Numerical Simulation, Preparation, and Evaluation of Cu(In, Ga)Se2 (CIGS) Thin-Film Solar Cells
Abstract
:1. Introduction
2. Simulation and Modeling:
2.1. Design Parameters, Structure, and COMSOL Simulation of a Typical CGIS Solar Cell Structure
2.2. Simulated CIGS Solar Cells Layers’ Description
2.3. Multiphysics Simulation (Main Modeling Equations)
COMSOL Multiphysics Modules
- (1)
- Electrical-coupled Poisson and current continuity equations added through a semiconductor module [26]:
- (2)
- The optical module in which the photogeneration rate Gtot (obtained from the optical module) is inserted into the semiconductor module as the generation rate.
2.4. Meshing the CIGS Solar Cell
3. Materials and Methods
3.1. Materials
3.2. Fabrication of the CIGS-Based Solar Cells
4. Results and Discussions
4.1. Simulated Prototype CIGS Cell (Structure, Electric Field, Electric Potential, Hole and Electron Concentration)
4.2. Simulated I-V and P-V Characteristics for Prototype CIGS Solar Cell
Sample | Thick (μm) | JSC (mA/cm2) | VOC (mV) | FF (%) | η (%) | Eg (eV) |
---|---|---|---|---|---|---|
CIGS-0.5 | 0.5 | 23.28 | 0.63 | 77.50 | 15.0 | 1.12 |
CIGS-1.0 | 1.0 | 27.11 | 0.62 | 78.43 | 17.0 | 1.13 |
CIGS-2.0 | 2.0 | 31.69 | 0.61 | 79.46 | 17.4 | 1.18 |
4.3. Optical Properties of the CIGS Absorption Layer
4.4. Microstructure of CIGS Solar Cell Structure
4.4.1. X-Ray-Diffraction (XRD)
4.4.2. Scanning Electron Microscopy (SEM)
4.4.3. Atomic Force Microscopy (AFM)
4.4.4. EDXRF Spectrum of a Complete CIGS Solar Cell Structure
Sample | Thickness (μm) | Cu (%) | In (%) | Ga (%) | Se (%) | Mo (%) | GGI Ratio |
---|---|---|---|---|---|---|---|
CIGS-0.5 | 0.595 | 21.94 | 13.35 | 17.67 | 47.03 | 100 | 0.570 |
CIGS-1.0 | 1.015 | 22.56 | 13.43 | 16.99 | 47.01 | 100 | 0.559 |
CIGS-2.0 | 2.035 | 21.87 | 13.40 | 17.62 | 47.10 | 100 | 0.568 |
4.5. I-V Measurements of the CIGS Solar Cell Output Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamura, K.M.; Yamaguchi, Y.; Kimoto, Y.; Yasaki, T.; Kato, H. Sugimoto Cd-Free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 2019, 9, 1863–1867. [Google Scholar] [CrossRef]
- Azimi, H.; Hou, Y.; Brabec, C.J. Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy Environ. Sci. 2014, 7, 1829–1849. [Google Scholar] [CrossRef]
- Ramanujam, J.; Singh, U.P. Copper indium gallium selenide based solar cells—A review. Energy Environ. Sci. 2017, 10, 1306–1319. [Google Scholar] [CrossRef]
- Reinhard, P.; Chirilă, A.; Blösch, P.; Pianezzi, F.; Nishiwaki, S.; Buechelers, S.; Tiwari, A.N. Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. In Proceedings of the IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2 (1–9), Austin, TX, USA, 3–8 June 2012. [Google Scholar]
- Hernández-Gutiérrez, C.A.; Morales-Acevedo, A.; Cardona, D.; Contreras-Puente, G.; López-López, M. Analysis of the performance of InxGa1−xN based solar cells. SN Appl. Sci. 2019, 1, 628. [Google Scholar] [CrossRef]
