Effects of Phosphate and Thermal Treatments on the Characteristics of Activated Carbon Manufactured from Durian (Durio zibethinus) Peel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Pretreatment
2.2. AC Synthesis
2.3. AC Neutralization
2.4. Ethanol Adsorption Test
2.5. Determination of Ethanol Concentration
2.6. Determination of Ethanol Adsorption Efficiency via AC
2.7. Determination of Yield of AC
2.8. Characterizations of AC and CAC before and after Activation
3. Results and Discussion
3.1. Surface Area of AC of Durian Peel
3.2. FTIR Analysis
3.3. XRF Analysis
3.4. SEM-EDX Analysis
3.5. Effect of Temperature on Various Pyrolysis, CN, and H3PO4 Concentrations on Adsorption Efficiency via AC
3.6. Effect of Temperature on Various Pyrolysis, CN, and H3PO4 Concentrations on Yield of AC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rastogi, M.; Shrivastava, S. Recent Advances in Second Generation Bioethanol Production: An Insight to Pretreatment, Saccharification and Fermentation Processes. Renew. Sustain. Energy Rev. 2017, 80, 330–340. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Damayanti, A.; Bahlawan, Z.A.S.; Melina, M.; Puspawati, H. Bioethanol Production from Oil Palm Empty Fruit Bunches Using Saccharomyces Cerevisiae Immobilized on Sodium Alginate Beads. Period. Polytech. Chem. Eng. 2021, 65, 493–504. [Google Scholar] [CrossRef]
- Achinas, S.; Euverink, G.J.W. Consolidated Briefing of Biochemical Ethanol Production from Lignocellulosic Biomass. Electron. J. Biotechnol. 2016, 23, 44–53. [Google Scholar] [CrossRef]
- Karimi, S.; Karri, R.R.; Tavakkoli Yaraki, M.; Koduru, J.R. Processes and Separation Technologies for the Production of Fuel-Grade Bioethanol: A Review. Environ. Chem. Lett. 2021, 19, 2873–2890. [Google Scholar] [CrossRef]
- Downarowicz, D.; Aleksandrzak, T. Isobutanol Vapor Adsorption on Activated Carbons: Equilibrium and Kinetic Studies. J. Chem. Eng. Data 2017, 62, 3518–3524. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Kumar, A.; Lai, C.W.; Naushad, M.; Shehnaz; Iqbal, J.; Stadler, F.J. Activated Carbon as Superadsorbent and Sustainable Material for Diverse Applications. Adsorpt. Sci. Technol. 2022, 2022, 4184809. [Google Scholar] [CrossRef]
- Neme, I.; Gonfa, G.; Masi, C. Activated Carbon from Biomass Precursors Using Phosphoric Acid: A Review. Heliyon 2022, 8, e11940. [Google Scholar] [CrossRef]
- Miskah, S.; Aprianti, T.; Agustien, M.; Utama, Y.; Said, M. Purification of Used Cooking Oil Using Activated Carbon Adsorbent from Durian Peel. IOP Conf. Ser. Earth Environ. Sci. 2019, 396, 012003. [Google Scholar] [CrossRef]
- Kumoro, A.C.; Alhanif, M.; Wardhani, D.H. A Critical Review on Tropical Fruits Seeds as Prospective Sources of Nutritional and Bioactive Compounds for Functional Foods Development: A Case of Indonesian Exotic Fruits. Int. J. Food Sci. 2020, 2020, 4051475. [Google Scholar] [CrossRef]
