Preliminary Study on Characteristics of NC/HTPB-Based High-Energy Gun Propellants
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Gun Propellant Samples
2.3. Characterization Measurement of Gun Propellant Samples
2.3.1. Thermochemical Characteristics Test
2.3.2. Chemical Stability Test
2.3.3. Explosion Heat Test
2.3.4. Mechanical Sensitivity Tests
3. Calculation of Activation Energy
3.1. Kissinger Method
3.2. Ozawa Method
4. Results and Discussion
4.1. Thermochemical Characteristics Analysis
4.2. Chemical Stability Analysis
4.3. Explosion Heat Analysis
4.4. Mechanical Sensitivity Analysis
5. Conclusions
- (1)
- The analysis of thermochemical characteristics indicates that the NC/HTPB-based high-energy gun propellants with RDX or TKX-50 have lower decomposition activation energy than the M1 single-base gun propellant. However, the decomposition activation energy of NC/HTPB-based high-energy gun propellants with CL-20 is higher than that of M1 single-base gun propellant.
- (2)
- The analysis of chemical stability shows that the NC/HTPB-based high-energy gun propellants with RDX, CL-20 or TKX-50 have good chemical stability and are superior to M1 single-base gun propellant.
- (3)
- The analysis of explosion heat reveals that the explosion heat of NC/HTPB-based high-energy gun propellants with RDX, CL-20 or TKX-50 are close to and slightly larger than that of M1 single-base gun propellant.
- (4)
- The analysis of mechanical sensitivity indicates that the NC/HTPB-based high-energy gun propellants with RDX, CL-20 or TKX-50 have lower impact and friction sensitivities than the M1 single-base gun propellant. Adding HTPB and energetic material (RDX, CL-20 or TKX-50) to the M1 single-base gun propellant can help reduce the mechanical sensitivity.
- (5)
- Based on the above conclusions, the NC/HTPB-based high-energy gun propellants have the potential to replace the M1 single-base gun propellant. The combustion performances of NC/HTPB-based high-energy gun propellants will be continuously studied and verified in the future.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhavan, J. The Chemistry of Explosives, 2nd ed.; TJ International Ltd.: Padstow, Cornwall, UK, 2004; pp. 149–150. ISBN 978-0-85404-640-9. [Google Scholar]
- Agrawal, J.P. High Energy Materials: Propellants, Explosives and Pyrotechnics; WILEY-VCH: Weinheim, Germany, 2010; pp. 226–227. ISBN 978-3-527-32610-5. [Google Scholar]
- Pillai, A.G.S.; Sanghavi, R.R.; Dayanandan, C.R.; Joshi, M.M.; Karir, J.S. Ballistic evaluation of LOVA propellant in high calibre gun. Def. Sci. J. 2001, 51, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, R.L.B.; da Silva, A.P.; Rosato, R.; Lemos, M.F.; Peixoto, F.C.; França, T.C.C.; Filho, L.G.M. On the replacement of traditional stabilizers by guaiacol in environmentally safe nitrocellulose-based propellants. Clean Technol. Environ. Policy 2022, 24, 1837–1849. [Google Scholar] [CrossRef]
- Bird, D.T.; Ravindra, N.M. A review: Advances and modernization in U.S army gun propellants. JOM 2021, 73, 1144–1164. [Google Scholar] [CrossRef]
- Yang, L.F.; Shi, X.R.; Li, Z.Q.; Duan, X.H.; Wu, B.; Pei, C.H. Effect of 3-methyl-4-nitro-furoxan on morphology, thermal stability, rheological and mechanical properties of nitrocellulose (NC)-based energetic materials. Fire Phys. Chem. 2021, 1, 90–96. [Google Scholar] [CrossRef]
- Li, G.; Jin, B.; Chai, Z.H.; Liao, L.; Chu, S.J.; Peng, R.F. Synthesis and stabilization mechanism of novel stabilizers for fullerene-malonamide derivatives in nitrocellulose-based propellants. Polym. Test. 2020, 86, 106493. [Google Scholar] [CrossRef]
- Krumlinde, P.; Ek, S.; Tunestal, E.; Hafstrand, A. Synthesis and characterization of novel stabilizers for nitrocellulose-based propellants. Propellants Explos. Pyrotech. 2017, 42, 78–83. [Google Scholar] [CrossRef]