- Nakamura, M.; Lin, C.; Nishiyama, C.; Tada, K.; Bessho, T.; Segawa, H. Semi-transparent Perovskite Solar Cells for Four-Terminal Perovskite/CIGS Tandem Solar Cells. ACS Appl. Energy Mater. 1993, 5, 8103–8111. [Google Scholar] [CrossRef]
- Saji, V.S.; Choi, I.H.; Lee, C.W. Progress in electrodeposited absorber layer for CuIn(1−x)GaxSe2 (CIGS) solar cell. Sol. Energy 2011, 85, 2666–2678. [Google Scholar] [CrossRef]
- Belghachi, A.; Limam, N. Effect of the absorber layer band-gap on CIGS solar cell. Chin. J. Phys. 2017, 55, 1127–1134. [Google Scholar] [CrossRef]
- Dullweber, T.; Rau, U.; Schock, H.W. A new approach to high-efficiency solar cells by band gap grading in Cu(In, Ga)Se2 chalcopyrite semiconductors. Sol. Energy Mater. Sol. Cells 2001, 67, 145–150. [Google Scholar] [CrossRef]
- Gloeckler, M.; Sites, J.R. Band-gap grading in Cu(In, Ga)Se2 solar cells. J. Phys. Chem. Solids 2005, 66, 1891–1894. [Google Scholar] [CrossRef]
- Contreras, M.A.; Tuttle, J.; Gabor, A.; Tennant, A.; Ramanathan, K.; Asher, S.; Franz, A.; Keane, J.; Wang, L.; Noufi, R. High efficiency graded bandgap thin-film polycrystalline Cu(In, Ga)Se2-based solar cells. Sol. Energy Mater. Sol. Cells 1996, 41, 231–246. [Google Scholar] [CrossRef]
- Achard, V.; Balestrieri, M.; Bechu, S.; Jubault, M.; Bouttemy, M.; Lombez, L.; Hildebrandt, T.; Naghavi, N.; Etcheberry, A.; Lincot, D.; et al. Effect of Ga introduction during the second stage of a coevaporation process of Cu(In, Ga)Se2 layers at low temperature on polyimide substrates. Thin Solid Film 2019, 669, 494–499. [Google Scholar] [CrossRef]
- Li, W.; Yan, X.; Aberle, A.G.; Venkataraj, S. Analysis of microstructure and surface morphology of sputter deposited molybdenum back contacts for CIGS solar cells. Procedia Eng. 2016, 139, 1–6. [Google Scholar] [CrossRef]
- Mufti, N.; Amrillah, T.; Taufiq, A.; Diantoro, M.; Nur, H. Review of CIGS-based solar cells manufacturing by structural engineering. Sol. Energy 2020, 207, 1146–1157. [Google Scholar] [CrossRef]
- Baik, J.; Park, J.; Lee, G.; Kim, S.; Kim, J. Effects of incoherent front cover glass on current-voltage characteristics of Cu(In, Ga)Se2 solar cells: Investigation into calculation accuracy for cover glass modeled as optically coherent or incoherent. Appl. Sci. 2020, 10, 3312. [Google Scholar] [CrossRef]
- Elbar, M.; Tobbeche, S.; Merazga, A. Effect of top-cell CGS thickness on the performance of CGS/CIGS tandem solar cell. Sol. Energy 2015, 122, 104–112. [Google Scholar] [CrossRef]
- Gelb, J.; Stripe, B.; Yang, X.; Lewis, S.; Lau, S.H.; Yun, W. Mapping Subsurface Composition with Attogram Sensitivity using Micro-XRF. Microsc. Microanal. 2018, 24 (Suppl. S1), 1058–1059. [Google Scholar] [CrossRef]
- Lee, S.; Gonzalez, J.J.; Yoo, J.H.; Chirinos, J.R.; Russo, R.E.; Jeong, S. Application of femtosecond laser ablation inductively coupled plasma mass spectrometry for quantitative analysis of thin Cu(In, Ga)Se2 solar cell films. Thin Solid Film 2015, 577, 82–87. [Google Scholar] [CrossRef]