- MacDermid-Watts, K.; Pradhan, R.; Dutta, A. Catalytic Hydrothermal Carbonization Treatment of Biomass for Enhanced Activated Carbon: A Review. Waste Biomass Valorization 2021, 12, 2171–2186. [Google Scholar] [CrossRef]
- Li, J.; Zhao, P.; Li, T.; Lei, M.; Yan, W.; Ge, S. Pyrolysis Behavior of Hydrochar from Hydrothermal Carbonization of Pinewood Sawdust. J. Anal. Appl. Pyrolysis 2020, 146, 104771. [Google Scholar] [CrossRef]
- Sriprom, P.; Krusong, W.; Assawasaengrat, P. Preparation of Activated Carbon from Durian Rind with Difference Activations and Its Optimization. J. Renew. Mater. 2020, 9, 311–324. [Google Scholar] [CrossRef]
- Hassan, M.F.; Sabri, M.A.; Fazal, H.; Hafeez, A.; Shezad, N.; Hussain, M. Recent Trends in Activated Carbon Fibers Production from Various Precursors and Applications—A Comparative Review. J. Anal. Appl. Pyrolysis 2020, 145, 104715. [Google Scholar] [CrossRef]
- Legiso, L.; Susanto, T.; Roni, K.A.; Ramadhan, M.B.; Lestari, D.W.; Farida, F. Activation of Activated Carbon from Durian Peel as A Waste Adsorbent from Laundry Activities. Maj. BIAM 2020, 16, 58–63. [Google Scholar] [CrossRef]
- Chen, W.; Wang, X.; Hashisho, Z.; Feizbakhshan, M.; Shariaty, P.; Niknaddaf, S.; Zhou, X. Template-Free and Fast One-Step Synthesis from Enzymatic Hydrolysis Lignin to Hierarchical Porous Carbon for CO2 Capture. Microporous Mesoporous Mater. 2019, 280, 57–65. [Google Scholar] [CrossRef]
- Li, K.; Zhou, M.; Liang, L.; Jiang, L.; Wang, W. Ultrahigh-Surface-Area Activated Carbon Aerogels Derived from Glucose for High-Performance Organic Pollutants Adsorption. J. Colloid. Interface Sci. 2019, 546, 333–343. [Google Scholar] [CrossRef] [PubMed]
- ThamYee, J.; Arumugam, S.D.; Nur Hidayah, A.L.; Abdullah, A.M.; Latif, P.A. Effect of Activation Temperature and Heating Duration on Physical Characteristics of Activated Carbon Prepared from Agriculture Waste. Environ. Asia 2010, 3, 143–148. [Google Scholar]
- Lillo-Ródenas, M.A.; Cazorla-Amorós, D.; Linares-Solano, A. Behaviour of Activated Carbons with Different Pore Size Distributions and Surface Oxygen Groups for Benzene and Toluene Adsorption at Low Concentrations. Carbon. N. Y. 2005, 43, 1758–1767. [Google Scholar] [CrossRef]
- Sriariyanun, M.; Mutrakulcharoen, P.; Tepaamorndech, S.; Cheenkachorn, K.; Rattanaporn, K. A Rapid Spectrophotometric Method for Quantitative Determination of Ethanol in Fermentation Products. Orient. J. Chem. 2019, 35, 744–750. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Al-Odayni, A.-B.; Saeed, W.S.; Al-Kahtani, A.; Alharthi, F.A.; Aouak, T. Efficient Adsorption of Lead (II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Materials 2019, 12, 2020. [Google Scholar] [CrossRef]
