Removal of Pb(II) and Cd(II) Ions from Aqueous Solutions Using Modified Fish Scale Bioadsorbent
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Bioadsorbent
2.3. Characterization of Native and Modified FSs
2.3.1. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.3.2. Scanning Electron Microscopy (SEM) Analysis
2.3.3. X-Ray Diffraction Analysis
2.3.4. X-Ray Photoelectron Spectroscopy (XPS) Analysis
2.3.5. Brunauer–Emmett–Teller (BET) Analysis
2.4. Preparation of Model Wastewater
2.5. Adsorption Studies of Pb(II) and Cd(II) Ions
2.6. Experimental Design
2.7. Statistical Data Analysis
3. Results
3.1. Characterization of the Prepared Bioadsorbent
3.1.1. FTIR Analysis
3.1.2. Morphology of Native and Modified Scales
3.1.3. Elemental Analysis Using XPS
3.1.4. X-Ray Analysis of the Fish Scales Before and After Treatment
3.1.5. Thermal Gravimetric (TG) Analysis
3.1.6. Brunauer–Emmett–Teller (BET) Analysis
3.2. Pb(II) and Cd(II) Removal
3.3. Optimization of Pb(II) and Cd(II) Ion Removal Using RSM
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Budi, H.; Catalan Opulencia, M.; Afra, A.; Abdelbasset, W.; Abdullaev, D.; Majdi, A.; Taherian, M.; Ekrami, H.; Mohammadi, M. Source, toxicity and carcinogenic health risk assessment of heavy metals. Rev. Environ. Health 2024, 39, 77–90. [Google Scholar] [CrossRef]
- Kumari, D.; Goswami, R.; Kumar, M.; Mazumder, P.; Kataki, R.; Shim, J. Removal of Cr (VI) ions from the aqueous solution through nanoscale zero-valent iron (nZVI) Magnetite Corn Cob Silica (MCCS): A bio-waste based water purification perspective. Groundwater Sustain. Dev. 2017, 7, 470–476. [Google Scholar] [CrossRef]
- Hozien, Z.A.; El-Mahdy, A.F.; Ali, L.S.; Markeb, A.A.; El-Sherief, H.A. One-pot synthesis of some new s-triazole derivatives and their potential application for water decontamination. ACS Omega 2021, 6, 25574–25584. [Google Scholar] [CrossRef] [PubMed]
- Markeb, A.A.; Moral-Vico, J.; Sánchez, A.; Font, X. Optimization of lead (II) removal from water and wastewater using a novel magnetic nanocomposite of aminopropyl triethoxysilane coated with carboxymethyl cellulose cross-linked with chitosan nanoparticles. Arab. J. Chem. 2023, 16, 105022. [Google Scholar] [CrossRef]
- Yin, H.; Zhu, J.k. In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chem. Eng. J. 2016, 285, 112–120. [Google Scholar] [CrossRef]
- Pal, D.; Maiti, S.K. An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent. Ecotoxicol. Environ. Saf. 2020, 187, 109833. [Google Scholar] [CrossRef]
- Yang, Z.; Fang, Z.; Zheng, L.; Cheng, W.; Tsang, P.E.; Fang, J.; Zhao, D. Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicol. Environ. Saf. 2016, 132, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Gheju, M.; Balcu, I. Removal of chromium from Cr (VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. J. Hazard. Mater. 2011, 196, 131–138. [Google Scholar] [CrossRef]
- Golbaz, S.; Jafari, A.J.; Rafiee, M.; Kalantary, R.R. Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory. Chem. Eng. J. 2014, 253, 251–257. [Google Scholar] [CrossRef]