- Kato, T.; Wu, J.L.; Hirai, Y.; Sugimoto, H.; Bermudez, V. Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu(In, Ga)(Se, S)2. IEEE J. Photovolt. 2018, 9, 325–330. [Google Scholar] [CrossRef]
- Friedlmeier, T.M.; Jackson, P.; Bauer, A.; Hariskos, D.; Kiowski, O.; Wuerz, R.; Powalla, M. Improved photocurrent in Cu(In, Ga)Se 2 solar cells: From 20.8% to 21.7% efficiency with CdS buffer and 21.0% Cd-free. IEEE J. Photovolt. 2015, 5, 1487–1491. [Google Scholar] [CrossRef]
- Mansfield, L.M.; Garris, R.L.; Counts, K.D.; Sites, J.R.; Thompson, C.P.; Shafarman, W.N.; Ramanathan, K. Comparison of CIGS solar cells made with different structures and fabrication techniques. IEEE J. Photovolt. 2016, 7, 286–293. [Google Scholar] [CrossRef]
- Chen, S.C.; Wang, S.W.; Kuo, S.Y.; Juang, J.Y.; Lee, P.T.; Luo, C.W.; Wu, K.H.; Kuo, H.C. A Comprehensive Study of One-Step Selenization Process for Cu (In1−x Ga x)Se2 Thin Film Solar Cells. Nanoscale Res. Lett. 2017, 12, 208. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ercius, P.; Varley, J.; Bailey, J.; Zapalac, G.; Nagle, T.; Poplavskyy, D.; Mackie, N.; Bayman, A.; Lordi, V.; et al. The role of oxygen doping on elemental intermixing at the PVD-CdS/Cu(InGa)Se2 heterojunction. Prog. Photovolt. Res. Appl. 2019, 27, 255–263. [Google Scholar] [CrossRef]
- Li, W.; Yan, X.; Aberle, A.G.; Venkataraj, S. Effect of sodium diffusion on the properties of CIGS solar absorbers prepared using elemental Se in a two-step process. Sci. Rep. 2019, 9, 2637. [Google Scholar] [CrossRef] [PubMed]
- Shirakata, S. Site selective doping of Zn for the p-type Cu(In, Ga)Se2 thin film for solar cell application. Phys. Status Solidi C 2017, 14, 1600170. [Google Scholar] [CrossRef]
- Saxena, P.; Gorji, N.E. COMSOL Simulation of Heat Distribution in Perovskite Solar Cells: Coupled Optical-Electrical-Thermal 3-D Analysis. IEEE J. Photovolt. 2019, 9, 1693–1698. [Google Scholar] [CrossRef]
- Malm, U.; Edoff, M. Simulating Material Inhomogeneities and Defects in CIGS thin-film solar cells. Prog. Photovolt. Res. Appl. 2009, 17, 306–314. [Google Scholar] [CrossRef]
- Muhammad, F.; Yahya, M.; Hameed, S.; Aziz, F.; Sulaiman, K.; Rasheed, M.; Ahmad, Z. Employment of single-diode model to elucidate the variations in photovoltaic parameters under different electrical and thermal conditions. PLoS ONE 2017, 12, e0182925. [Google Scholar] [CrossRef] [PubMed]
- Shamim, S.M.; Islam, S.; Huq, M.F.; Al Jobair, M. Design, performance analysis and efficiency optimization of copper indium gallium selenide (CIGS) solar cell. Eur. Sci. J. 2015, 11, 156–163. [Google Scholar]
