F.; Lönnermark, A.; Glansberg, K.; McNamee, M.; Storesund, K. Fires in waste facilities: Challenges and solutions from a Scandinavian perspective. Fire Saf. J. 2021, 120, 103023. [Google Scholar] [CrossRef]
- Juan, W.Y.; Wu, C.L.; Liu, F.W.; Chen, W.S. Fires in Waste Treatment Facilities: Challenges and Solutions from a Fire Investigation Perspective. Sustainability 2023, 15, 9756. [Google Scholar] [CrossRef]
- Commissione Parlamentare di Inchiesta Sulle Attività Illecite Connesse al Ciclo dei Rifiuti e su Illeciti Ambientali ad Esse Correlati Il Fenomeno degli Incendi Negli Impianti di Trattamento e Smaltimento di Rifiuti. Available online: https://documenti.camera.it/apps/nuovosito/Documenti/DocumentiParlamentari/parser.asp?idLegislatura=17&categoria=023&tipologiaDoc=documento&numero=035&doc=pdfel (accessed on 2 February 2025).
- McNamee, M.; Meacham, B.; van Hees, P.; Bisby, L.; Chow, W.; Coppalle, A.; Dobashi, R.; Dlugogorski, B.; Fahy, R.; Fleischmann, C.; et al. IAFSS agenda 2030 for a fire safe world. Fire Saf. J. 2019, 110, 102889. [Google Scholar] [CrossRef]
- Battiston, E.; Vianello, C.; Rebuffi, G.; Mocellin, P. Accident Investigation of a Real-Case Fire in a Waste Disposal Facility through Numerical Simulation. Chem. Eng. Trans. 2022, 91, 565–570. [Google Scholar] [CrossRef]
- Romano, G.; Romano, A. Fire Investigation in an Italian Waste Treatment Plant: Lessons Learned and Future Development. In WIT Transactions on the Built Environment; WIT Press: Southampton, UK, 2019. [Google Scholar] [CrossRef]
- Pizzolante, A.; Nicodemo, F.; Pierri, A.; Ferro, A.; Pierri, B.; Buonerba, C.; Beccaloni, E.; Albanese, S.; Basso, B.; Cerino, P. Development of a municipality index of environmental pressure in Campania, Italy. Futur. Sci. OA 2021, 7, FSO720. [Google Scholar] [CrossRef]
- Falcone, P.M.; De Rosa, S.P. Use of fuzzy cognitive maps to develop policy strategies for the optimization of municipal waste management: A case study of the land of fires (Italy). Land Use Policy 2020, 96, 104680. [Google Scholar] [CrossRef]
- Vasslides, J.M.; Jensen, O.P. Fuzzy cognitive mapping in support of integrated ecosystem assessments: Developing a shared conceptual model among stakeholders. J. Environ. Manag. 2016, 166, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Mazza, A.; Piscitelli, P.; Falco, A.; Santoro, M.L.; Colangelo, M.; Imbriani, G.; Idolo, A.; De Donno, A.; Iannuzzi, L.; Colao, A. Heavy environmental pressure in campania and other italian regions: A short review of available evidence. Int. J. Environ. Res. Public Health 2018, 15, 105. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Comba, P.; Martuzzi, M.; Palombino, R.; Pizzuti, R. Italian ‘Triangle of death’. Lancet Oncol. 2004, 5, 710. [Google Scholar] [CrossRef]
- Mazza, A.; Piscitelli, P.; Neglia, C.; Della Rosa, G.; Iannuzzi, L. Illegal dumping of toxic waste and its effect on human health in Campania, Italy. Int. J. Environ. Res. Public Health 2015, 12, 6818–6831. [Google Scholar] [CrossRef]
- Senior, K.; Mazza, A. Italian ‘Triangle of death’ linked to waste crisis. Lancet Oncol. 2004, 5, 525–527. [Google Scholar] [CrossRef]
- ISPRA Rapporto Rifiuti Urbani 2022. 2020. Available online: https://www.isprambiente.gov.it/files2020/pubblicazioni/rapporti/rapportorifiutiurbani_ed-2020_n-331-1.pdf (accessed on 31 October 2022).