- Verma, S.K.; Khandegar, V.; Saroha, A.K. Removal of chromium from electroplating industry effluent using electrocoagulation. J. Hazard. Toxic Radioact. Waste 2013, 17, 146–152. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Wellens, S.; Verachtert, K.; Binnemans, K. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: Separations relevant to rare-earth magnet recycling. Green Chem. 2013, 15, 919–927. [Google Scholar] [CrossRef]
- Mohammed, K.; Sahu, O. Bioadsorption and membrane technology for reduction and recovery of chromium from tannery industry wastewater. Environ. Technol. Innov. 2015, 4, 150–158. [Google Scholar] [CrossRef]
- Gutiérrez-Corona, J.F.; Romo-Rodríguez, P.; Santos-Escobar, F.; Espino-Saldaña, A.E.; Hernández-Escoto, H. Microbial interactions with chromium: Basic biological processes and applications in environmental biotechnology. World J. Microbiol. Biotechnol. 2016, 32, 191. [Google Scholar] [CrossRef]
- Vikrant, K.; Giri, B.S.; Raza, N.; Roy, K.; Kim, K.H.; Rai, B.N.; Singh, R.S. Recent advancements in bioremediation of dye: Current status and challenges. Bioresour. Technol. 2018, 253, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Melia, P.M.; Cundy, A.B.; Sohi, S.P.; Hooda, P.S.; Busquets, R. Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 2017, 186, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Deegan, A.M.; Shaik, B.; Nolan, K.; Urell, K.; Oelgemöller, M.; Tobin, J.; Morrissey, A. Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 2011, 8, 649–666. [Google Scholar] [CrossRef]
- Qasim, W.; Mane, A.V. Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resour. Ind. 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Visa, M. Synthesis and characterization of new zeolite materials obtained from fly ash for heavy metals removal in advanced wastewater treatment. Powder Technol. 2016, 294, 338–347. [Google Scholar] [CrossRef]
- Ojoawo, S.O.; Oyekanmi, S.E.; Naik, P.A. Adsorption and Desorption of Fe2+ Using Sugarcane Bagasse Activated Carbon in Remediating Metal Galvanizing Industrial Wastewater. Think India J. 2019, 22, 15021–15034. [Google Scholar]
- Rajapakshe, R.B.S.D.; Gangani, P.W.D.P.; Thennakoon, C.A.; Prabath Nilan Gunasekara, N.S. Preparation of Hematite Nano Particles from Galvanizing Effluents for the Applications in Heavy Metal Removal. J. Mater. Sci. Manuf. Res. 2022, 132, 8–10. [Google Scholar]
- Leal-Castañeda, E.J.; Meléndez-Estrada, J.; Toscano-Flores, L.G. Dodecanoyl chloride modified starch particles: A candidate for the removal of hydrocarbons and heavy metals in wastewater. Environ. Adv. 2023, 11, 100333. [Google Scholar]
- Chinh, N.T.; Manh, V.Q.; Trung, V.Q.; Lam, T.D.; Huynh, M.D.; Tung, N.Q.; Trinh, N.D.; Hoang, T. Characterization of collagen derived from tropical freshwater Carp fish scale wastes and its amino acid sequence. Nat. Prod. Commun. 2019, 14, 1934578–1986628. [Google Scholar] [CrossRef]