- Farooq, W.; Alshahrani, T.; Asfandyar, S.; Kazmi, A.; Iqbal, J.; Khan, H.; Mahmood Khan, R.A.; Rehman, A. Materials Optimization for thin-film copper indium gallium selenide (CIGS) solar cell based on distributed braggs reflector. Optik 2021, 227, 165987. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, S.; Chang, Q.; Zhou, Z.; Kou, D.; Zhou, W.; Qi, Y.; Wu, S. Controllable formation of ordered vacancy compound for high efficiency solution processed Cu(In, Ga)Se2 solar cells. Adv. Funct. Mater. 2021, 31, 2007928. [Google Scholar] [CrossRef]
- Jiang, J.; Giridharagopal, R.; Jedlicka, E.; Sun, K.; Yu, S.; Wu, S.; Gong, Y.; Yan, W.; Ginger, D.S.; Green, M.A.; et al. Highly efficient copper-rich chalcopyrite solar cells from DMF molecular solution. Nano Energy 2020, 69, 104438. [Google Scholar] [CrossRef]
- Li, D.B.; Song, Z.; Awni, R.A.; Bista, S.S.; Shrestha, N.; Grice, C.R.; Chen, L.; Liyanage, G.K.; Razooqi, M.A.; Phillips, A.B.; et al. Eliminating s-kink to maximize the performance of MgZnO/CdTe solar cells. ACS Appl. Energy Mater. 2019, 2, 2896–2903. [Google Scholar] [CrossRef]
- Tinedert, I.E.; Pezzimenti, F.; Megherbi, M.L.; Saadoune, A. Design and simulation of a high efficiency CdS/CdTe solar cell. Optik 2020, 208, 164112. [Google Scholar] [CrossRef]
- Youn, S.M.; Park, M.J.; Kim, J.H.; Jeong, C. Performance enhancement of CIGS thin-film solar cells with a functional-window NiO thin layer. J. Alloys Compd. 2020, 836, 154803. [Google Scholar] [CrossRef]
- Abdolahzadeh Ziabari, A.; Royanian, S.; Yousefi, R.; Ghoreishi, S. Performance improvement of ultrathin CIGS solar cells using Al plasmonic nanoparticles: The effect of the position of nanoparticles. J. Optoelectron. Nanostruct. 2020, 5, 17–32. [Google Scholar]
- Boubakeur, M.; Aissat, A.; Arbia, M.B.; Maaref, H.; Vilcot, J.P. Enhancement of the efficiency of ultra-thin CIGS/Si structure for solar cell applications. Superlattices Microstruct. 2020, 138, 106377. [Google Scholar] [CrossRef]
- Duchatelet, A.; Letty, E.; Jaime-Ferrer, S.; Grand, P.P.; Mollica, F.; Naghavi, N. The impact of reducing the thickness of electrodeposited stacked Cu/In/Ga layers on the performance of CIGS solar cells. Sol. Energy Mater. Sol. Cells 2017, 162, 114–119. [Google Scholar] [CrossRef]
- Mainz, R.; Weber, A.; Rodriguez-Alvarez, H.; Levcenko, S.; Klaus, M.; Pistor, P.; Klenk, R.; Schock, H.W. Time-resolved investigation of Cu(In, Ga)Se2 growth and Ga gradient formation during fast selenisation of metallic precursors. Prog. Photovolt. Res. Appl. 2015, 23, 1131–1143. [Google Scholar] [CrossRef]
- Lafuente-Sampietro, A.; Yoshida, K.; Wang, S.; Ishizuka, S.; Shibata, H.; Sano, N.; Akimoto, K.; Sakurai, T. Effect of the double grading on the internal electric field and on the carrier collection in CIGS solar cells. Sol. Energy Mater. Sol. Cells 2021, 223, 110948. [Google Scholar] [CrossRef]
- Koida, T.; Nishinaga, J.; Ueno, Y.; Higuchi, H.; Takahashi, H.; Iioka, M.; Shibata, H.; Niki, S. Impact of front contact layers on performance of Cu(In, Ga)Se2 solar cells in relaxed and metastable states. Prog. Photovolt. Res. Appl. 2018, 26, 789–799. [Google Scholar] [CrossRef]
