An Experimental Study of Heat Transfer in Pool Boiling to Investigate the Effect of Surface Roughness on Critical Heat Flux
Abstract
1. Introduction
2. Materials and Methods
Uncertainty Analysis
3. Results and Discussion
Pool Boiling Test of Various Surfaces in the Presence of Water
- (A)
- Comparison of data with experimental relationships in the field of boiling;
- (B)
- Comparison with the results of experimental data of other researchers in this field;
- (C)
- Holding a repeatability test.
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Heat transfer coefficient (W/m2 K) | |
Pressure correction coefficient | |
Thermal conductivity (W/mK) | |
Pressure (Pa) | |
Prandtl number | |
Heat flux (W/m2) | |
Mean roughness (μm) | |
Temperature (K) | |
Uncertainty | |
Thermocouples’ placement in the heater cartridge (mm) | |
Greek letters | |
Viscosity (N/m2) | |
Density (kg m−3) | |
Surface tension (N m−1) | |
Subscripts | |
Critical | |
Liquid | |
Boiling surface | |
Saturation | |
Vapor |
References
- Godinez, J.C.; Cho, H.; Fadda, D.; Lee, J.; Park, S.J.; You, S.M. Effects of materials and microstructures on pool boiling of saturated water from metallic surfaces. Int. J. Therm. Sci. 2021, 165, 106929. [Google Scholar] [CrossRef]
- Alimoradi, H.; Shams, M. Numerical simulation of the effects of surface roughness on nucleation site density of nanofluid boiling. Modares Mech. Eng. 2019, 19, 1613–1622. [Google Scholar]
- Chu, H.; Yu, X.; Jiang, H.; Wang, D.; Xu, N. Progress in enhanced pool boiling heat transfer on macro-and micro-structured surfaces. Int. J. Heat Mass Transf. 2023, 200, 123530. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, P.C.; Chaudhuri, P.; Ali, N.; Ebrahim, S.A. Nucleate pool boiling performance of water/titania nanofluid: Experiments and prediction modeling. Phys. Fluids 2021, 33, 112007. [Google Scholar] [CrossRef]
- Alimoradi, H.; Shams, M.; Ashgriz, N. Bubble behavior and nucleation site density in subcooled flow boiling using a novel method for simulating the microstructure of surface roughness. Korean J. Chem. Eng. 2022, 39, 2945–2958. [Google Scholar] [CrossRef]
- Cai, J.; Gong, Z.; Tan, B. Experimental and theoretical investigation of bubble dynamics on vertical surfaces with different wettability for pool boiling. Int. J. Therm. Sci. 2023, 184, 107966. [Google Scholar] [CrossRef]
- Khodadadi, S.; Taleghani, M.H.; Ganji, D.D.; Gorji-Bandpy, M. Heat transfer enhancement via bubble dynamics along an inclined wall. Int. Commun. Heat Mass Transf. 2023, 145, 106829. [Google Scholar] [CrossRef]
- Alimoradi, H.; Shams, M.; Valizadeh, Z. The effects of nanoparticles in the subcooled boiling flow in the channels with different cross-sectional area and same hydraulic diameter. Modares Mech. Eng. 2017, 16, 545–554. [Google Scholar]
- Abdulkadhim, A.; Hamzah, H.K.; Ali, F.H.; Abed, A.M.; Abed, I.M. Natural convection among inner corrugated cylinders inside wavy enclosure filled with nanofluid superposed in porous–nanofluid layers. Int. Commun. Heat Mass Transf. 2019, 109, 104350. [Google Scholar]
- Zhang, L.; Gong, S.; Lu, Z.; Cheng, P.; Wang, E.N. A unified relationship between bubble departure frequency and diameter during saturated nucleate pool boiling. Int. J. Heat Mass Transf. 2021, 165, 120640. [Google Scholar] [CrossRef]
- Alimoradi, H.; Shams, M.; Ashgriz, N. Enhancement in the pool boiling heat transfer of copper surface by applying electrophoretic deposited graphene oxide coatings. Int. J. Multiph. Flow 2023, 159, 104350. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.J. A mechanistic model of critical heat flux for pool boiling based on supply failure mechanisms depending on the contact angle. Int. J. Heat Mass Transf. 2023, 209, 124090. [Google Scholar] [CrossRef]