- Evans, D.D.; Mulholland, G.W.; Baum, H.R.; Walton, W.D.; McGrattan, K.B. In Situ Burning of Oil Spills. J. Res. Natl. Inst. Stand. Technol. 2001, 106, 231–278. [Google Scholar] [CrossRef]
- Decreto del Presidente Della Repubblica 1 Agosto 2011, n. 151. Available online: https://www.gazzettaufficiale.it/eli/id/2011/09/22/011G0193/sg (accessed on 31 October 2022).
- Ministero Dell’interno Decreto 3 Agosto 2015. 2015. Available online: https://www.gazzettaufficiale.it/eli/id/2015/08/20/15A06189/sg (accessed on 31 October 2022).
- Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste—A Review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- Hodgkin, J.H.; Galbraith, M.N.; Chong, Y.K. Combustion Products from Burning Polyethylene. J. Macromol. Sci. Chem. 1982, 17, 35–44. [Google Scholar] [CrossRef]
- Guillaume, E.; Marlair, G.; Delacroix, A.; Drysdale, D. Considerations on combustion and fire behaviour of materials: A change of mind during the 18th century. J. Fire Sci. 2015, 34, 69–84. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Ismail, S.O. Introduction to Composite Materials. In Sustainable Composites for Lightweight Applications; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–16. [Google Scholar] [CrossRef]
- Kumar, N.; Ukey, P.D.; Francis, V.; Singh, R.P.; Sahu, S. Plastic Pellets. In Polymers for 3D Printing: Methods, Properties, and Characteristics; Elsevier: Amsterdam, The Netherlands, 2022; pp. 307–323. [Google Scholar] [CrossRef]
- Morris, B.A. Designing Flexible Packaging for Sustainability. In The Science and Technology of Flexible Packaging; Elsevier: Amsterdam, The Netherlands, 2022; pp. 709–761. [Google Scholar] [CrossRef]
- Hull, D.; Clyne, T.W. An Introduction to Composite Materials; Cambridge University Press (CUP): Cambridge, UK, 1996. [Google Scholar] [CrossRef]
- Silvestre, J.; Silvestre, N.; De Brito, J. An overview on the improvement of mechanical properties of ceramics nanocomposites. J. Nanomater. 2015, 2015, 106494. [Google Scholar] [CrossRef]
- Plastic Packaging Waste: 38% Recycled in 2020—Products Eurostat News—Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20221020-1 (accessed on 2 February 2025).
- Janajreh, I.; Adeyemi, I.; Elagroudy, S. Gasification feasibility of polyethylene, polypropylene, polystyrene waste and their mixture: Experimental studies and modeling. Sustain. Energy Technol. Assess. 2020, 39, 100684. [Google Scholar] [CrossRef]
- Piao, M.; Chu, S.; Zheng, M.; Xu, X. Characterization of the combustion products of polyethylene. Chemosphere 1999, 39, 1497–1512. [Google Scholar] [CrossRef]
- Ghoniem, A.F.; Zhanga, X.; Knioa, O.; Baum, H.R.; Rehm, R.G. Dispersion and deposition of smoke plumes generated in massive fires. J. Hazard. Mater. 1993, 33, 275–293. [Google Scholar] [CrossRef]
- Walton, W.D.; McGrattan, K.B.; Mullin, J.V. ALOFT-PC: A Smoke Plume Trajectory Model for Personal Computers. 2003. Available online: https://www.nist.gov/publications/aloft-pc-smoke-plume-trajectory-model-personal-computers (accessed on 30 October 2022).
- Walton, W.; McGrattan, K. Smoke Plume Trajectory from In Situ Burning of Crude Oil in Alaska—Updated Simulation Results; NIST Technical Note; U.S. Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011.
