Preparation and Application of Stabilizing Agents for Solidification of Heavy Metal-Contaminated Soil under Low-Temperature Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Pretreatment of Soil
2.3. Synthesis of V-CSH-PCE
2.4. Synthesis of WTF Resins
2.5. Structural Analysis
2.6. Measurement of Unconfined Compressive Strength
2.7. Heavy Metal Leaching Test
3. Results and Discussion
3.1. Structural Characteristics of V-CSH-PCE
3.2. Structural Characterization of WTF Resins
3.3. Strength Characteristics of the Cured Substrate
3.4. Subsoil Solidification Mechanism
3.5. Leaching of Heavy Metal Ions from Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, X.; Zhang, M.; Wu, Y.; Fu, Z.; Sun, G.; Shang, L.; Li, Z.; Wang, P. Distribution patterns and sources of heavy metals in soils from an industry undeveloped city in Southern China. Ecotoxicol. Environ. Saf. 2020, 205, 111115. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Wang, J.; Zhou, X.; Zhou, X.; Zhou, Y.; Li, Y.; Li, B.; Zhou, S. Identification of the sources and influencing factors of potentially toxic elements accumulation in the soil from a typical karst region in Guangxi, Southwest China. Environ. Pollut. 2020, 256, 113505. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, Q.; Ma, J.; Wu, H.; Qu, Y.; Gong, Y.; Yang, S.; An, Y.; Zhou, Y. Heavy metal(loid)s in the topsoil of urban parks in Beijing, China: Concentrations, potential sources, and risk assessment. Environ. Pollut. 2020, 260, 114083. [Google Scholar] [CrossRef]
- Men, C.; Liu, R.; Xu, L.; Wang, Q.; Guo, L.; Miao, Y.; Shen, Z. Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Beijing, China. J. Hazard. Mater. 2020, 388, 121763. [Google Scholar] [CrossRef]
- Amorello, D.; Barreca, S.; Gulli, E.; Orecchio, S. Platinum and rhodium in wine samples by using voltammetric techniques. Microchem. J. 2017, 130, 229–235. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Mao, X.; Jiang, R.; Xiao, W.; Yu, J. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 2015, 285, 419–435. [Google Scholar] [CrossRef]
- Jan, A.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Wu, Y.; Hao, L.; Zhang, H.; Zeng, T.; Meng, Y.; Li, D.; Shi, Y.; Qiao, N.; Wang, T. Eco-health risks and main sources of persistent pollutants bound by bus stops dust in Qingyang city, an important energy base on the west side of the Ziwuling primitive Forest. Mar. Pollut. Bull. 2024, 204, 116536. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Gao, J.; Pierce, E.; Strong, P.; Wang, H.; Liang, L. In situ remediation technologies for mercury-contaminated soil. Environ. Sci. Pollut. Res. 2015, 22, 8124–8147. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Zhang, Q.; Xu, D.; Hou, D.; Li, F.; Gu, Q. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature. Chemosphere 2014, 117, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere 2019, 221, 841–855. [Google Scholar] [CrossRef]
- Cheng, S.; Lin, Q.; Wang, Y.; Luo, H.; Huang, Z.; Fu, H.; Chen, H.; Xiao, R. The removal of Cu, Ni, and Zn in industrial soil by washing with EDTA-organic acids. Arab. J. Chem. 2020, 13, 5160–5170. [Google Scholar] [CrossRef]
- Balint, R.; Boajă, P. Assisted phytoextraction as a nature-based solution for the sustainable remediation of metal(loid)-contaminated soils. Integr. Environ. Assess. Manag. 2024. ahead of print. [Google Scholar] [CrossRef]
- Dai, Y.; Liang, Y.; Xu, X.; Zhao, L.; Cao, X. An integrated approach for simultaneous immobilization of lead in both contaminated soil and groundwater: Laboratory test and numerical modeling. J. Hazard. Mater. 2018, 342, 107–113. [Google Scholar] [CrossRef]
- Xia, W.; Feng, Y.; Jin, F.; Zhang, L.; Du, Y. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr. Build. Mater. 2017, 156, 199–207. [Google Scholar] [CrossRef]
- Xu, D.; Fu, R.; Wang, J.; Shi, Y.; Guo, X. Chemical stabilization remediation for heavy metals in contaminated soils on the latest decade: Available stabilizing materials and associated evaluation methods—A critical review. J. Clean. Prod. 2021, 321, 128730. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, L.; Ke, Y.; Hills, C.; Kang, Y. Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge. Chemosphere 2009, 74, 758–764. [Google Scholar] [CrossRef]
