Ultrasound-Assisted Encapsulation of Citronella Oil in Alginate/Carrageenan Beads: Characterization and Kinetic Models
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Alg-Carr Biopolymeric Capsules
2.3. Characterization of the Particles
2.3.1. Scanning Electron Microscope (SEM) Analysis
2.3.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.3.3. Encapsulation Efficiency
2.3.4. Bioactive Compounds Release Kinetics Study
3. Result and Discussion
3.1. Citronella Oil Composition Analysis Using GC–MS
3.2. Characterization of Citronella Oil Beads by FTIR
3.3. Morphological Properties of Citronella Oil Beads by SEM
3.4. Encapsulation Efficiency and Particle Size
3.5. Release Kinetics of Citronella Beads
3.6. Proposed Mechanism of Ultrasound-Assisted Encapsulation Process
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sari, I.; Misrahanum, M.; Faradilla, M.; Ayuningsih, C.M.; Maysarah, H. Antibacterial Activity of Citronella Essential Oil from Cymbopogon nardus (L.) Rendle) Against Methicillin Resistant Staphylococcus aureus. Indones. J. Pharm. Clin. Res. 2022, 5, 16–22. [Google Scholar] [CrossRef]
- Saputra, N.A.; Wibisono, H.S.; Darmawan, S.; Pari, G. Chemical composition of Cymbopogon nardus essential oil and its broad spectrum benefit Chemical composition of Cymbopogon nardus essential oil and its broad spectrum benefit. IOP Conf. Ser. Earth Environ. Sci. 2020, 415, 012017. [Google Scholar] [CrossRef]
- Wlodarkievicz, M.E.; Maria, B.; Puton, S.; Fischer, B.; Fernandes, I.A.; Junges, A.; Paroul, N. Microencapsulation of Citronella Essential Oil (Cymbopogon winterianus) with Different Wall Materials Using Spray Drying. Lett. Appl. NanoBioScience 2022, 12, 71. [Google Scholar] [CrossRef]
- Trindade, L.A.; Cordeiro, L.V.; de Figuerêdo Silva, D.; Figueiredo, P.T.R.; de Pontes, M.L.C.; de Oliveira Lima, E.; de Albuquerque Tavares Carvalho, A. The antifungal and antibiofilm activity of Cymbopogon nardus essential oil and citronellal on clinical strains of Candida albicans. Brazilian J. Microbiol. 2022, 53, 1231–1240. [Google Scholar] [CrossRef]
- Da Silva, L.C.; de Souza Perinotto, W.M.; Sá, F.A.; de Souza, M.A.A.; de Oliveira Barbosa Bitencourt, R.; Sanavria, A.; Santos, H.A.; Marie-Magdeleine, C.; da Costa Angelo, I. In vitro acaricidal activity of Cymbopogon citratus, Cymbopogon nardus and Mentha arvensis against Rhipicephalus microplus (Acari: Ixodidae). Exp. Parasitol. 2020, 216, 107937. [Google Scholar] [CrossRef]
- Prasad, J.; Das, S.; Maurya, A.; Jain, S.K.; Dwivedy, A.K. Synthesis, characterization and in situ bioefficacy evaluation of Cymbopogon nardus essential oil impregnated chitosan nanoemulsion against fungal infestation and aflatoxin B1 contamination in food system. Int. J. Biol. Macromol. 2022, 205, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Loko, Y.L.E.; Medegan Fagla, S.; Kassa, P.; Ahouansou, C.A.; Toffa, J.; Glinma, B.; Dougnon, V.; Koukoui, O.; Djogbenou, S.L.; Tamò, M.; et al. Bioactivity of essential oils of Cymbopogon citratus (DC) Stapf and Cymbopogon nardus (L.) W. Watson from Benin against Dinoderus porcellus Lesne (Coleoptera: Bostrichidae) infesting yam chips. Int. J. Trop. Insect Sci. 2021, 41, 511–524. [Google Scholar] [CrossRef]