- Sriatun, S.; Herawati, S.; Aisyah, I. Effect of Activator Type on Activated Carbon Characters from Teak Wood and The Bleaching Test for Waste Cooking Oil. J. Rekayasa Kim. Lingkung. 2020, 15, 79–89. [Google Scholar] [CrossRef]
- Kumari, G.; Soni, B.; Karmee, S.K. Synthesis of Activated Carbon from Groundnut Shell Via Chemical Activation. JIEIE 2022, 103, 15–22. [Google Scholar] [CrossRef]
- Wan Mahmood, W.N.; Samsuddin, R.; Deris, R.R.R. Chemical Activation of Durian Shell Activated Carbon: Effects of Activation Agents. Adv. Mat. Res. 2015, 1113, 242–247. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, X.; Wang, Z.; Li, H.; Shen, X.; Yao, Z.; Qian, F. Synthesis of Activated Carbon from Citric Acid Residue by Phosphoric Acid Activation for the Removal of Chemical Oxygen Demand from Sugar-Containing Wastewater. Environ. Eng. Sci. 2019, 36, 656–666. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, T.; Pan, R.; Chun, Y.; Zhou, H.; Zhu, W.; Peng, H.; Zhang, Q. Sintering-Free Preparation of Porous Ceramsite Using Low-Temperature Decomposing Pore Former and Its Sound-Absorbing Performance. Constr. Build. Mater. 2018, 171, 367–376. [Google Scholar] [CrossRef]
- Shahrashoub, M.; Bakhtiari, S. The Efficiency of Activated Carbon/Magnetite Nanoparticles Composites in Copper Removal: Industrial Waste Recovery, Green Synthesis, Characterization, and Adsorption-Desorption Studies. Microporous Mesoporous Mater. 2021, 311, 110692. [Google Scholar] [CrossRef]
- Lam, S.S.; Liew, R.K.; Cheng, C.K.; Rasit, N.; Ooi, C.K.; Ma, N.L.; Ng, J.H.; Lam, W.H.; Chong, C.T.; Chase, H.A. Pyrolysis Production of Fruit Peel Biochar for Potential Use in Treatment of Palm Oil Mill Effluent. J. Environ. Manag. 2018, 213, 400–408. [Google Scholar] [CrossRef]
- Ramirez, A.P.; Giraldo, S.; Ulloa, M.; Flórez, E.; Acelas, N.Y. Production and Characterization of Activated Carbon from Wood Wastes. J. Phys. Conf. Ser. 2017, 935, 012012. [Google Scholar] [CrossRef]
- Kamaruddin, M.; Mohd Suffian, Y.; Azmier, M. Optimization of Durian Peel Based Activated Carbon Preparation Conditions for Ammoniacal Nitrogen Removal from Semi-Aerobic Landfill Leachate. J. Sci. Ind. Res. 2011, 70, 554–560. [Google Scholar]
- Kamaruddin, M.A.; Yusoff, M.S.; Ahmad, M.A. Optimization of Preparation Conditions for Durian Peel-Based Activated Carbon for the Removal of COD and Ammoniacal Nitrogen (NH3-N) Using Response-Surface Methodology. Kuwait J. Sci. Eng. 2012, 39, 37–58. [Google Scholar]
- Tey, J.P.; Careem, M.A.; Yarmo, M.A.; Arof, A.K. Durian Shell-Based Activated Carbon Electrode for EDLCs. Ionics 2016, 22, 1209–1216. [Google Scholar] [CrossRef]
- Tham, Y.J.; Latif, P.A.; Abdullah, A.M.; Shamala-Devi, A.; Taufiq-Yap, Y.H. Performances of Toluene Removal by Activated Carbon Derived from Durian Shell. Bioresour. Technol. 2011, 102, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Sudrajat, H.; Jumbianti, D. Activated Carbon from Durian Seed by H3PO4 Activation: Preparation and Pore Structure Characterization. Indo. J. Chem. 2010, 10, 36–40. [Google Scholar] [CrossRef]