- Conner, J.; Hoeffner, S. A Critical Review of Stabilization/Solidification Technology. Crit. Rev. Environ. Sci. Technol. 1998, 28, 397–462. [Google Scholar] [CrossRef]
- Malviya, R.; Chaudhary, R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products. J. Hazard. Mater. 2006, 137, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Gougar ML, D.; Scheetz, B.E.; Roy, D.M. Ettringite and CSH Portland cement phases for waste ion immobilization: A review. Waste Manag. 1996, 16, 295–303. [Google Scholar] [CrossRef]
- Yin, C.; Mahmud, H.; Shaaban, M. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash. J. Hazard. Mater. 2006, 137, 1758–1764. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Shi, P.; Yuan, Z.; Shi, S.; Xu, X.; Katsumi, T. Potential of zero-valent iron in remediation of Cd(II) contaminated soil: From laboratory experiment, mechanism study to field application. Soils Found. 2019, 59, 2099–2109. [Google Scholar] [CrossRef]
- Chen, L.; Liu, S.; Du, Y.; Jin, F. Unconfined compressive strength properties of cement solidified/stabilized lead-contaminated soils. Chin. J. Geotech. Eng. 2010, 32, 1898–1903. [Google Scholar]
- Chen, L.; Du, Y.; Liu, S.; Li, Z.; Zhao, C.; Zhang, H.; Zhu, M.; Xu, Q.; Wang, X.; Zhao, C.; et al. Experimental Study of Stress–Strain Properties of Cement Treated Lead-Contaminated Soils. Rock Soil Mech. 2011, 3, 013. [Google Scholar]
- Davidovits, J. Geopolymers and geopolymeric materials. J. Therm. Anal. Calorim. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Nugteren, H.; Izquierdo, M.; Almera, J. High strength geopolymers produced from coal combustion fly ash. Glob. NEST J. 2009, 11, 155–161. [Google Scholar]
- Fernández Pereira, C.; Luna, Y.; Querol, X.; Antenucci, D.; Vale, J. Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel 2009, 88, 1185–1193. [Google Scholar] [CrossRef]
- Shi, C.; Fernandez-Jimenez, A. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. J. Hazard. Mater. 2006, 137, 1656–1663. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Appl. Clay Sci. 2010, 49, 7–12. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R.; Rolle, E.; Ceremigna, D.; Propris, L.; Gabellini, M.; Tornato, A. A kinetic study of chelant-assisted remediation of contaminated dredged sediment. J. Hazard. Mater. 2006, 137, 1458–1465. [Google Scholar] [CrossRef]
- Wang, G.; Chang, Q.; Han, X.; Zhang, M. Removal of Cr(VI) from aqueous solution by flocculant with the capacity of reduction and chelation. J. Hazard. Mater. 2013, 248–249, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Kanchi, S.; Singh, P.; Bisetty, K. Dithiocarbamates as hazardous remediation agent: A critical review on progress in environmental chemistry for inorganic species studies of 20th century. Arab. J. Chem. 2014, 7, 11–25. [Google Scholar] [CrossRef]
- Kanchanason, V.; Plank, J. Effect of calcium silicate hydrate—polycarboxylate ether (C-S-H–PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements. Cem. Concr. Res. 2019, 119, 44–50. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, M.; Zou, F.; Zhou, F.; Wang, F.; Hu, C. Calcium-silicate-hydrates/polycarboxylate ether nanocomposites doped by magnesium: Enhanced stability and accelerating effect on cement hydration. J. Am. Ceram. Soc. 2022, 105, 4930–4941. [Google Scholar] [CrossRef]
- Liu, S.; Guo, Y.; Yang, H.; Wang, S.; Ding, H.; Qi, Y. Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash. J. Environ. Manag. 2016, 182, 328–334. [Google Scholar] [CrossRef]
- Celik, Z.; Gülfen, M.; Aydın, A.O. Synthesis of a novel dithiooxamide–formaldehyde resin and its application to the adsorption and separation of silver ions. J. Hazard. Mater. 2010, 174, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Ertan, E.; Gülfen, M. Separation of gold (III) ions from copper (II) and zinc (II) ions using thiourea–formaldehyde or urea–formaldehyde chelating resins. J. Appl. Polym. Sci. 2009, 111, 2798–2805. [Google Scholar] [CrossRef]
- JTG E51-2009; Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering. Ministry of Transportation: Beijing, China, 2009.
- HJ/T 299-2007; Solid Waste-Extraction Procedure for Leaching Toxicity-Sulphuric Acid & Nitric Acid Method. China Environmental Science Press: Beijing, China, 2007.