- Rouf, R.; Uddin, S.J.; Sarker, D.K.; Islam, M.T.; Ali, E.S.; Shilpi, J.A.; Nahar, L.; Tiralongo, E.; Sarker, S.D. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre-clinical and clinical data. Trends Food Sci. Technol. 2020, 104, 219–234. [Google Scholar] [CrossRef]
- Smaoui, S.; Ben Hlima, H.; Ben Braïek, O.; Ennouri, K.; Mellouli, L.; Mousavi Khaneghah, A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci. 2021, 181, 108585. [Google Scholar] [CrossRef]
- Patel, S.S.; Pushpadass, H.A.; Franklin, M.E.E.; Battula, S.N.; Vellingiri, P. Microencapsulation of curcumin by spray drying: Characterization and fortification of milk. J. Food Sci. Technol. 2022, 59, 1326–1340. [Google Scholar] [CrossRef]
- Pontes, E.K.U.; Melo, H.M.; Nogueira, J.W.A.; Firmino, N.C.S.; de Carvalho, M.G.; Catunda Júnior, F.E.A.; Cavalcante, T.T.A. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Sci. Biotechnol. 2019, 28, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Postolovic, K.S.; Antonijevic, M.D.; Ljujic, B.; Miletic Kovacevic, M.; Gazdic Jankovic, M.; Stanic, Z. pH-Responsive Hydrogel Beads Based on Alginate, κ-Carrageenan and Poloxamer for Enhanced Curcumin, Natural Bioactive Compound, Encapsulation and Controlled Release Efficiency. Molecules 2022, 27, 4045. [Google Scholar] [CrossRef] [PubMed]
- Sayeesh, P.; Joy, R.; Pradeep, N.; John, F.; George, J. Alginate/k-carrageenan and alginate/gelatin composite hydrogel beads for controlled drug release of curcumin. Adv. Mater. Lett. 2019, 10, 508–514. [Google Scholar] [CrossRef]
- Ramdhan, T.; Ching, S.H.; Prakash, S.; Bhandari, B. Physical and mechanical properties of alginate based composite gels. Trends Food Sci. Technol. 2020, 106, 150–159. [Google Scholar] [CrossRef]
- Yu, F.; Cui, T.; Yang, C.; Dai, X.; Ma, J. Κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere 2019, 237, 124417. [Google Scholar] [CrossRef]
- Szekalska, M.; Sosnowska, K.; Czajkowska-Kósnik, A.; Winnicka, K. Calcium chloride modified alginate microparticles formulated by the spray drying process: A strategy to prolong the release of freely soluble drugs. Materials 2018, 11, 1522. [Google Scholar] [CrossRef] [PubMed]
- Sangolkar, R.D.; Kawadkar, D.K.; Bhanvase, B.A.; Sonawane, S.H.; Potoroko, I. Ultrasound assisted encapsulation of peppermint flavor in gum Arabic: Study of process parameters. J. Food Process Eng. 2019, 42, e13269. [Google Scholar] [CrossRef]
- Ekambaram, P.; Abdul Hasan Sathali, A. Formulation and evaluation of solid lipid nanoparticles of ramipril. J. Young Pharm. 2011, 3, 216–220. [Google Scholar] [CrossRef]
- Kahya, N.; Erim, F.B. Surfactant modified alginate composite gels for controlled release of protein drug. Carbohydr. Polym. 2019, 224, 115165. [Google Scholar] [CrossRef]
- Budinčić, J.M.; Petrović, L.; Đekić, L.; Aleksić, M.; Fraj, J.; Popović, S.; Bučko, S.; Katona, J.; Spasojević, L.; Škrbić, J.; et al. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant. Pharmaceuticals 2022, 15, 54. [Google Scholar] [CrossRef]
