Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Timofeev, V.S.; Serafimov, L.A.; Tymoshenko, A.V. Principles of the Technology of Basic Organic and Petrochemical Synthesis. Textbook for Universities, 3rd ed.; Higher School: Moscow, Russia, 2010; p. 408. [Google Scholar]
- Zhigang, L.; Chengyue, L.; Biaohua, C. Extractive Distillation: A Review. Sep. Purif. Rev. 2003, 32, 121–213. [Google Scholar] [CrossRef]
- Gerbaud, V.; Rodriguez-donis, I.; Hegely, L.; Lang, P.; Denes, F.; You, X. Review of Extractive Distillation. Process design, operation, optimization and control. Chem. Eng. Res. Des. 2019, 141, 229–271. [Google Scholar] [CrossRef] [Green Version]
- Ziyatdinov, N.N.; Emelyanov, I.I.; Ryzhova, A.A.; Chernakov, P.S. Algorithm and software for the optimal technological design of a system of simple distillation columns. Fine Chem. Technol. 2021, 16, 379–389. [Google Scholar] [CrossRef]
- Luyben, W.L. Comparison of extractive distillation and Pressure-Swing Distillation for acetone-methanol separation. Ind. Eng. Chem. Res. 2008, 47, 2696–2707. [Google Scholar] [CrossRef]
- Ghuge, P.D.; Mali, N.A.; Joshi, S.S. Comparative Analysis of Extractive and Pressure Swing Distillation for Separation of THF-Water Separation. Comput. Chem. Eng. 2017, 103, 188–200. [Google Scholar] [CrossRef]
- Cao, Y.; Hu, J.; Jia, J.; Bu, G.; Zhu, Z.; Wang, Y. Comparison of pressure-swing distillation and extractive distillation with varied-diameter column in economics and dynamic control. J. Process Control 2017, 49, 9–25. [Google Scholar] [CrossRef]
- Lladosa, E.; Montón, J.B.; Burguet, M. Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. Chem. Eng. Process. 2011, 50, 1266–1274. [Google Scholar] [CrossRef]
- Muñoz, R.; Montón, J.B.; Burguet, M.C.; Torre, J. Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Sep. Purif. Technol. 2006, 50, 175–183. [Google Scholar] [CrossRef]
- Wang, X.; Xie, L.; Tian, P.; Tian, G. Design and control of extractive dividing wall column and pressure-swing distillation for separating azeotropic mixture of acetonitrile/N-propanol. Chem. Eng. Process. 2016, 110, 172–187. [Google Scholar] [CrossRef]
- Luo, H.; Liang, K.; Li, W.; Ming, X.; Xu, C. Comparison of Pressure Swing Distillation and Extractive Distillation Methods for Isopropyl Alcohol/Diisopropyl Ether Separation. Ind. Eng. Chem. Res. 2008, 53, 15167–15182. [Google Scholar] [CrossRef]
- Guang, C.; Shi, X.; Zhang, Z.; Wang, C.; Gao, J. Comparison of heterogeneous azeotropic and pressure-swing distillations for separating the diisopropylether/isopropanol/water mixtures. Chem. Eng. Res. Des. 2019, 143, 249–260. [Google Scholar] [CrossRef]
- Cui, Y.; Shi, X.; Guang, C.; Zhang, Z.; Wang, C.; Wang, C. Comparison of pressure-swing distillation and heterogenous azeotropic distillation for recovering benzene and isopropanol from wastewater. Process Saf. Environ. Prot. 2019, 122, 1–12. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, Q.; Li, X.; Zhong, X.; Huaxue, G. Comparison of heterogeneous azeotropic distillation and extractive methods for ternary azeotrope ethanol/toluene/water separation. Comput. Chem. Eng. 2017, 100, 27–37. [Google Scholar] [CrossRef]
- Kiss, A.A.; David, J.; Suszwalak, P. Enhanced bioethanol dehydratation by extractive and azeotropic distillation in dividing-wall columns. Sep. Purif. Technol. 2012, 86, 70–78. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yu, B.-Y.; Hsu, C.-C.; Chien, I.-L. Comparison of heteroazeotropic and extractive distillation for the dehydration of propylene glycol methyl ether. Chem. Eng. Res. Des. 2016, 111, 184–195. [Google Scholar] [CrossRef]