- Tamjid Farki, N.N.A.N.L.; Abdulhameed, A.S.; Surip, S.N.; ALOthman, Z.A.; Jawad, A.H. Tropical Fruit Wastes Including Durian Seeds and Rambutan Peels as a Precursor for Producing Activated Carbon Using H3PO4-Assisted Microwave Method: RSM-BBD Optimization and Mechanism for Methylene Blue Dye Adsorption. Int. J. Phytoremediat. 2023, 25, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, D.; Li, W.; Peng, J.; Xia, H.; Zhang, L.; Guo, S.; Chen, G. Optimization of Mesoporous Activated Carbon from Coconut Shells by Chemical Activation with Phosphoric Acid. Bioresources 2013, 8, 6184–6195. [Google Scholar] [CrossRef]
- Li, Y.; Ding, X.; Guo, Y.; Wang, L.; Rong, C.; Qu, Y.; Ma, X.; Wang, Z. A Simple and Highly Effective Process for the Preparation of Activated Carbons with High Surface Area. Mater. Chem. Phys. 2011, 127, 495–500. [Google Scholar] [CrossRef]
- Lim, W.C.; Srinivasakannan, C.; al Shoaibi, A. Cleaner Production of Porous Carbon from Palm Shells through Recovery and Reuse of Phosphoric Acid. J. Clean. Prod. 2015, 102, 501–511. [Google Scholar] [CrossRef]
- Arshadi, M.; Shakeri, H.; Salvacion, J.W.L. A Green Adsorbent for the Removal of BTEX from Aqueous Media. RSC Adv. 2016, 6, 14290–14305. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Ahmad Puad, N.A.; Bello, O.S. Kinetic, Equilibrium and Thermodynamic Studies of Synthetic Dye Removal Using Pomegranate Peel Activated Carbon Prepared by Microwave-Induced KOH Activation. Water Resour. Ind. 2014, 6, 18–35. [Google Scholar] [CrossRef]
- Demiral, H.; Güngör, C. Adsorption of Copper(II) from Aqueous Solutions on Activated Carbon Prepared from Grape Bagasse. J. Clean. Prod. 2016, 124, 103–113. [Google Scholar] [CrossRef]
- Rattanapan, S.; Srikram, J.; Kongsune, P. Adsorption of Methyl Orange on Coffee Grounds Activated Carbon. Energy Procedia 2017, 138, 949–954. [Google Scholar] [CrossRef]
- Thue, P.S.; Lima, E.C.; Sieliechi, J.M.; Saucier, C.; Dias, S.L.P.; Vaghetti, J.C.P.; Rodembusch, F.S.; Pavan, F.A. Effects of First-Row Transition Metals and Impregnation Ratios on the Physicochemical Properties of Microwave-Assisted Activated Carbons from Wood Biomass. J. Colloid. Interface Sci. 2017, 486, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Belhamdi, B.; Merzougui, Z.; Laksaci, H.; Trari, M. The Removal and Adsorption Mechanisms of Free Amino Acid L-Tryptophan from Aqueous Solution by Biomass-Based Activated Carbon by H3PO4 Activation: Regeneration Study. Phys. Chem. Earth Parts A/B/C 2019, 114, 102791. [Google Scholar] [CrossRef]
- Wang, J.; Tang, J. Fe-Based Fenton-like Catalysts for Water Treatment: Preparation, Characterization and Modification. Chemosphere 2021, 276, 130177. [Google Scholar] [CrossRef]