- Kaygusuz, H.; Evingür, G.A.; Pekcan, Ö.; von Klitzing, R.; Erim, F.B. Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. Int. J. Biol. Macromol. 2016, 92, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Borodina, T.N.; Grigoriev, D.O.; Carillo, M.A.; Hartmann, J.; Moehwald, H.; Shchukin, D.G. Preparation of multifunctional polysaccharide microcontainers for lipophilic bioactive agents. ACS Appl. Mater. Interfaces 2014, 6, 6570–6578. [Google Scholar] [CrossRef] [PubMed]
- Omer, N.; Yeun-mun, C.; Ahmad, N.; Saadah, N.; Yusof, M. Ultrasonics Sonochemistry Ultrasound-assisted encapsulation of Pandan (Pandanus amaryllifolius) extract. Ultrason. Sonochem. 2021, 79, 105793. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.K.; Azevedo, V.M.; Cunha, R.L.; Hubinger, M.D.; Meireles, A.A. Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate versus modified starch. Food Hydrocoll. 2016, 56, 71–83. [Google Scholar] [CrossRef]
- Tian, Y.; Zhu, Y.; Bashari, M.; Hu, X.; Xu, X.; Jin, Z. Identification and releasing characteristics of high-amylose corn starch-cinnamaldehyde inclusion complex prepared using ultrasound treatment. Carbohydr. Polym. 2013, 91, 586–589. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, Q.; Liu, X.; Raza, H.; Ma, H.; Ren, X. Treatment with ultrasound improves the encapsulation efficiency of resveratrol in zein-gum Arabic complex coacervates. Lwt 2022, 153, 112331. [Google Scholar] [CrossRef]
- Leong, T.S.H.; Martin, G.J.O.; Ashokkumar, M. Ultrasonic encapsulation–A review. Ultrason. Sonochem. 2017, 35, 605–614. [Google Scholar] [CrossRef]
- Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohydr. Polym. 2017, 157, 1226–1236. [Google Scholar] [CrossRef]
- Elgegren, M.; Kim, S.; Cordova, D.; Silva, C.; Noro, J.; Cavaco-Paulo, A.; Nakamatsu, J. Ultrasound-assisted encapsulation of sacha inchi (Plukenetia volubilis Linneo.) oil in alginate-chitosan nanoparticles. Polymers 2019, 11, 1245. [Google Scholar] [CrossRef]
- Iurciuc-Tincu, C.; Ionu, L.; Jérôme, C.; Sol, V.; Martin, P.; Popa, M. Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization. Int. J. Biol. Macromol. 2020, 147, 629–642. [Google Scholar] [CrossRef]
- Cirri, M.; Maestrelli, F.; Scuota, S.; Bazzucchi, V.; Mura, P. Development and microbiological evaluation of chitosan and chitosan-alginate microspheres for vaginal administration of metronidazole. Int. J. Pharm. 2021, 598, 120375. [Google Scholar] [CrossRef]
- Kour, P.; Afzal, S.; Gani, A.; Zargar, M.I.; Nabi Tak, U.; Rashid, S.; Dar, A.A. Effect of nanoemulsion-loaded hybrid biopolymeric hydrogel beads on the release kinetics, antioxidant potential and antibacterial activity of encapsulated curcumin. Food Chem. 2022, 376, 131925. [Google Scholar] [CrossRef] [PubMed]
- Wardhani, D.H.; Etnanta, F.N.; Ulya, H.N.; Aryanti, N. Iron Encapsulation by Deacetylated Glucomannan as an Excipient Using the Gelation Method: Characteristics and Controlled Release. Food Technol. Biotechnol. 2022, 60, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Rastuti, U.; Diastuti, H.; Chasani, M.; Purwati; Hidayatullah, R. Chemical composition and antioxidant activities of citronella essential oil Cymbopogon nardus (L.) rendle fractions. AIP Conf. Proc. 2020, 2237, 020035. [Google Scholar] [CrossRef]