- Lopes, C.; Antelo, L.T.; Franco-Uria, A.; Alonso, A.A.; Perez-Martin, R. Valorisation of fish by-products against waste management treatments–Comparison of environmental impacts. Waste Manag. 2015, 46, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous carbonaceous material from fish scales as low-cost adsorbent for reactive orange 16 adsorption. J. Taiwan Inst. Chem. Eng. 2017, 71, 47–54. [Google Scholar] [CrossRef]
- Hoyer, B.; Bernhardt, A.; Heinemann, S.; Stachel, I.; Meyer, M.; Gelinsky, M. Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. J. Biol. Macromol. 2012, 13, 1059–1066. [Google Scholar] [CrossRef]
- Selimin, M.A.; Latif, A.F.A.; Lee, C.W.; Muhamad, M.S.; Basri, H.; Lee, T.C. Adsorption efficiency of hydroxyapatite synthesised from black tilapia fish scales for chromium (VI) removal. Mater. Today 2022, 57, 1142–1146. [Google Scholar] [CrossRef]
- Qin, D.; Bi, S.; You, X.; Wang, M.; Cong, X.; Yuan, C.; Yu, M.; Cheng, X.; Chen, X.G. Development and application of fish scale wastes as versatile natural biomaterials. Chem. Eng. J. 2022, 428, 131102. [Google Scholar] [CrossRef]
- García Gómez, A.G.; Conde Quintero, M.; Castro Salazar, H.T. Extraction and characterization of chitin scales from red tilapia (oreochromis sp.) from Huila, Colombia by chemical methods. Rev. Ing. Univ. De Medellín 2019, 18, 71–81. [Google Scholar] [CrossRef]
- Chairi, H.; Laglaoui, A.; Arakrak, A.; Zantar, S.; Bakkali, M.; Hassani, M. Optimization and characterization of gelatin and chitosan extracted from fish and shrimp waste. E3S Web Conf. 2018, 37, 02006. [Google Scholar]
- Pobletea, R.; Cortesa, E.; Bakitb, J.; Luna-Galianoc, Y. Landfill leachate treatment using combined fish scales based activated carbon and solar advanced oxidation processes. Process Saf. Environ. Prot. 2019, 123, 253–262. [Google Scholar] [CrossRef]
- Ojwach, S.O.; Lalah, J.O.; Kowenje, C.O.; Achieng, G.O. Preparation, characterization of fish scales biochar and their applications in the removal of anionic indigo carmine dye from aqueous solutions. Water Sci. Technol. 2019, 80, 2218–2231. [Google Scholar]
- Ooi, J.; Lee, L.Y.; Hiew, B.Y.Z.; Thangalazhy-Gopakumar, S.; Lim, S.S.; Gan, S. Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies. Bioresour. Technol. 2017, 245, 656–664. [Google Scholar] [CrossRef]
- Leal-Castañeda, E.J.; García-Tejeda, Y.; Hernández-Sánchez, H.; Alamilla-Beltrán, L.; Téllez-Medina, D.I.; Calderón-Domínguez, G.; Gutiérrez-López, G.F. Pickering emulsions stabilized with native and lauroylated amaranth starch. Food Hydrocoll. 2018, 80, 177–185. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana NOM-127-SSA1-2021, Agua Para Uso y Consumo Humano. Límites Permisibles de la Calidad del Agua, Prefacio. Available online: https://www.fao.org/faolex/results/details/es/c/LEX-FAOC215630/ (accessed on 17 February 2025).
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Teshale, F.; Karthikeyan, R.; Sahu, O. Synthesized bioadsorbent from fish scale for chromium (III) removal. Micron 2020, 130, 102817. [Google Scholar] [CrossRef] [PubMed]