- Aliakbari, Z.; Younesi, H.; Ghoreyshi, A.A.; Bahramifar, N.; Heidari, A. Production and Characterization of Sewage-Sludge Based Activated Carbons Under Different Post-Activation Conditions. Waste Biomass Valorization 2018, 9, 451–463. [Google Scholar] [CrossRef]
- Alam, M.M.; Hossain, M.A.; Hossain, M.D.; Johir, M.A.H.; Hossen, J.; Rahman, M.S.; Zhou, J.L.; Hasan, A.T.M.K.; Karmakar, A.K.; Ahmed, M.B. The Potentiality of Rice Husk-Derived Activated Carbon: From Synthesis to Application. Processes 2020, 8, 203. [Google Scholar] [CrossRef]
- Bakar, N.A.; Othman, N.; Yunus, Z.M.; Altowayti, W.A.H.; Al-Gheethi, A.; Asharuddin, S.M.; Tahir, M.; Fitriani, N.; Mohd-Salleh, S.N.A. Nipah (Musa Acuminata Balbisiana) Banana Peel as a Lignocellulosic Precursor for Activated Carbon: Characterization Study after Carbonization Process with Phosphoric Acid Impregnated Activated Carbon. Biomass Convers. Biorefin 2021, 13, 11085–11098. [Google Scholar] [CrossRef]
- Owkusumsirisakul, J.; Keeriang, T.; Laosiripojana, N.; Issro, C. Investigation on the Effects of Carbonization Parameters on Carbon Material Produced from Durian Shell. Biomass Convers. Biorefin 2022, 12, 4719–4727. [Google Scholar] [CrossRef]
- Saad, M.J.; Chia, C.H.; Zakaria, S.; Sajab, M.S.; Misran, S.; Abdul Rahman, M.H.; Chin, S.X. Physical and Chemical Properties of the Rice Straw Activated Carbon Produced from Carbonization and KOH Activation Processes. Sains Malays. 2019, 48, 385–391. [Google Scholar] [CrossRef]
- Babinszki, B.; Jakab, E.; Sebestyén, Z.; Blazsó, M.; Berényi, B.; Kumar, J.; Krishna, B.B.; Bhaskar, T.; Czégény, Z. Comparison of Hydrothermal Carbonization and Torrefaction of Azolla Biomass: Analysis of the Solid Products. J. Anal. Appl. Pyrolysis 2020, 149, 104844. [Google Scholar] [CrossRef]
- Yuliusman; Ayu, M.P.; Hanafi, A.; Nafisah, A.R. Activated Carbon Preparation from Durian Peel Wastes Using Chemical and Physical Activation. AIP Conf. Proc. 2020, 2230, 030020. [Google Scholar]
- Han, Q.; Wang, J.; Goodman, B.A.; Xie, J.; Liu, Z. High Adsorption of Methylene Blue by Activated Carbon Prepared from Phosphoric Acid Treated Eucalyptus Residue. Powder Technol. 2020, 366, 239–248. [Google Scholar] [CrossRef]
- Sujiono, E.H.; Zabrian, D.; Zurnansyah; Mulyati; Zharvan, V.; Samnur; Humairah, N.A. Fabrication and Characterization of Coconut Shell Activated Carbon Using Variation Chemical Activation for Wastewater Treatment Application. Results Chem. 2022, 4, 100291. [Google Scholar] [CrossRef]