- Fitri, N.; Riza, R.; Akbari, M.K.; Khonitah, N.; Fahmi, R.L.; Fatimah, I. Identification of Citronella Oil Fractions as Efficient Bio-Additive for Diesel Engine Fuel. Designs 2022, 6, 15. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Yingngam, B.; Kacha, W.; Rungseevijitprapa, W.; Sudta, P.; Prasitpuriprecha, C.; Brantner, A. Response surface optimization of spray-dried citronella oil microcapsules with reduced volatility and irritation for cosmetic textile uses. Powder Technol. 2019, 355, 372–385. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible brown and red seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Liang, Q.; Ren, X.; Zhang, X.; Hou, T.; Chalamaiah, M.; Ma, H.; Xu, B. Effect of ultrasound on the preparation of resveratrol-loaded zein particles. J. Food Eng. 2018, 221, 88–94. [Google Scholar] [CrossRef]
- Falsafi, S.R.; Maghsoudlou, Y.; Aalami, M.; Jafari, S.M.; Raeisi, M. Physicochemical and morphological properties of resistant starch type 4 prepared under ultrasound and conventional conditions and their in-vitro and in-vivo digestibilities. Ultrason. Sonochem. 2019, 53, 110–119. [Google Scholar] [CrossRef]
- Wardhani, D.H.; Aryanti, N.; Aziz, A.; Firdhaus, R.A.; Ulya, H.N. Ultrasonic degradation of alginate: A matrix for iron encapsulation using gelation. Food Biosci. 2021, 41, 100803. [Google Scholar] [CrossRef]
- Zaghian, N.; Goli, M. Optimization of the production conditions of primary (W1/O) and double (W1/O/W2) nano-emulsions containing vitamin B12 in skim milk using ultrasound wave by response surface methodology. J. Food Meas. Charact. 2020, 14, 3216–3226. [Google Scholar] [CrossRef]
- Stebbins, N.D.; Faig, J.J.; Yu, W.; Guliyev, R.; Uhrich, K.E. Polyactives: Controlled and sustained bioactive release via hydrolytic degradation. Biomater. Sci. 2015, 3, 1171–1187. [Google Scholar] [CrossRef]
- Ma, C.; Jiang, W.; Chen, G.; Wang, Q.; McClements, D.J.; Liu, X.; Liu, F.; Ngai, T. Sonochemical effects on formation and emulsifying properties of zein-gum Arabic complexes. Food Hydrocoll. 2021, 114, 106557. [Google Scholar] [CrossRef]
- Ameer, M.W.A.; Maraie, N.K. Preparation and Evaluation of Microencapsulated Dexamethasone Sodium Phosphate Using Double Emulsion Method. Al Mustansiriyah J. Pharm. Sci. 2019, 19, 1–11. [Google Scholar] [CrossRef]
- Luo, X.; Fan, F.; Sun, X.; Li, P.; Xu, T.; Ding, J.; Fang, Y. Effect of ultrasonic treatment on the stability and release of selenium-containing peptide TSeMMM-encapsulated nanoparticles in vitro and in vivo. Ultrason. Sonochem. 2022, 83, 105923. [Google Scholar] [CrossRef] [PubMed]
- Keven Silva, E.; Zabot, G.L.; Toledo Hijo, A.A.C.; Meireles, M.A.A. Encapsulation of Bioactive Compounds Using Ultrasonic Technology; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128046142. [Google Scholar]
- Zainul, R.; Alif, A.; Aziz, H.; Arief, S. Photoelectrosplitting water for hydrogen production using illumination of indoor lights Photoelectrosplitting water for hydrogen production using illumination of indoor lights. J. Chem. Pharm. Res. 2015, 7, 246–256. [Google Scholar]
- Tecson, M.G.; Abad, L.V.; Ebajo, V.D.; Camacho, D.H. Ultrasound-assisted depolymerization of kappa-carrageenan and characterization of degradation product. Ultrason. Sonochem. 2021, 73, 105540. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Lee, M.C.; Godec, M.; Zhang, Z.; Abbaspourrad, A. Ultrasonic encapsulation of cinnamon flavor to impart heat stability for baking applications. Food Hydrocoll. 2020, 99, 105316. [Google Scholar] [CrossRef]