- Abdel-Rahman, Z.A.; Mahmood, A.M.; Ali, A.J. Ethanol-Water Separation by Pressure Swing Adsorption (PSA). Iraqi J. Chem. Pet. Eng. 2014, 15, 1–7. [Google Scholar]
- López Núñez, A.R.; Rumbo Morales, J.Y.; Salas Villalobos, A.U.; De La Cruz-Soto, J.; Ortiz Torres, G.; Rodríguez Cerda, J.C.; Calixto-Rodriguez, M.; Brizuela Mendoza, J.A.; Aguilar Molina, Y.; Zatarain Durán, O.A.; et al. Optimization and Recovery of a Pressure Swing Adsorption Process for the Purification and Production of Bioethanol. Fermentation 2022, 8, 293. [Google Scholar] [CrossRef]
- Tajallipour, M.; Niu, C.; Dalai, A. Ethanol Dehydration in a Pressure Swing Adsorption Process Using Canola Meal. Energy Fuels 2013, 27, 6655–6664. [Google Scholar] [CrossRef] [Green Version]
- Serafimov, L.A.; Frolkova, A.K. Fundamental principle of concentration-field redistribution between separation regions as a basis for the design of technological systems. Theor. Found. Chem. Eng. 1997, 31, 159–166. [Google Scholar]
- Benyounes, H.; Frolkova, A.K. Investigation of the distribution of temperatures and concentrations during the distillation of real mixtures in complex columns. Sci. Notes M.V. Lomonosov MITHT 2002, 5, 50–53. (In Russian) [Google Scholar]
- Frolkova, A.K. Theoretical Foundations of Separation of Multicomponent Multiphase Systems Using Functional Complexes. Ph.D. Thesis, Moscow State University of Fine Chemical Technologies, Moscow, Russia, 2000. [Google Scholar]
- Berg, L.; Szabados, R.J.; Wendt, K.M.; Yeh, A.-I. The dehydration of the lower fatty acids by extractive distillation. Chem. Eng. Commun. 1990, 89, 113–131. [Google Scholar] [CrossRef]
- Cohen, L.R. Method for Separating Carboxylic Acids from Mixtures with Non-Acids. US Patent 4,576,683, 6 June 1986. Available online: https://patents.google.com/patent/US4576683A/en (accessed on 18 September 2022).
- Huang, H.J.; Chien, I.-L. Choice of suitable entrainer in heteroazeotropic batch distillation system for acetic acid dehydration. Chin. J. Chem. Eng. 2008, 39, 503–517. [Google Scholar] [CrossRef]
- Li, X.; Tang, C.; Guan, G. Mechanism of NMA as entrainer in separating acetic acid from water with extractive distillation. Chin. J. Chem. Eng. 2007, 58, 141–144. [Google Scholar]
- Raeva, V.M.; Gromova, O.V. Separation of water—formic acid—acetic acid mixtures in the presence of sulfolane. Fine Chem. Technol. 2019, 14, 24–32. [Google Scholar] [CrossRef]
- Lebedeva, N.D. Heat of Combustion of a Series of Monocarboxylic Acids. Russ. J. Phys. Chem. 1964, 38, 1435–1437. [Google Scholar]
- Sokolov, N.M.; Sevryugova, N.N.; Zhavoronkov, N.M. Liquid-vapor phase equilibrium in the systems acrylonitrile + water and acrolein + water at various pressures. Theor. Found. Chem. Eng. 1969, 3, 128–135. [Google Scholar]
- Aldrich Chemical Company Inc. Catalog Handbook of Fine Chemicals; Milwaukee Wis: Milwaukee, WI, USA, 1990. [Google Scholar]
- Weast, R.C.; Grasselli, J.G. CRC Handbook of Data on Organic Compounds; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- Lee, F.-M. Use of Organic Sulfones as the Extractive Distillation Solvent for Aromatic Recovery. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 949–957. [Google Scholar] [CrossRef]
- Rivenq, F. Vapor-liquid data for the system water-propionic acid. Bull. Soc. Chim. Fr. 1961, 1392–1395. Available online: http://pure-oai.bham.ac.uk/ws/files/18560974/Roman_Ramirez_et_al_Vapour_liquid_equilibrium_Fluid_Phase_Equilibria_2015.pdf14.10.2022 (accessed on 18 September 2022).