- Singh, C.K.; Sahu, J.N.; Mahalik, K.K.; Mohanty, C.R.; Mohan, B.R.; Meikap, B.C. Studies on the Removal of Pb(II) from Wastewater by Activated Carbon Developed from Tamarind Wood Activated with Sulphuric Acid. J. Hazard. Mater. 2008, 153, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Gogate, P.R. Intensified Removal of Copper from Waste Water Using Activated Watermelon Based Biosorbent in the Presence of Ultrasound. Ultrason. Sonochem. 2016, 30, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Yakout, S.M.; Sharaf El-Deen, G. Characterization of Activated Carbon Prepared by Phosphoric Acid Activation of Olive Stones. Arab. J. Chem. 2016, 9, S1155–S1162. [Google Scholar] [CrossRef]
- İzgi, M.S.; Saka, C.; Baytar, O.; Saraçoğlu, G.; Şahin, Ö. Preparation and Characterization of Activated Carbon from Microwave and Conventional Heated Almond Shells Using Phosphoric Acid Activation. Anal. Lett. 2019, 52, 772–789. [Google Scholar] [CrossRef]
- Feng, P.; Li, J.; Wang, H.; Xu, Z. Biomass-Based Activated Carbon and Activators: Preparation of Activated Carbon from Corncob by Chemical Activation with Biomass Pyrolysis Liquids. ACS Omega 2020, 5, 24064–24072. [Google Scholar] [CrossRef]
- Musthapa, S.M.B.H.; Shams, S.; Reddy Prasad, D.M. Removal of Pollutants from Wastewater Using Activated Carbon from Durian Peel. IOP Conf. Ser. Earth Environ. Sci. 2023, 1135, 012001. [Google Scholar] [CrossRef]
- Zakaria, R.; Jamalluddin, N.A.; Abu Bakar, M.Z. Effect of Impregnation Ratio and Activation Temperature on the Yield and Adsorption Performance of Mangrove Based Activated Carbon for Methylene Blue Removal. Results Mater. 2021, 10, 100183. [Google Scholar] [CrossRef]
- Eke-emezie, N.; Etuk, B.R.; Akpan, O.P.; Chinweoke, O.C. Cyanide Removal from Cassava Wastewater onto H3PO4 Activated Periwinkle Shell Carbon. Appl. Water Sci. 2022, 12, 157. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Pore Size (Å) | Pore Volume (cc/g) |
---|---|---|---|
AC700-300-10% | 51.1 | 19.5 | 0.05 |
AC 700-300-20% | 37.5 | 15.6 | 0.03 |
AC 700-300-30% | 81.0 | 15.6 | 0.04 |
AC 700-300-40% | 259 | 16.7 | 0.04 |
AC 700-400-10% | 16.3 | 15.7 | 0.02 |
AC 700-400-20% | 35.8 | 15.7 | 0.04 |
AC 700-400-30% | 51.5 | 15.7 | 0.04 |
AC 700-400-40% | 102 | 15.6 | 0.04 |
Sample | Surface Area (m2/g) | Pore Size (Å) | Pore Volume (cc/g) |
---|---|---|---|
AC 800-300-10% | 2.81 | 15.2 | 0.002 |
AC 800-300-20% | 67.2 | 13.2 | 0.044 |
AC 800-300-30% | 258 | 11.1 | 0.14 |
AC 800-300-40% | 292 | 11.6 | 0.16 |
AC 800-400-10% | 2.09 | 16.4 | 0.003 |
AC 800-400-20% | 216 | 10.2 | 0.11 |
AC 800-400-30% | 254 | 10.3 | 0.13 |
AC 800-400-40% | 327 | 10.4 | 0.17 |
Sample | Surface Area (m2/g) | |
---|---|---|
Before Activation | CN300 | 51.738 |
After Activation | AC 700-300-40% | 259.243 |
AC 800-300-40% | 291.64 | |
Before Activation | K400 | 49.460 |
After Activation | AC 700-400-40% | 101.897 |
AC 800-400-40% | 326.72 | |
CAC | 50.374 |
Precursors | Aqueous Solution with Concentration | Impregnation Ratio H3PO4 to Sample | CN and Activation Temperature (°C) | Adsorbate | Yield (%) | BET Surface Area (m2/g) | References |