- Ghanavati, A.; Khodadadi, S.; Taleghani, M.H.; Gorji-Bandpy, M.; Ganji, D.D. Numerical simulation of the motion and interaction of bubble pair rising in a quiescent liquid. Appl. Ocean Res. 2023, 141, 103769. [Google Scholar] [CrossRef]
- Eskandari, E.; Alimoradi, H.; Pourbagian, M.; Shams, M. Numerical investigation and deep learning-based prediction of heat transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube. Korean J. Chem. Eng. 2022, 39, 3227–3245. [Google Scholar] [CrossRef]
- Barathula, S.; Alapati, J.K.; Srinivasan, K. Investigation of acoustic spectral variations in the pool boiling regimes of water on wire heater. Appl. Therm. Eng. 2023, 226, 120281. [Google Scholar] [CrossRef]
- Alimoradi, H.; Shams, M. Optimization of subcooled flow boiling in a vertical pipe by using artificial neural network and multi objective genetic algorithm. Appl. Therm. Eng. 2017, 111, 1039–1051. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Karayiannis, T.G. Bubble growth models in saturated pool boiling of water on a smooth metallic surface: Assessment and a new recommendation. Int. J. Heat Mass Transf. 2023, 208, 124065. [Google Scholar] [CrossRef]
- Abdulkadhim, A.; Hamzah, H.K.; Ali, F.H.; Yıldız, Ç.; Abed, A.M.; Abed, E.M.; Arıcı, M. Effect of heat generation and heat absorption on natural convection of Cu-water nanofluid in a wavy enclosure under magnetic field. Int. Commun. Heat Mass Transf. 2021, 120, 105024. [Google Scholar] [CrossRef]
- Hu, X.; Derakhshanfard, A.H.; Patra, I.; Khalid, I.; Jalil, A.T.; Opulencia, M.J.; Dehkordi, R.B.; Toghraie, D.; Hekmatifar, M.; Sabetvand, R. The microchannel type effects on water-Fe3O4 nanofluid atomic behavior: Molecular dynamics approach. J. Taiwan Inst. Chem. Eng. 2022, 135, 104396. [Google Scholar] [CrossRef]
- Fan, S.; Jiao, L.; Wang, K.; Duan, F. Pool boiling heat transfer of saturated water on rough surfaces with the effect of roughening techniques. Int. J. Heat Mass Transf. 2020, 159, 120054. [Google Scholar] [CrossRef]
- Musavi, S.H.; Adibi, H.; Rezaei, S.M. An experimental study on bubble dynamics and pool boiling heat transfer of grinding/laser-structured surface. Heat Mass Transf. 2023, 59, 681–698. [Google Scholar] [CrossRef]
- Taleghani, M.H.; Khodadadi, S.; Maddahian, R.; Mokhtari-Dizaji, M. Enhancing the bubble collapse energy using the electrohydrodynamic force. Phys. Fluids 2023, 35, 053316. [Google Scholar] [CrossRef]
- Singh, S.K.; Sharma, D. Experimental Investigation on Pool Boiling Heat Transfer Performance of Superhydrophilic, Hydrophilic and Hydrophobic Surface. Int. J. Thermophys. 2024, 45, 53. [Google Scholar] [CrossRef]
- Alimoradi, H.; Eskandari, E.; Pourbagian, M.; Shams, M. A parametric study of subcooled flow boiling of Al2O3/water nanofluid using numerical simulation and artificial neural networks. Nanoscale Microscale Thermophys. Eng. 2022, 26, 129–159. [Google Scholar] [CrossRef]
- Abed, A.M.; Sopian, K.; Mohammed, H.A.; Alghoul, M.A.; Ruslan, M.H.; Mat, S.; Al-Shamani, A.N. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids. Case Stud. Ther. Eng. 2015, 5, 13–23. [Google Scholar] [CrossRef]
- Li, W.; Dai, R.; Zeng, M.; Wang, Q. Review of two types of surface modification on pool boiling enhancement: Passive and active. Renew. Sustain. Energy Rev. 2020, 130, 109926. [Google Scholar] [CrossRef]