- El Haouti, R.; Anfar, Z.; Chennah, A.; Amaterz, E.; Zbair, M.; El Alem, N.; Benlhachemi, A.; Ezahri, M. Synthesis of sustainable mesoporous treated fish waste as adsorbent for copper removal. Groundwater Sustain. Dev. 2019, 8, 1–9. [Google Scholar] [CrossRef]
- Anfar, Z.; El Haouti, R.; Lhanafi, S.; Benafqir, M.; Azougarh, Y.; El Alem, N. Treated digested residue during anaerobic co-digestion of Agri-food organic waste: Methylene blue adsorption, mechanism and CCD-RSM design. J. Environ. Chem. Eng. 2017, 5, 5857–5867. [Google Scholar] [CrossRef]
- Ribeiro, C.; Scheufele, F.B.; Espinoza-Quinones, F.R.; Módenes, A.N.; da Silva, M.G.C.; Vieira, M.G.A.; Borba, C.E. Characterization of Oreochromis niloticus fish scales and assessment of their potential on the adsorption of reactive blue 5G dye. Colloids Surf. A Physicochem. Eng. Asp. 2015, 482, 693–701. [Google Scholar] [CrossRef]
- Niero, G.; Corrêa, A.X.R.; Trierweiler, G.; Matos, A.J.F.; Corrêa, R.; Bazani, H.A.G.; Radetski, C.M. Using modified fish scale waste from Sardinella brasiliensis as a low-cost adsorbent to remove dyes from textile effluents. J. Environ. Sci. Health A Tox. 2019, 54, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.F.; Cueto, R.; Balamurugan, S.; Romeo, L.D.; Kuttruff, J.T.; Marx, B.D.; Negulescu, I.I. Removal of acid dyes from textile wastewaters using fish scales by absorption process. Clean Technol. 2019, 1, 21. [Google Scholar] [CrossRef]
- Uzunoğlu, D.; Özer, A. Adsorption of Acid Blue 121 dye on fish (Dicentrarchus labrax) scales, the extracted from fish scales and commercial hydroxyapatite: Equilibrium, kinetic, thermodynamic, and characterization studies. Desalin. Water Treat. 2016, 57, 14109–14131. [Google Scholar] [CrossRef]
- Islam, M.A.; Hameed, B.H.; Ahmed, M.J.; Khanday, W.A.; Khan, M.A.; Marrakchi, F. Porous carbon–based material from fish scales for the adsorption of tetracycline antibiotics. Biomass Convers. Biorefin. 2023, 13, 13153–13162. [Google Scholar] [CrossRef]
- Ji, Q.; Li, H.; Zhang, J. Preparation and characterization of bio-based activated carbon from fish scales. J. Bioresour. 2021, 16, 614. [Google Scholar] [CrossRef]
- Fratzl, P.; Groschner, M.; Vogl, G.; Plenk, H., Jr.; Eschberger, J.; Fratzl-Zelman, N.; Koller, K.; Klaushofer, K. Mineral crystals in calcified tissues: A comparative study by SAXS. J. Bone Miner. Res. 1992, 7, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Torres, F.G.; Troncoso, O.P.; Nakamatsu, J.; Grande, C.J.; Gómez, C.M. Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima Gigas. Mater. Sci. Eng. C 2008, 28, 1276–1283. [Google Scholar] [CrossRef]
- Ibrahim, F.; Osman, N.A.; Usman, J.; Kadri, N.A. 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006: Biomed 2006, 11–14 December 2006, Kuala Lumpur, Malaysia; Springer Science & Business Media: Berlin, Geramny, 2007; Volume 15. [Google Scholar]
- Ikoma, T.; Kobayashi, H.; Tanaka, J.; Walsh, D.; Mann, S. Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. Struct. Biol. 2003, 142, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Thomas, V.; Dean, D.R.; Jose, M.V.; Mathew, B.; Chowdhury, S.; Vohra, Y.K. Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. J. Biol. Macromol. 2007, 8, 631–637. [Google Scholar] [CrossRef]