- McGrattan, K.B.; Baum, H.R.; Walton, W.D.; Trelles, J.J. Smoke Plume Trajectory From In Situ Burning of Crude Oil in Alaska: Field Experiments and Modeling of Complex Terrain (NISTIR 5958); U.S. Department of Commerce, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1997. [CrossRef]
- Josephson, A.J.; Castaño, D.; Koo, E.; Linn, R.R. Zonal-Based Emission Source Term Model for Predicting Particulate Emission Factors in Wildfire Simulations. Fire Technol. 2020, 57, 943–971. [Google Scholar] [CrossRef]
- Josephson, A.J.; Castaño, D.; Holmes, M.J.; Linn, R.R. Simulation comparisons of particulate emissions from fires under marginal and critical conditions. Atmosphere 2019, 10, 704. [Google Scholar] [CrossRef]
- Zengel, S.A.; Michel, J.; Dahlin, J.A. Environmental effects of in situ burning of oil spills in inland and upland habitats. Spill Sci. Technol. Bull. 2003, 8, 373–377. [Google Scholar] [CrossRef]
- Trelles, J.; McGrattan, K.B.; Baum, H.R. Smoke Dispersion from Multiple Fire Plumes. AIAA J. 2012, 37, 1588–1601. [Google Scholar] [CrossRef]
- Kahl, J.D.W.; Chapman, H.L. Atmospheric stability characterization using the Pasquill method: A critical evaluation. Atmospheric Environ. 2018, 187, 196–209. [Google Scholar] [CrossRef]
- Slade, D.H. Meteorology and Atomic Energy. Environmental Science Services Administration: Silver Spring, MD, USA, 1968. [Google Scholar] [CrossRef]
- Lees, F.P. Lees’ Loss Prevention in the Process Industries, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- S., O.G. Atmospheric diffusion. By F. Pasquill. London (Van Nostrand Co.), 1962. Pp. xii, 297; 60s. Q. J. R. Meteorol. Soc. 1962, 88, 202–203. [Google Scholar] [CrossRef]
- Scire, J.S.; Strimaitis, D.G.; Yamartino, R.J. A User’s Guide for the CALPUFF Dispersion Model; UBC Earth, Ocean and Atmospheric Sciences: Vancouver, BC, USA, 2000. [Google Scholar]
- Offshore and Coastal Dispersion (OCD) Model. Users Guide. Available online: https://inis.iaea.org/records/a5sq7-8fx37 (accessed on 2 February 2025).
- Lyon, R.E.; Janssens, M.L. Polymer Flammability. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 1985, 26, 1–70. [Google Scholar] [CrossRef]
- Wu, D.; Li, Q.; Shang, X.; Liang, Y.; Ding, X.; Sun, H.; Li, S.; Wang, S.; Chen, Y.; Chen, J. Commodity plastic burning as a source of inhaled toxic aerosols. J. Hazard. Mater. 2021, 416, 125820. [Google Scholar] [CrossRef] [PubMed]
- Aurell, J.; Gullett, B.K.; Yamamoto, D. Emissions from open burning of simulated military waste from forward operating bases. Environ. Sci. Technol. 2012, 46, 11004–11012. [Google Scholar] [CrossRef] [PubMed]
- Philip, J. SFPE Handbook of Fire Protection Engineering, 3rd ed.; Editorial Staff the Following are Registered Trademarks of the National Fire Protection Association: National Electrical Code® and NEC® National Fire Codes® Life Safety Code® and 101 ® National Fire Alarm Code® and NFPA 72® NFPA and Design Logo; National Fire Protection Association: Quincy, MA, USA, 2002. [Google Scholar]
- Review of Emission Factors for Incident Fires Innovation for Efficiency Science Programme Science Report: SC060037/SR3. Available online: https://assets.publishing.service.gov.uk/media/5a7c7177e5274a5255bceadc/scho0809bqut-e-e.pdf (accessed on 2 February 2025).
- De Cet, G. Analisi di Effluenti Tossici Prodotti da Incendio di Stoccaggi di Rifiuti. University of Padua, 2018. Available online: https://thesis.unipd.it/handle/20.500.12608/28265 (accessed on 30 October 2022).