- Rezaei, N.; Isabella, O.; Vroon, Z.; Zeman, M. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: A 3-D optical study. Opt. Express 2018, 26, A39–A53. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, A.; Rothwarf, A. Computer simulation and modeling of the graded bandgap CuInSe/sub 2CdS solar cell. In Proceedings of the Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference—1993 (Cat. No.93CH3283-9), Louisville, KY, USA, 10–14 May 1993; pp. 475–480. [Google Scholar]
- Jackson, P.; Wuerz, R.; Hariskos, D.; Lotter, E.; Witte, W.; Powalla, M. Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi (RRL) Rapid Res. Lett. 2016, 10, 583–586. [Google Scholar] [CrossRef]
Material Property | SLG | Mo | CIGS | CdS | ZnO | AZO |
---|---|---|---|---|---|---|
Thickness d (nm) | 500 | 250 | 2000 | 50 | 50 | 250 |
Optical bandgap (Eg (eV)) | - | - | 1.2 | 2.4 | 3.3 | 3.6 |
Affinity χe (eV) | - | - | 4.58 | 4.2 | 4.4 | 4.45 |
Relative Permittivity εr | - | 2.3207 | 13.6 | 9 | 9 | 9 |
Density of states (conduction band) NC (cm−3) | - | - | 2 × 1017 | 2.2 × 1018 | 2.2 × 1018 | 2.2 × 1018 |
Density of states (valence band NV (cm−3) | - | - | 1.5 × 1019 | 1.8 × 1019 | 1.8 × 1019 | 1.8 × 1019 |
Acceptors concentration NA (cm−3) | - | - | 2 × 1018 | - | - | - |
Doner concentration (cm−3) ND (cm−3) | - | - | - | 1.1 × 1018 | 1 × 1017 | 1 × 1020 |
Electron mobility/Hole mobility µn/µp (cm2·v−1·s−1) | - | - | 100/25 | 100/25 | 100/31 | 100/31 |
Electron velocity SN0 (cm/s) | 1 × 107 | 1 × 107 | ||||
Hole velocity SP0 (cm/s) | 1 × 107 | 1 × 107 | ||||
Metal work function ɸm (eV) | 4.95 | 4.4 |
Thickness (μm) | GGI Ratio | JSC (mA/cm2) | Voc (V) | FF (%) | ɳ (%) | RSH (Ω) | RS (Ω) | n | |
---|---|---|---|---|---|---|---|---|---|
CIGS-2.0 Simulated | 2 µm | 0.6 | 31.69 | 0.61 | 79.46 | 17.4 | 800.0 | 6.0 | 2 |
CIGS-2.0 Experimental | 2.035 µm | 0.586 | 29.07 | 0.63 | 70.21 | 15.1 | 792.3 | 5.3 | 1.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albiss, B.; Al-Widyan, M. Numerical Simulation, Preparation, and Evaluation of Cu(In, Ga)Se2 (CIGS) Thin-Film Solar Cells. ChemEngineering 2023, 7, 87. https://doi.org/10.3390/chemengineering7050087
Albiss B, Al-Widyan M. Numerical Simulation, Preparation, and Evaluation of Cu(In, Ga)Se2 (CIGS) Thin-Film Solar Cells. ChemEngineering. 2023; 7(5):87. https://doi.org/10.3390/chemengineering7050087
Chicago/Turabian StyleAlbiss, Borhan, and Mohammad Al-Widyan. 2023. "Numerical Simulation, Preparation, and Evaluation of Cu(In, Ga)Se2 (CIGS) Thin-Film Solar Cells" ChemEngineering 7, no. 5: 87. https://doi.org/10.3390/chemengineering7050087
APA StyleAlbiss, B., & Al-Widyan, M. (2023). Numerical Simulation, Preparation, and Evaluation of Cu(In, Ga)Se2 (CIGS) Thin-Film Solar Cells. ChemEngineering, 7(5), 87. https://doi.org/10.3390/chemengineering7050087