- Rahaman, M.S.; Basu, A.; Islam, M.R. The removal of As (III) and As (V) from aqueous solutions by waste materials. Bioresour. Technol. 2008, 99, 2815–2823. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, V.; Sharma, Y.C.; Sillanpää, M. Response surface methodological ap- proach for the optimization of adsorption process in the removal of Cr (VI) ions by Cu2(OH)2CO3 nanoparticles. Appl. Surf. Sci. 2015, 326, 257–270. [Google Scholar] [CrossRef]
- Liang, X.; Fan, X.; Li, R.; Li, S.; Shen, S.; Hu, D. Efficient removal of Cr (VI) from water by quaternized chitin/branched polyethylenimine biosorbent with hierarchical pore structure. Bioresour. Technol. 2018, 250, 178–184. [Google Scholar] [CrossRef]
- Nazir, M.S.; Tahir, Z.; Akhtar, M.N.; Abdullah, M.A. Biosorbents and composite cation exchanger for the treatment of heavy metals. Appl. Ion Exch. Mater. Environ. 2019, 135–159. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Q.; Li, X.; Huang, X. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods. Chem. Eng. J. 2022, 429, 131688. [Google Scholar] [CrossRef]
- Saranya, N.; Ajmani, A.; Sivasubramanian, V.; Selvaraju, N. Hexavalent Chromium removal from simulated and real effluents using Artocarpus heterophyllus peel biosorbent-Batch and continuous studies. J. Mol. Liq. 2018, 265, 779–790. [Google Scholar] [CrossRef]
- Aman, A.; Ahmed, D.; Asad, N.; Masih, R.; Abd ur Rahman, H.M. Rose biomass as a potential biosorbent to remove chromium, mercury and zinc from contaminated waters. Int. J. Environ. Sci. 2018, 75, 774–787. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Robalds, A.; Tran, H.N.; Mitrogiannis, D.; Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Dotto, G.L. Removal of heavy metals by leaves-derived biosorbents. Environ. Chem. Lett. 2019, 17, 755–766. [Google Scholar] [CrossRef]
- Wu, Y.; Ming, Z.; Yang, S.; Fan, Y.; Fang, P.; Sha, H.; Cha, L. Adsorption of hexavalent chromium onto Bamboo Charcoal grafted by Cu2+-N-aminopropylsilane complexes: Optimization, kinetic, and isotherm studies. J. Ind. Eng. Chem. 2017, 46, 222–233. [Google Scholar] [CrossRef]
- Prabu, K.; Shankarlal, S.; Natarajan, E. A biosorption of heavy metal ions from aqueous solutions using fish scale (Catla catla). World J. Fish Mar. Sci. 2012, 4, 73–77. [Google Scholar]
- Gogoi, S.; Chakraborty, S.; Saikia, M.D. Surface modified pineapple crown leaf for adsorption of Cr (VI) and Cr (III) ions from aqueous solution. J. Environ. Chem. Eng. 2018, 6, 2492–2501. [Google Scholar] [CrossRef]
Independent Variables | Range and Level Variables | ||
---|---|---|---|
−α | α | +α | |
pH (X1) | 4 | 5 | 7 |
Adsorption dose (g) (X2) | 0.4 | 0.8 | 1 |
Contact time (min) (X3) | 60 | 90 | 120 |
No. | X1: pH | X2: Dose (g) | X3: Contact Time (min) | Y1:Pb(II) Response Efficiency (%) | Y2:Cd(II) Response Efficiency (%) |
---|---|---|---|---|---|