- Hurley, M.J.; Gottuk, D.T.; Hall Jr, J.R.; Harada, K.; Kuligowski, E.D.; Puchovsky, M.; Watts, J.M.; Wieczorekc, J. SFPE Handbook of Fire Protection Engineering, 5th ed.; Springer Nature: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Shemwell, B.E.; Levendis, Y.A. Particulates generated from combustion of polymers (plastics). J. Air Waste Manag. Assoc. 2000, 50, 94–102. [Google Scholar] [CrossRef]
- Hilado, C.J. Plastics Flammability Handbook; Carl Hanser Verlag: Muenchen, Germany, 2004. [Google Scholar] [CrossRef]
- Lyon, R.E.; Janssens, M.L. Flammability. In Encyclopedia of Polymer Science and Technology; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
Sim. | DD (km) | Fires’ Surface (m2) | HRR (MW/m2) | RF (−) | BR (kg/m2s) | Emission (g/kg) | Effluent | Pasquill Class | WS (m/s) | ET (°C) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 50 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | D | 5 | 25 |
2 | 5 | 50 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | D | 5 | 25 |
3 | 1 | 50 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | F | 2 | 25 |
4 | 5 | 50 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | F | 2 | 25 |
5 | 1 | 100 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | D | 5 | 25 |
6 | 5 | 100 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | D | 5 | 25 |
7 | 1 | 100 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | F | 2 | 25 |
8 | 5 | 100 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | F | 2 | 25 |
9 | 1 | 1000 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | D | 5 | 25 |
10 | 5 | 1000 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | D | 5 | 25 |
11 | 1 | 1000 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | F | 2 | 25 |
12 | 5 | 1000 | 0.145 | 0.381 | 0.00309 | 29.63 | PM10 | F | 2 | 25 |
13 | 1 | 50 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | D | 5 | 25 |
14 | 5 | 50 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | D | 5 | 25 |
15 | 1 | 50 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | F | 2 | 25 |
16 | 5 | 50 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | F | 2 | 25 |
17 | 1 | 100 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | D | 5 | 25 |
18 | 5 | 100 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | D | 5 | 25 |
19 | 1 | 100 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | F | 2 | 25 |
20 | 5 | 100 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | F | 2 | 25 |
21 | 1 | 1000 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | D | 5 | 25 |
22 | 5 | 1000 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | D | 5 | 25 |
23 | 1 | 1000 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | F | 2 | 25 |
24 | 5 | 1000 | 0.145 | 0.381 | 0.00309 | 2.4 | VOC | F | 2 | 25 |
Simulation | Initial Plume Height (m) | Maximum Height (m) | Initial Concentration (μg/m3) | Maximum Concentration (μg/m3) | Dispersed Distance with a Concentration of Less than 50 μg/m3 (m) |
---|---|---|---|---|---|
13 | 32 | 43 | 100–500 | 100–500 | 256 |
14 | 32 | 43 | 100–500 | 100–500 | 256 |
15 | 43 | 101 | 500–1000 | 500–1000 | 201 |
16 | 43 | 101 | 500–1000 | 500–1000 | 201 |
17 | 40 | 67 | 500–1000 | 500–1000 | 303 |
18 | 40 | 67 | 500–1000 | 500–1000 | 303 |
19 | 36 | 109 | 500–1000 | 500–1000 | 150 |
20 | 36 | 109 | 500–1000 | 500–1000 | 150 |
21 | 58 | 202 | 2000–4000 | 2000–4000 | 353 |
22 | 58 | 202 | 2000–4000 | 2000–4000 | 353 |
23 | 78 | 257 | 2000–4000 | 2000–4000 | 100 |
24 | 78 | 257 | 2000–4000 | 2000–4000 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Cet, G.; Vianello, C. Environmental Dispersion of Toxic Effluents from Waste Polyethylene Fires: Simulations with ALOFT. ChemEngineering 2025, 9, 41. https://doi.org/10.3390/chemengineering9020041
De Cet G, Vianello C. Environmental Dispersion of Toxic Effluents from Waste Polyethylene Fires: Simulations with ALOFT. ChemEngineering. 2025; 9(2):41. https://doi.org/10.3390/chemengineering9020041
Chicago/Turabian StyleDe Cet, Giulia, and Chiara Vianello. 2025. "Environmental Dispersion of Toxic Effluents from Waste Polyethylene Fires: Simulations with ALOFT" ChemEngineering 9, no. 2: 41. https://doi.org/10.3390/chemengineering9020041
APA StyleDe Cet, G., & Vianello, C. (2025). Environmental Dispersion of Toxic Effluents from Waste Polyethylene Fires: Simulations with ALOFT. ChemEngineering, 9(2), 41. https://doi.org/10.3390/chemengineering9020041