- Yin, C.; Ghazaly, S.; Bin, M. Chemical stabilization of scrap metal yard contaminated soil using ordinary portland cement: Strength and leachability aspects. Build. Environ. 2007, 42, 794–802. [Google Scholar] [CrossRef]
- Ma, P.; Yang, W.; Kang, Z.; Kang, S.; Cheng, B. Study on the mechanical properties of phosphogypsum composite cementing materials based on alkali excitation. IOP Conf. Ser. Earth Environ. Sci. 2021, 669, 012031. [Google Scholar] [CrossRef]
- Park, J.; Bui, Q.; Jung, S.; Yang, I. Selected Strength Properties of Coal Bottom Ash (CBA) Concrete Containing Fly Ash under Different Curing and Drying Conditions. Materials 2021, 14, 5381. [Google Scholar] [CrossRef]
- Meng, T.; Yu, Y.; Wang, Z. Effect of nano-CaCO3 slurry on the mechanical properties and micro-structure of concrete with and without fly ash. Compos. Part B Eng. 2017, 117, 124–129. [Google Scholar] [CrossRef]
- Pan, C.; Xie, X.; Gen, J.; Wang, W. Effect of stabilization/solidification on mechanical and phase characteristics of organic river silt by a stabilizer. Constr. Build. Mater. 2020, 236, 117538. [Google Scholar] [CrossRef]
- Silva, D.; Roman, H.; Gleize, P. Evidences of chemical interaction between EVA and hydrating Portland cement. Cem. Concr. Res. 2002, 32, 1383–1390. [Google Scholar] [CrossRef]
- Sun, J.; Shi, H.; Qian, B.; Xu, Z.; Li, W.; Shen, X. Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration. Constr. Build. Mater. 2017, 140, 282–292. [Google Scholar] [CrossRef]
- GB 5085.3—2007; Identification Standards for Hazardous Wastes-Identification for Extraction Toxicity. China Environmental Science Press: Beijing, China, 2007.
- Ivey, D.; Heimann, R.; Neuwirth, M.; Shumborski, S.; Conrad DMikula, R.; Lam, W. Electron microscopy of heavy metal waste in cement matrices. J. Mater. Sci. 1990, 25, 5055–5062. [Google Scholar] [CrossRef]
- Baldermann, A.; Preissegger, V.; Šimić, S.; Letofsky-Papst, I.; Mittermayr, F.; Dietzel, M. Uptake of aqueous heavy metal ions (Co2+, Cu2+ and Zn2+) by calcium-aluminium-silicate-hydrate gels. Cem. Concr. Res. 2021, 147, 106521. [Google Scholar] [CrossRef]
- Lin, C.; Chen, J.; Lin, C. An NMR, XRD and EDS study of solidification/stabilization of chromium with Portland cement and C3S. J. Hazard. Mater. 1997, 56, 21–34. [Google Scholar] [CrossRef]
- Tommaseo, C.; Kersten, M. Aqueous solubility diagrams for cementitious waste stabilization systems. 3. Mechanism of zinc immobilizaton by calcium silicate hydrate. Environ. Sci. Technol. 2002, 36, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, F.; Gieré, R.; Johnson, C. Sorption mechanisms of zinc to calcium silicate hydrate: Sorption and microscopic investigations. Environ. Sci. Technol. 2001, 35, 4556–4561. [Google Scholar] [CrossRef]
- Mancini, A.; Wieland, E.; Geng, G.; Lothenbach, B.; Wehrli, B.; Dähn, R. Fe (II) interaction with cement phases: Method development, wet chemical studies and X-ray absorption spectroscopy. J. Colloid Interface Sci. 2021, 588, 692–704. [Google Scholar] [CrossRef]
- Evans, N. Binding mechanisms of radionuclides to cement. Cem. Concr. Res. 2008, 38, 543–553. [Google Scholar] [CrossRef]
Sample Name | Z-Average (d.nm) | Volume Mean (d.nm) | PDI |
---|---|---|---|
C-S-H | 167.5 | 187.1 | 0.310 |
V-CSH | 178.7 | 187.1 | 0.310 |
V-CSH-PCE | 126.9 | 103.4 | 0.240 |
0 | 2:0 | 2:3 | 1:1 | 3:2 | 0:2 | |
---|---|---|---|---|---|---|
V-CSH-PCE | 0% | 2% | 1.5% | 1% | 0.5% | 0% |
WTF | 0% | 0% | 0.5% | 1% | 1.5% | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, J.; Gao, Z.; Cui, M.; Huang, R. Preparation and Application of Stabilizing Agents for Solidification of Heavy Metal-Contaminated Soil under Low-Temperature Conditions. ChemEngineering 2024, 8, 89. https://doi.org/10.3390/chemengineering8050089
Chen Y, Wang J, Gao Z, Cui M, Huang R. Preparation and Application of Stabilizing Agents for Solidification of Heavy Metal-Contaminated Soil under Low-Temperature Conditions. ChemEngineering. 2024; 8(5):89. https://doi.org/10.3390/chemengineering8050089
Chicago/Turabian StyleChen, Yuntao, Jiannan Wang, Zhongshuai Gao, Mei Cui, and Renliang Huang. 2024. "Preparation and Application of Stabilizing Agents for Solidification of Heavy Metal-Contaminated Soil under Low-Temperature Conditions" ChemEngineering 8, no. 5: 89. https://doi.org/10.3390/chemengineering8050089
APA StyleChen, Y., Wang, J., Gao, Z., Cui, M., & Huang, R. (2024). Preparation and Application of Stabilizing Agents for Solidification of Heavy Metal-Contaminated Soil under Low-Temperature Conditions. ChemEngineering, 8(5), 89. https://doi.org/10.3390/chemengineering8050089