1 | 5 | 0.4 | 60 | 77.6 ± 0.6 | 61.2 ± 0.6 |
2 | 4 | 0.8 | 60 | 67.6 ± 0.5 | 66.2 ± 0.7 |
3 | 7 | 0.8 | 60 | 45.6 ± 0.7 | 77.2 ± 0.4 |
4 | 5 | 1 | 60 | 82.8 ± 1.1 | 58.6 ± 0.4 |
5 | 4 | 0.4 | 90 | 79.0 ± 0.7 | 60.5 ± 0.4 |
6 | 5 | 0.8 | 90 | 77.4 ± 0.8 | 61.3 ± 0.5 |
7 | 5 | 0.8 | 90 | 76.9 ± 0.9 | 61.6 ± 0.5 |
8 | 7 | 1 | 90 | 64.7 ± 0.5 | 67.6 ± 0.3 |
9 | 4 | 1 | 90 | 68.2 ± 0.7 | 65.9 ± 0.6 |
10 | 5 | 0.4 | 120 | 75.8 ± 0.9 | 62.1 ± 0.7 |
11 | 4 | 0.8 | 120 | 70.5 ± 0.7 | 64.7 ± 0.4 |
12 | 7 | 0.8 | 120 | 44.4 ± 0.3 | 77.8 ± 0.7 |
13 | 5 | 1 | 120 | 59.2 ± 0.8 | 70.4 ± 0.4 |
Elements | NFSs | MFSs | MFSATs |
---|---|---|---|
C1s | 66.2 ± 8.0 | 50.7 ± 7.2 | 53.3 ± 7.9 |
O1s | 20.5 ± 2.5 | 27.3 ± 3.1 | 24.6 ± 2.9 |
N1s | 8.2 ± 1.6 | 14.2 ± 1.9 | 15.9 ± 2.0 |
Ca2p | 1.7 ± 0.4 | 1.5 ± 0.2 | 0.9 ± 0.2 |
P2p | 1.7 ± 0.4 | 0.9 ± 0.1 | --- |
Si2p | 1.1 ± 0.2 | 0.4 ± 0.0 | 0.4 ± 0.0 |
S2p | 0.5 ± 0.0 | 1.2 ± 0.3 | --- |
Na1s | 0.2 ± 0.0 | 3.8 ± 0.9 | 1.8 ± 0.3 |
P2s | --- | --- | 1.1 ± 0.2 |
S2s | --- | --- | 0.7 ± 0.1 |
Pb4f | --- | --- | 1.1 ± 0.1 |
Cd3d | --- | --- | 0.2 ± 0.0 |
Time (min) | Concentration mg/L | Removal % |
---|---|---|
Pb(II) | ||
1 | 76.95 ± 2.3 | 61.52 ± 1.3 |
5 | 51.20 ± 1.5 | 74.40 ± 0.7 |
15 | 45.74 ± 0.9 | 77.13 ± 1.2 |
25 | 34.95 ± 0.6 | 80.47 ± 2.8 |
60 | 31.82 ± 1.0 | 84.09 ± 2.0 |
Cd(II) | ||
1 | 29.92 ± 0.5 | 89.85 ± 1.5 |
5 | 30.21 ± 0.2 | 89.65 ± 1.0 |
15 | 30.02 ± 0.2 | 89.81 ± 1.6 |
25 | 29.89 ± 0.4 | 89.68 ± 0.8 |
60 | 30.11 ± 0.7 | 89.69 ± 0.7 |
Source | Degrees of Freedom | Sum of Squares | Mean Square | F Value | p Value | Prob > F |
---|---|---|---|---|---|---|
Pb(II) | ||||||
Model | 9 | 13,066.2 | 1451.80 | 12.96 | 0.000 | Significant |
Linear | 3 | 4979.9 | 1659.96 | 14.81 | 0.000 | Significant |
X1 | 1 | 3668.4 | 3668.42 | 32.74 | 0.000 | Significant |
X2 | 1 | 749.7 | 749.66 | 6.69 | 0.018 | Significant |
X3 | 1 | 561.8 | 561.81 | 5.01 | 0.037 | Significant |
Square | 3 | 7046.9 | 2348.97 | 20.96 | 0.000 | Significant |
X12 | 1 | 4125.5 | 4125.51 | 36.82 | 0.000 | Significant |
X22 | 1 | 742.9 | 742.93 | 6.63 | 0.018 | Significant |
X32 | 1 | 2092.6 | 2092.56 | 18.68 | 0.000 | Significant |
Interaction of 2 factors | 3 | 1039.4 | 346.47 | 3.09 | 0.050 | Significant |
X1X2 | 1 | 60.6 | 60.61 | 0.54 | 0.471 | Not significant |
X1X3 | 1 | 34.4 | 34.40 | 0.31 | 0.586 | Not significant |
X2X3 | 1 | 944.4 | 944.39 | 8.43 | 0.009 | Significant |
Error | 20 | 2240.9 | 112.05 | |||
Lack of fit | 3 | 2029.3 | 676.44 | 54.34 | 0.000 | Significant |
Pure error | 17 | 211.6 | 12.45 | |||
Total | 29 | 15,307.2 | ||||
Cd(II) | ||||||
Model | 9 | 1053.91 | 117.101 | 6.22 | 0.000 | Significant |
Linear | 3 | 765.39 | 255.129 | 13.54 | 0.000 | Significant |
X1 | 1 | 2.45 | 2.449 | 0.13 | 0.722 | Not significant |
X2 | 1 | 732.11 | 732.108 | 38.87 | 0.000 | Significant |
X3 | 1 | 30.83 | 30.830 | 1.64 | 0.215 | Not significant |
Square | 3 | 267.02 | 89.007 | 4.73 | 0.012 | Significant |
X12 | 1 | 154.13 | 154.129 | 8.18 | 0.010 | Significant |