- Ogorodnikov, S.K.; Lesteva, T.M.; Kogan, V.B. Azeotropic Mixtures (in Russian); Chemistry: Moscow, Russia, 1971; p. 848. [Google Scholar]
- Tochigi, K.; Takahara, H.; Shiga, Y.; Kawase, Y. Isobaric vapor–liquid equilibria for water + propylene glycol monomethyl ether (PGME), water + propyleneglycol monomethyl ether acetate (PGMEA), and PGME + PGMEA at reduced pressures. Fluid Phase Equilib. 2007, 260, 65–69. [Google Scholar] [CrossRef]
- Lecat, M. L’Azeotropisme. Monograph; Brussel: Maurice Lamerti, 1918. [Google Scholar]
- Zharikov, L.K.; Krylova, K.S.; Kopylevich, G.M.; Tikhonova, N.K.; Oparina, G.K.; Serafimov, L.A. Phase equilibria in water-aniline, water-cyclohexanol, ethanol-aniline, ethanol-cyclohexanol systems. Zhournal Prikladnoi Khimii 1975, 48, 1249–1250. [Google Scholar]
- Marinichev, A.N.; Susarev, M.P. Concentration ranges of ternary hetero-azeotropes. Russ. J. Phys. Chem. 1969, 43, 631–634. [Google Scholar]
- Zhao, Q.; Li, X.; Zhong, X. Phase Equilibrium of Ternary System of VAc-TBA-Water. Huaxue Gongcheng 1992, 20, 61–65. [Google Scholar]
- Kato, M.; Konishi, H.; Hirata, M.J. New apparatus for isobaric dew and bubble point method methanol + water, ethyl acetate + ethanol, water + 1-butanol, and ethyl acetate + water systems. J. Chem. Eng. Data 1970, 15, 435–439. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Tu, C.-H. Isobaric vapor-liquid equilibria for the binary and ternary mixtures of 2-propanol, water, and 1,3-propanediol at p = 101.3 kPa: Effect of the 1,3-propanediol addition. Fluid Phase Equilib. 2014, 368, 104–111. [Google Scholar] [CrossRef]
- Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Liquid–liquid equilibria in methanol–water–paraffin hydrocarbons C7, C8 systems. Russ. J. Phys. Chem. 1976, 50, 1344–1345. [Google Scholar]
- Senol, A.; Cehreli, S.; Ozmen, D. Phase Equilibria for the Ternary Liquid Systems of (Water + Tetrahydrofurfuryl Alcohol + Cyclic Solvent) at 298.2 K. J. Chem. Eng. Data 2005, 50, 688–691. [Google Scholar] [CrossRef]
- Glover, S.T. Liquid-liquid extraction: Removal of acetone and acetaldehyde from vinyl acetate with water in packed column. Transac. Inst. Chem. Eng. 1946, 24, 54–55. [Google Scholar]
- Stephenson, R.M.; Stuart, J.J. Mutual binary solubilities: Water-alcohols and water-esters. J. Chem. Eng. Data 1986, 31, 56–57. [Google Scholar] [CrossRef]
- Misikov, G.; Toikka, M.; Samarov, A.; Toikka, A. Phase equilibria liquid-liquid for ternary systems n-amyl alcohol-water-(acetic acid, n-amyl acetate), n-amyl acetate-water-acetic acid at 293.15 K, 303.15 K, 313.15 K and 323.15 K. Fluid Phase Equilib. 2022, 552, 113265. [Google Scholar] [CrossRef]
- Mayevskiy, M.; Frolkova, A.; Frolkova, A. Separation and Purification of Methyl Isobutyl Ketone from Acetone + Isopropanol + Water + Methyl Isobutyl Ketone + Methyl Isobutyl Carbinol + Diisobutyl Ketone Mixture. ACS Omega 2020, 5, 25365–25370. [Google Scholar] [CrossRef]
- Anokhina, E.A.; Shleynikova, E.L.; Timoshenko, A.V. Energy efficiency of complexes with partially coupled thermally and material flows for extractive distillation of methyl acetate—Chloroform mixture. Fine Chem. Technol. 2013, 8, 18–25. (In Russian) [Google Scholar]
Binary Mixture | Original Mixture Comp. | Entrainer | |
---|---|---|---|
X1, Mole Frac. | ED | HAD | |
PA + W | 0.8 | NMP, NMAA | CHAN, CHOL, H |
AA + W | 0.8 | NMAA, NMP | VA, EA |
MP + W | 0.5 | S, NMP | IPA |
Component/Mixture | Boiling Point, K | ur | X1, Mole Frac | ur | ||
---|---|---|---|---|---|---|
Exp. | Calc. | Exp. | Calc. | |||
PA | 414.05 2.4 × 10−4 | 414.15 | 0.0002 | - | - | - |