---|---|---|---|---|---|---|---|
Durian peel | 85 wt.% | 3:1–6:1 ± α | Activation = 400–600 ± α | NH3-N | 21.02 | 906.48 at 400 °C | [29] |
Durian peel | 85 wt.% | 3:1–6:1 ± α | Activation = 400–600 ± α | NH3-N and COD | N.A | 906.48 | [30] |
Durian shell | 1 M | 25:1 | CN 250–350 Activation = 400–700 | N.A | N.A | 2004 | [31] |
Durian shell | 5,10,20,30, 50% | 0.7, 1.4, 2.8, 4.2, 8.4 | CN = 500 | toluene | N.A | 1404 at 30% | [32] |
Durian seed | 85 wt.% | 1:1–6:1 | Activation = 600 and 900 | N2 | 46.82 | 2123 at 600 °C | [33] |
Durian seed (50%) and rambutan peels (50%) | each as much as 1 g to 2 mL H3PO4 | Activation = 100 | N2 | N.A | 104.2 | [34] | |
Durian peel | 10% v/v overnight | 1:1.4 | Activation = 400 and 500 | N.A | 63 | 1024 at 500 °C | [17] |
Coconut shell | 20, 30, 40, 50 wt.% | 3.5:1 | CN 400–600 | methylene blue | 36.9 | 891 | [35] |
Rice husk | 40–85 wt.% | 3:1–6:1 | Activation = 300–600 | N.A | 44.6 | 1820 | [36] |
Rice husk | 40–85 wt.% | 3:1–6:1 | Activation = 300–600 | N.A | 44.6 | 1820 | [36] |
Palm shell | 65 wt.% | 1.75:1 | Activation = 375, 425, 475, and 525 | N.A | 55 | 1109 | [37] |
Durian Peel (This study) | 10–40 wt.% | 6:1 | CN 300–400 Activation = 700–800 | ethanol | 49.67% for 700-300-40% | 326.72 for 800-400-40% |
Component | CN300 | CN400 |
---|---|---|
C | 97.5 | 96.2 |
P2O5 | 0.19 | 0.33 |
SiO2 | 0.25 | 0.27 |
Fe2O3 | 0.01 | 0.01 |
K2O | 1.69 | 2.73 |
CaO | 0.22 | 0.20 |
Component | Variable Composition (wt.%) | |||
---|---|---|---|---|
10% | 20% | 30% | 40% | |
C | 91.8 | 92.4 | 92.5 | 92.9 |
P2O5 | 5.60 | 5.32 | 4.86 | 4.86 |
SiO2 | 0.22 | 0.21 | 0.21 | 0.24 |
Fe2O3 | 0.02 | 0.02 | 0.03 | 0.17 |
K2O | 2.17 | 1.69 | 2.04 | 1.54 |
CaO | 0.16 | 0.29 | 0.17 | 0.14 |
Component | Variable Composition (wt.%) | |||
---|---|---|---|---|
10% | 20% | 30% | 40% | |
C | 91.7 | 94.1 | 91.7 | 92.1 |
P2O5 | 5.50 | 5.12 | 5.36 | 5.01 |
SiO2 | 0.32 | 0.22 | 0.28 | 0.24 |
Fe2O3 | 0.02 | 0.03 | 0.03 | 0.15 |
K2O | 2.05 | 0.19 | 2.27 | 2.16 |
CaO | 0.23 | 0.13 | 0.15 | 0.14 |
Component | Variable Composition (wt.%) | |||
---|---|---|---|---|
10% | 20% | 30% | 40% | |
C | 93.9 | 93.3 | 94.0 | 94.0 |
P2O5 | 5.03 | 5.12 | 4.62 | 4.71 |
SiO2 | 0.28 | 0.20 | 0.19 | 0.22 |
Fe2O3 | 0.01 | 0.01 | 0.01 | 0.02 |
K2O | 0.66 | 1.27 | 1.03 | 0.87 |
CaO | 0.13 | 0.11 | 0.09 | 0.11 |
Component | Variable Composition (wt.%) | |||
---|---|---|---|---|
10% | 20% | 30% | 40% | |
C | 96.8 | 97.1 | 93.6 | 94.9 |
P2O5 | 4.84 | 4.03 | 4.61 | 3.47 |
SiO2 | 0.26 | 0.200 | 0.21 | 0.16 |
Fe2O3 | 0.02 | 0.03 | 0.35 | 0.06 |
K2O | 0.90 | 1.17 | 0.97 | 1.30 |
CaO | 0.16 | 0.09 | 0.10 | 0.08 |
Temperature (°C) | Adsorption Efficiency (%) | ||||
---|---|---|---|---|---|
Pyrolysis | CN | 10% | 20% | 30% | 40% |
700 | 300 | 86.17 ± 0.41 | 50.36 ± 0.20 | 53.61 ± 0.00 | 79.66 ± 0.20 |