X22 | 1 | 114.62 | 114.624 | 6.09 | 0.023 | Significant |
X32 | 1 | 33.42 | 33.418 | 1.77 | 0.198 | Not significant |
Interaction of 2 factors | 3 | 21.50 | 7.168 | 0.38 | 0.768 | Not significant |
X1X2 | 1 | 0.27 | 0.274 | 0.01 | 0.905 | Not significant |
X1X3 | 1 | 10.63 | 10.626 | 0.56 | 0.461 | Not significant |
X2X3 | 1 | 10.60 | 10.603 | 0.56 | 0.462 | Not significant |
Error | 20 | 376.72 | 18.836 | |||
Lack of fit | 3 | 73.34 | 24.448 | 1.37 | 0.286 | Not significant |
Pure error | 17 | 303.37 | 17.846 | |||
Total | 29 | 1430.63 |
Terms | Coefficient Estimate | Standard Error | 95% CI (Low, High) | T Value | p Value | FIV |
---|---|---|---|---|---|---|
Pb(II) | ||||||
Constant | 45.44 | 4.32 | (36.43, 54.46) | 10.52 | 0.000 | |
X1 | 15.14 | 2.65 | (9.62, 20.66) | 5.72 | 0.000 | 1.00 |
X2 | 6.84 | 2.65 | (1.32, 12.37) | 2.59 | 0.018 | 1.00 |
X3 | 5.93 | 2.65 | (0.41, 11.45) | 2.24 | 0.037 | 1.00 |
X12 | 23.64 | 3.90 | (15.51, 31.76) | 6.07 | 0.000 | 1.01 |
X22 | −10.03 | 3.90 | (−18.16, −1.90) | −2.57 | 0.018 | 1.01 |
X32 | 16.83 | 3.90 | (8.71, 24.96) | 4.32 | 0.000 | 1.01 |
X1X2 | −2.75 | 3.74 | (−10.56, 5.05) | −0.74 | 0.471 | 1.00 |
X1X3 | 2.07 | 3.74 | (−5.73, 9.88) | 0.55 | 0.586 | 1.00 |
X2X3 | 10.87 | 3.74 | (3.06, 18.67) | 2.90 | 0.009 | 1.00 |
Cd(II) | ||||||
Constant | 14.42 | 1.77 | (10.72, 18.11) | 8.14 | 0.000 | |
X1 | 0.39 | 1.09 | (−1.87, 2.65) | 0.36 | 0.722 | 1.00 |
X2 | −6.76 | 1.09 | (−9.03, −4.50) | −6.23 | 0.000 | 1.00 |
X3 | −1.39 | 1.09 | (−3.65, 0.88) | −1.28 | 0.215 | 1.00 |
X12 | 4.57 | 1.60 | (1.24, 7.90) | 2.86 | 0.010 | 1.01 |
X22 | 3.94 | 1.60 | (0.61, 7.27) | 2.47 | 0.023 | 1.01 |
X32 | 2.13 | 1.60 | (−1.20, 5.46) | 1.33 | 0.198 | 1.01 |
X1X2 | −0.18 | 1.53 | (−3.39, 3.02) | −0.12 | 0.905 | 1.00 |
X1X3 | −1.15 | 1.53 | (−4.35, 2.05) | −0.75 | 0.461 | 1.00 |
X2X3 | −1.15 | 1.53 | (−4.35, 2.05) | −0.75 | 0.462 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, Y.H.; Castañeda, E.J.L.; Estrada, J.M.; Montesinos-Pedro, E.; Markeb, A.A.; Font, X. Removal of Pb(II) and Cd(II) Ions from Aqueous Solutions Using Modified Fish Scale Bioadsorbent. ChemEngineering 2025, 9, 23. https://doi.org/10.3390/chemengineering9020023
Pérez YH, Castañeda EJL, Estrada JM, Montesinos-Pedro E, Markeb AA, Font X. Removal of Pb(II) and Cd(II) Ions from Aqueous Solutions Using Modified Fish Scale Bioadsorbent. ChemEngineering. 2025; 9(2):23. https://doi.org/10.3390/chemengineering9020023
Chicago/Turabian StylePérez, Yamilet Hernández, Everth J. Leal Castañeda, Jorge Meléndez Estrada, Edith Montesinos-Pedro, Ahmad Abo Markeb, and Xavier Font. 2025. "Removal of Pb(II) and Cd(II) Ions from Aqueous Solutions Using Modified Fish Scale Bioadsorbent" ChemEngineering 9, no. 2: 23. https://doi.org/10.3390/chemengineering9020023
APA StylePérez, Y. H., Castañeda, E. J. L., Estrada, J. M., Montesinos-Pedro, E., Markeb, A. A., & Font, X. (2025). Removal of Pb(II) and Cd(II) Ions from Aqueous Solutions Using Modified Fish Scale Bioadsorbent. ChemEngineering, 9(2), 23. https://doi.org/10.3390/chemengineering9020023