W | 373.20 | 373.15 | 0.0001 | - | - | - |
MP | 391.70 | 393.15 | 0.0037 | - | - | - |
AA | 391.30 | 391.25 | 0.0001 | - | - | - |
NMP | 475.20 | 477.42 | 0.0047 | - | - | - |
NMAA | 478.20 | 478.15 | 0.0001 | - | - | - |
CHAN | 353.90 | 353.87 | 0.0001 | - | - | - |
CHOL | 434.30 | 434.00 | 0.0007 | - | - | - |
H | 341.90 | 341.88 | 0.0001 | - | - | - |
VA | 345.50 | 345.65 | 0.0004 | - | - | - |
S | 558.00 | 560.45 | 0.0044 | - | - | - |
IPA | 355.60 | 355.30 | 0.0008 | - | - | - |
EA | 350.20 | 350.21 | 0.0001 | - | - | - |
W + PA | 372.92 | 372.71 | 0.0006 | 0.9542 | 0.9272 | 0.0283 |
W + MP | 367.60 | 370.64 | 0.0083 | 0.8250 | 0.8081 | 0.0209 |
CHAN + W | 342.55 | 342.64 | 0.0003 | 0.7010 | 0.6990 | 0.0028 |
W + CHOL | 370.92 | 371.48 | 0.0015 | 0.9380 | 0.9313 | 0.0071 |
H+W | 335.13 | 334.58 | 0.0017 | 0.7810 | 0.7898 | 0.0113 |
VA + W | 339.15 | 338.65 | 0.0015 | 0.7266 | 0.7452 | 0.0250 |
EA + W | 343.53 | 344.54 | 2.9 ×10−5 | 0.7000 | 0.6731 | 0.0385 |
IPA + W | 349.75 | 349.92 | 0.0005 | 0.5980 | 0.5824 | 0.0261 |
Mixture | Liquid Mole Fraction (Exp. Data) | Liquid Mole Fraction (Calc. Data) | ur | |||
---|---|---|---|---|---|---|
X1′ | X2″ | X1′ | X2″ | ΔX1′ | ΔX2″ | |
W + PA | ||||||
W + H | 0.9999 | 0.9996 | 0.9999 | 0.9995 | 0.0000 | 0.0001 |
W + CHAN | 0.9999 | 0.9995 | 0.9999 | 0.9995 | 0.0000 | 0.0000 |
W + CHOL * | 0.9960 | 0.6741 | 0.9964 | 0.6383 | 0.0004 | 0.0531 |
W + AA | ||||||
W + VA | 0.9976 | 0.9504 | 0.9970 | 0.9493 | 0.0006 | 0.0012 |
W + EA | 0.9830 | 0.8733 | 0.9830 | 0.8681 | 0.000 | 0.0060 |
MP + W | ||||||
IPA + W | 0.9166 | 0.9950 | 0.9178 | 0.9947 | 0.0013 | 0.0003 |
Process | E | Column | Stage Number | Feed Stage (Mixture/E) | Reflux Ratio | R1 or F(E), kmol/h | Q, kW |
---|---|---|---|---|---|---|---|
PA + W | |||||||
HAD | CHAN | C1 | 5 | 4/1 | - | 46.74 | 637.01 |
CHOL | C1 | 18 | 12/3 | 0.32 | 2.42 | 376.80 | |
H | C1 | 5 | 4/1 | - | 75.42 | 854.41 | |
ED | NMAA | C1 | 18 | 10/4 | 0.4 | 50.00 | 538.47 |
C1 | 38 | 4 | 1.5 | - | 1856.16 | ||
NMP | C1 | 27 | 19/6 | 0.5 | 50.00 | 565.62 | |
C2 | 13 | 7 | 0.6 | - | 1250.83 | ||
AA + W | |||||||
HAD | VA | C1 | 18 | 7/2 | 0.2 | 73.39 | 1069.99 |
EA | C1 | 16 | 7/3 | 0.4 | 69.00 | 1188.44 | |
C2 | 5 | 3 | 0.1 | - | 17.99 | ||
ED | NMAA | C1 | 38 | 11/4 | 3.0 | 25.00 | 999.03 |
C2 | 50 | 3 | 0.3 | - | 833.33 | ||
NMP | C1 | 55 | 19/5 | 3.8 | 25.00 | 1176.59 | |
C2 | 18 | 5 | 0.2 | - | 733.92 | ||
MP + W | |||||||
HAD | IPA | C1 | 30 | 25/11 | 0.2 | 92.16 | 1755.94 |
C2 | 6 | 4 | 0.5 | - | 40.02 | ||
ED | S | C1 | 46 | 36 | 3 | 100.00 | 1647.55 |
C2 * | 6 | 4 | 0.2 | - | 623.75 | ||
NMP | C1 | 23 | 12/6 | 0.4 | 100.00 | 1439.86 | |
C2 | 35 | 5 | 2.0 | - | 1697.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frolkova, A.V.; Frolkova, A.K.; Gaganov, I.S. Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures. ChemEngineering 2022, 6, 83. https://doi.org/10.3390/chemengineering6050083
Frolkova AV, Frolkova AK, Gaganov IS. Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures. ChemEngineering. 2022; 6(5):83. https://doi.org/10.3390/chemengineering6050083
Chicago/Turabian StyleFrolkova, Anastasia V., Alla K. Frolkova, and Ivan S. Gaganov. 2022. "Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures" ChemEngineering 6, no. 5: 83. https://doi.org/10.3390/chemengineering6050083
APA StyleFrolkova, A. V., Frolkova, A. K., & Gaganov, I. S. (2022). Comparison of Extractive and Heteroazeotropic Distillation of High-Boiling Aqueous Mixtures. ChemEngineering, 6(5), 83. https://doi.org/10.3390/chemengineering6050083