- Cooke, D.; Kandlikar, S.G. Effect of open microchannel geometry on pool boiling enhancement. Int. J. Heat Mass Transf. 2012, 55, 1004–1013. [Google Scholar] [CrossRef]
- Sangeetha, A.; Shanmugan, S.; Alrubaie, A.J.; Jaber, M.M.; Panchal, H.; Attia, M.E.; Elsheikh, A.H.; Mevada, D.; Essa, F.A. A review on PCM and nanofluid for various productivity enhancement methods for double slope solar still: Future challenge and current water issues. Desalination 2023, 551, 116367. [Google Scholar] [CrossRef]
- Mehralizadeh, A.; Shabanian, S.R.; Bakeri, G. Effect of modified surfaces on bubble dynamics and pool boiling heat transfer enhancement: A review. Therm. Sci. Eng. Prog. 2020, 15, 100451. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Karayiannis, T.G. Pool boiling review: Part II–Heat transfer enhancement. Therm. Sci. Eng. Prog. 2021, 25, 101023. [Google Scholar] [CrossRef]
- Shahnazari, M.R.; Esfandiar, M. Capillary Effects on Surface Enhancement in a Non-Homogeneous Fibrous Porous Medium. Mech. Adv. Compos. Struct. 2018, 5, 83–90. [Google Scholar]
- Mori, S.; Utaka, Y. Critical heat flux enhancement by surface modification in a saturated pool boiling: A review. Int. J. Heat Mass Transf. 2017, 108, 2534–2557. [Google Scholar] [CrossRef]
- Abdollahi, A.; Salimpour, M.R.; Etesami, N. Experimental analysis of pool boiling heat transfer of ferrofluid on surface deposited with nanofluid. Modares Mech. Eng. 2016, 16, 19–30. [Google Scholar]
- Berenson, P.J. Experiments on pool boiling heat transfer. Int. J. Heat Mass Transf. 1962, 5, 985–999. [Google Scholar] [CrossRef]
- Jones, B.J.; McHale, J.P.; Garimella, S.V. The influence of surface roughness on nucleate pool boiling heat transfer. ASME J. Heat Mass Transf. 2009, 131, 253. [Google Scholar] [CrossRef]
- Jacob, M.; Fritz, W. Experiments on the evaporation process. Res. Eng. 1931, 2, 435–447. [Google Scholar]
- Ramilson, J.M.; Sadasivan, P.; Hard, J.H.L. Surface factor influencing burnout on flat heaters. Heat Transf. 1992, 114, 287–290. [Google Scholar] [CrossRef]
- Al-Farhany, K.; Abdulkadhim, A.; Hamzah, H.K.; Ali, F.H.; Chamkha, A. MHD effects on natural convection in a U-shaped enclosure filled with nanofluid-saturated porous media with two baffles. Prog. Nucl. Energy 2022, 145, 104136. [Google Scholar] [CrossRef]
- Kumar, N.; Ghosh, P.; Shukla, P. Effect of composite coatings on surface characteristics and boiling heat transfer performance in a pool of water. J. Therm. Anal. Calorim. 2024, 149, 671–685. [Google Scholar] [CrossRef]
- Wang, C.Y.; Ji, W.T.; Zhao, C.Y.; Chen, L.; Tao, W.Q. Experimental determination of the role of roughness and wettability on pool-boiling heat transfer of refrigerant. Int. J. Refrig. 2023, 153, 205–221. [Google Scholar] [CrossRef]
- Dehkordi, K.G.; Karimipour, A.; Afrand, M.; Toghraie, D.; Isfahani, A.H.M. Molecular dynamics simulation concerning nanofluid boiling phenomenon affected by the external electric field: Effects of number of nanoparticles through Pt, Fe, and Au microchannels. J. Mol. Liq. 2021, 324, 114775. [Google Scholar] [CrossRef]
- Souza, R.R.; Passos, J.C.; Cardoso, E.M. Influence of nanoparticle size and gap size on nucleate boiling using HFE7100. Ex-Perimental Therm. Fluid Sci. 2014, 59, 195–201. [Google Scholar] [CrossRef]
- Gheitaghy, A.M.; Saffari, H.; Shendi, J.S. Pool boiling enhancement by electrodeposited porous micro/nanostructured on copper surface. Modares Mech. Eng. 2015, 15, 159–167. [Google Scholar]
- Narayan, G.P.; Anoop, K.B.; Das, S.K. Mechanism of enhancement/deterioration of boiling heat transfer using stable nano-particle suspensions over vertical tubes. J. Appl. Phys. 2007, 102, 74317. [Google Scholar] [CrossRef]