400 | 81.28 ± 0.00 | 41.00 ± 0.00 | 77.21 ± 0.00 | 56.87 ± 0.20 | |
800 | 300 | 89.82 ± 0.20 | 89.71 ± 0.06 | 89.85 ± 0.02 | 89.83 ± 0.20 |
400 | 89.74 ± 0.06 | 89.76 ± 0.21 | 89.82 ± 0.40 | 90.01 ± 0.00 |
Temperature (°C) | Yield (%) | ||||
---|---|---|---|---|---|
Pyrolysis | CN | 10% | 20% | 30% | 40% |
700 | 300 | 32.46 ± 0.1 | 37.56 ± 0.08 | 42.06 ± 0.05 | 49.67 ± 0.03 |
400 | 31.85 ± 0.01 | 36.33 ± 0.02 | 40.61 ± 0.05 | 46.80 ± 0.06 | |
800 | 300 | 30.62 ± 0.05 | 32.33 ± 0.1 | 33.34 ± 0.05 | 35.07 ± 0.06 |
400 | 21.10 ± 0.2 | 21.98 ± 0.03 | 22.51 ± 0.06 | 23.26 ± 0.01 |
Precursor | Activating Agent | Carbonization and Activation Temperature (°C) | Yield (%) | Adsorbate | Highest Adsorption Efficiency (%) | References |
---|---|---|---|---|---|---|
Durian Peel | H3PO4 30% | Activation: 600 | 86.90 | - | - | [51]. |
Banana Peel | H3PO4 25% | CN: 470 | 73.83 | - | - | [47] |
Durian Peel | - | CN: 250 | - | COD Removal | 68.65 | [59] |
Eucalyptus Residue | H3PO4 40% | Activation: 300–600 | 54.3 for 300 °C | Methylene Blue Solution | 99.6 | [51] |
Mangrove Pile Leftover | H3PO4 | Activation: 300–500 | 44.7 for 300 °C | Methylene Blue Solution | 96.3 for 300 °C | [60] |
Periwinkle Shell | H3PO4 (0.5M) | Activation: 700 | - | Cyanide Removal | 76.6 | [61] |
Durian Peel | H3PO4 10–40% | CN: 300–400 Activation: 700–800 | 49.67 for 700-300-40% | Ethanol | 90.01 for 800-400-40% | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damayanti, A.; Wulansarie, R.; Bahlawan, Z.A.S.; Suharta; Royana, M.; Basuki, M.W.N.M.; Nugroho, B.; Andri, A.L. Effects of Phosphate and Thermal Treatments on the Characteristics of Activated Carbon Manufactured from Durian (Durio zibethinus) Peel. ChemEngineering 2023, 7, 75. https://doi.org/10.3390/chemengineering7050075
Damayanti A, Wulansarie R, Bahlawan ZAS, Suharta, Royana M, Basuki MWNM, Nugroho B, Andri AL. Effects of Phosphate and Thermal Treatments on the Characteristics of Activated Carbon Manufactured from Durian (Durio zibethinus) Peel. ChemEngineering. 2023; 7(5):75. https://doi.org/10.3390/chemengineering7050075
Chicago/Turabian StyleDamayanti, Astrilia, Ria Wulansarie, Zuhriyan Ash Shiddieqy Bahlawan, Suharta, Mutia Royana, Mikhaella Wai Nostra Mannohara Basuki, Bayu Nugroho, and Ahmad Lutvi Andri. 2023. "Effects of Phosphate and Thermal Treatments on the Characteristics of Activated Carbon Manufactured from Durian (Durio zibethinus) Peel" ChemEngineering 7, no. 5: 75. https://doi.org/10.3390/chemengineering7050075
APA StyleDamayanti, A., Wulansarie, R., Bahlawan, Z. A. S., Suharta, Royana, M., Basuki, M. W. N. M., Nugroho, B., & Andri, A. L. (2023). Effects of Phosphate and Thermal Treatments on the Characteristics of Activated Carbon Manufactured from Durian (Durio zibethinus) Peel. ChemEngineering, 7(5), 75. https://doi.org/10.3390/chemengineering7050075