Peak# | R.Time (min) | Percentage (%) | Name |
---|---|---|---|
1 | 4.06 | 19.57 | α-pinene, (-)- |
2 | 4.46 | 0.95 | Camphene |
3 | 5.82 | 0.74 | Delta 3-carene |
4 | 7.06 | 8.72 | 1-Methyl-4-(1-methyleneallyl)cyclohexene |
5 | 16.30 | 19.77 | Citronella |
6 | 18.38 | 0.64 | Linalool |
7 | 20.57 | 1.34 | β-elemene |
8 | 20.91 | 0.62 | Trans-caryophyllene |
9 | 23.15 | 2.32 | Citronellyl acetate |
10 | 23.58 | 1.05 | Z-citral |
11 | 25.53 | 1.81 | Z-citral |
12 | 26.95 | 20.60 | Neryl acetate |
13 | 27.11 | 2.13 | α-amorphene |
14 | 29.92 | 17.98 | Geraniol |
15 | 35.29 | 1.77 | Elemol |
Wavenumber Range (cm−1) | Functional Groups | Reference |
---|---|---|
2935–2915 | C-H | [36] |
2865–2845 | C-H | [36] |
1690–1800 | C=O | [37] |
1499≈ | C-O-S | [20] |
1370–1485 | C-H | [36] |
1210–1260 | S=O | [38] |
895–885 | C-H | [36] |
Ultrasound Time (min) | Diameter (mm) | Encapsulation Efficiency (%) |
---|---|---|
0 | 3.27 ± 0.13 | 95.82 ± 0.13 |
4 | 3.15 ± 0.03 | 97.17 ± 0.21 |
6 | 2.88 ± 0.06 | 97.42 ± 0.10 |
8 | 2.81 ± 0.03 | 97.48 ± 0.14 |
10 | 2.10 ± 0.08 | 97.74 ± 0.16 |
12 | 1.56 ± 0.04 | 97.55 ± 0.10 |
System | Higuchi | Ritger–Peppas Model | Peppas–Sahlin Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|
kh | R2 | k1 | n | R2 | k1 | k2 | m | R/F | R2 | |
pH 1.2 | ||||||||||
Ultrasound | 11.40 | 0.948 | 20.10 | 0.267 | 0.993 | 24.69 | 0.21 | 0.11 | 0.0085 | 0.999 |
Non-Ultrasound | 9.33 | 0.982 | 12.56 | 0.380 | 0.991 | 16.85 | 0.16 | 0.16 | 0.0107 | 0.999 |
pH 6.8 | ||||||||||
Ultrasound | 22.29 | 0.888 | 49.89 | 0.175 | 0.999 | 50.21 | 0.01 | 0.17 | 0.0003 | 0.999 |
Non-Ultrasound | 21.64 | 0.890 | 47.26 | 0.176 | 0.999 | 50.42 | 0.07 | 0.14 | 0.0022 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasetyaningrum, A.; Wicaksono, B.S.; Hakiim, A.; Ashianti, A.D.; Manalu, S.F.C.; Rokhati, N.; Utomo, D.P.; Djaeni, M. Ultrasound-Assisted Encapsulation of Citronella Oil in Alginate/Carrageenan Beads: Characterization and Kinetic Models. ChemEngineering 2023, 7, 10. https://doi.org/10.3390/chemengineering7010010
Prasetyaningrum A, Wicaksono BS, Hakiim A, Ashianti AD, Manalu SFC, Rokhati N, Utomo DP, Djaeni M. Ultrasound-Assisted Encapsulation of Citronella Oil in Alginate/Carrageenan Beads: Characterization and Kinetic Models. ChemEngineering. 2023; 7(1):10. https://doi.org/10.3390/chemengineering7010010
Chicago/Turabian StylePrasetyaningrum, Aji, Bangkit Suryo Wicaksono, Azafilmi Hakiim, Aulia Dwi Ashianti, Sadrakh Farel Christian Manalu, Nur Rokhati, Dani Puji Utomo, and Mohammad Djaeni. 2023. "Ultrasound-Assisted Encapsulation of Citronella Oil in Alginate/Carrageenan Beads: Characterization and Kinetic Models" ChemEngineering 7, no. 1: 10. https://doi.org/10.3390/chemengineering7010010
APA StylePrasetyaningrum, A., Wicaksono, B. S., Hakiim, A., Ashianti, A. D., Manalu, S. F. C., Rokhati, N., Utomo, D. P., & Djaeni, M. (2023). Ultrasound-Assisted Encapsulation of Citronella Oil in Alginate/Carrageenan Beads: Characterization and Kinetic Models. ChemEngineering, 7(1), 10. https://doi.org/10.3390/chemengineering7010010