- Vafaei, S. Nanofluid pool boiling heat transfer phenomenon. J. Powder Technol. 2015, 277, 181–192. [Google Scholar] [CrossRef]
- Ahmed, O.; Hamed, M.S. Experimental investigation of the effect of particle deposition on pool boiling of nanofluid. Int. J. Heat Mass Transf. 2012, 55, 3423–3436. [Google Scholar] [CrossRef]
- Gheitaghy, A.M.; Saffari, H.; Mohebbi, M. Investigation pool boiling heat transfer in U shaped mesochannel with electrode-posited porous coating. Exp. Therm. Fluid Sci. 2016, 79, 87–97. [Google Scholar] [CrossRef]
- Jaikumar, A.; Kandlikar, S.G. Enhanced pool boiling heat transfer mechanisms for selectively sintered open microchannels. Int. J. Heat Mass Transf. 2015, 88, 652–661. [Google Scholar] [CrossRef]
- Moffat, R.J. Describing the uncertainties in experimental results. Exp. Therm. Fluid Sci. 1988, 1, 3–17. [Google Scholar] [CrossRef]
- Mourgues, A.; Hourtane, V.; Muller, T.; Charles, M.C. Boiling behaviors and critical heat flux on a horizontal and vertical plate in saturated pool boiling with and without Zno nanofluid. Int. J. Heat Mass Transf. 2013, 57, 595–606. [Google Scholar] [CrossRef]
- Táboas, F.; Valles, M.; Bourouis, M.; Coronas, A. Pool boiling of ammonia/water and its pure components: Comparison of experimental data in the literature with the predictions of standard correlations. Int. J. Refrig. 2007, 30, 778–788. [Google Scholar] [CrossRef]
- Das, S.; Bhaumik, S. Experimental study of nucleate pool boiling heat transfer using water on thin-film surface. Iran J. Sci. Technol. Trans. Mech. Eng. 2016, 40, 21–29. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Kiani, T.; Hrmozi, F. Critical heat flux and pool boiling heat transfer analysis of synthesized zirconia aqueous nanofluid. Int. Commun. Heat Mass Transf. 2016, 70, 75–83. [Google Scholar] [CrossRef]
- Kiyomura, I.S.; Manetti, L.L.; da Cunha, A.P.; Ribatski, G.; Cardoso, E.M. An analysis of nanoparticles deposition on charac-teristics of the heating surface and on pool boiling of water. Int. J. Heat Mass Transf. 2017, 106, 666–674. [Google Scholar] [CrossRef]
Parameter | Uncertainty |
---|---|
Sensors (K) | ±0.1 °C |
Voltage (V) | ±1% |
Current (A) | ±0.1% |
HTC (kW/m2 K) | ±6.3% |
CHF (kW/m2) | ±9.6% |
Surface temperature difference (K) | ±9% |
Surface Type | ) | ∆T (°C) | HTC (kW/m2 K) | CHF (W/m2) |
---|---|---|---|---|
PS | 0.06 | 20.23 | 44.5 | 791,060 |
RCD | 0.170 | 18.84 | 53.2 | 903,746.7 |
ROD | 0.116 | 16.97 | 70.4 | 1,094,243 |
Microchannel | - | 13.02 | 141.6 | 1,825,798 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, B.M. An Experimental Study of Heat Transfer in Pool Boiling to Investigate the Effect of Surface Roughness on Critical Heat Flux. ChemEngineering 2024, 8, 44. https://doi.org/10.3390/chemengineering8020044
Ali BM. An Experimental Study of Heat Transfer in Pool Boiling to Investigate the Effect of Surface Roughness on Critical Heat Flux. ChemEngineering. 2024; 8(2):44. https://doi.org/10.3390/chemengineering8020044
Chicago/Turabian StyleAli, Bashar Mahmood. 2024. "An Experimental Study of Heat Transfer in Pool Boiling to Investigate the Effect of Surface Roughness on Critical Heat Flux" ChemEngineering 8, no. 2: 44. https://doi.org/10.3390/chemengineering8020044
APA StyleAli, B. M. (2024). An Experimental Study of Heat Transfer in Pool Boiling to Investigate the Effect of Surface Roughness on Critical Heat Flux. ChemEngineering, 8(2), 44. https://doi.org/10.3390/chemengineering8020044