- Pillai, A.G.S.; Dayanandan, C.R.; Joshi, M.M.; Patgaonkar, S.S.; Karir, J.S. Studies on the Effects of RDX Particle Size on the Burning Rate of Gun Propellants. Def. Sci. J. 1996, 46, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Shoukry, S.A.; Ismail, M.M.; Abd Elgwad, A. Performance and stability of modern gun propellants. In Proceedings of the 4th International Conference on Chemical & Environmental Engineering Conference, Caoro, Egypt, 27–29 May 2008; pp. 679–691. [Google Scholar]
- Nielsen, A.T.; Chafin, A.P.; Christian, S.L.; Moore, D.W.; Nadler, M.P.; Nissan, R.A.; Vanderah, D.J.; Gilardi, R.D.; George, C.F.; Flippen-Anderson, J.L. Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron 1998, 54, 11793–11812. [Google Scholar] [CrossRef]
- Damse, R.S.; Singh, A.; Singh, H. High energy propellants for advanced gun ammunition based on RDX, GAP and TAGN compositions. Propellants Explos. Pyrotech. 2007, 32, 52–60. [Google Scholar] [CrossRef]
- Singh, H.; Khire, V. Studies on low vulnerability gun propellants based on conventional binders and energetic plasticizers. Int. J. Energetic Mater. Chem. Propuls. 2008, 7, 187–192. [Google Scholar] [CrossRef]
- Elbeih, A.; Wafy, T.Z.; Elshenawy, T.; Hussein, A.K.; Abd-Elghany, M.; Hammad, S.M.; Yehia, M. Performance characteristics of modified HMX-gun propellants. IOP Conf. Ser. Mater. Sci. Eng. 2019, 610, 012004. [Google Scholar] [CrossRef]
- Damse, R.S.; Singh, A. Studies on the high-energy gun propellant formulations based on 1,5-diazido-3-nitrazapentane. J. Hazard. Mater. 2009, 172, 1699–1703. [Google Scholar] [CrossRef]
- Damse, R.S.; Omprakash, B.; Tope, B.G.; Chakraborthy, T.K.; Singh, A. Study of N-n-butyl-N-(2-nitroxyethyl)nitramine in RDX based gun propellant. J. Hazard. Mater. 2009, 167, 1222–1225. [Google Scholar] [CrossRef]
- Wang, Y.B.; Jiang, L.M.; Dong, J.; Li, B.; Shen, J.P.; Chen, L.; Fu, Y.; He, W.D. Three-dimensional network structure nitramine gun propellant with nitrated bacterial cellulose. J. Mater. Res. Technol. 2020, 9, 15094–15101. [Google Scholar] [CrossRef]
- Sinditskii, V.P.; Egorshev, V.Y.; Berezin, M.V.; Serushkin, V.V.; Filatov, S.A.; Chernyi, A.N. Combustion mechanism of nitro ester binders with nitramines. Combust. Explos. Shock Waves 2012, 48, 163–176. [Google Scholar] [CrossRef]
- Shen, J.P.; Liu, Z.T.; Xu, B.; Liang, H.; Zhu, Y.; Liao, X.; Wang, Z.H. Influence of carbon nanofibers on thermal and mechanical properties of NC-TEGDN-RDX triple-base gun propellants. Propellants Explos. Pyrotech. 2019, 44, 355–361. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.S.; Zhang, G.Y.; Yu, Z.Y.; Li, J.X.; Chen, M.L.; Ma, X.; Xiang, K.L.; Jin, S.H.; Chen, Y. Influence of energetic plasticizer bis(2,2-dinitropropyl)acetal/formal on properties of ε-CL-20 based pressed polymer-bonded explosives. Mater. Express 2017, 7, 216–222. [Google Scholar] [CrossRef]
- Diaz, E.; Brochu, S.; Poulin, I.; Faucher, D.; Marois, A.; Gagnon, A. Environmental Chemistry of Explosives and Propellant Compounds in Soils and Marine Systems: Distributed Source Characterization and Remedial Technologies, Chapter 21 Residual Dinitrotoluenes from Open Burning of Gun Propellant; American Chemical Society: Washington, DC, USA, 2011; pp. 401–414. ISBN 978-0-841-22633-3. [Google Scholar]
- Houck, M.M. Materials Analysis in Forensic Science, 1st ed.; Elsevier: San Diego, CA, USA, 2016; pp. 425–426. ISBN 978-01-2800-574-3. [Google Scholar]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef] [Green Version]
- MIL-STD-1751A; Department of Defense Test Method Standard: Safety and Performance Tests for the Qualification of Explosives (High explosives, Propellants, and Pyrotechnics). U.S. Department of Defense: Washington, DC, USA, 2001.
- 6200 Calorimeter Operating Instruction Manual; Parr Instrument Company: Moline, IL, USA, 2010.
- Dixon, J.W.; Mood, A.M. A method for obtaining and analyzing sensitivity data. J. Am. Stat. Assoc. 1948, 43, 109–126. [Google Scholar] [CrossRef]
- Li, J.S.; Chen, J.J.; Hwang, C.C.; Lu, K.T.; Yeh, T.F. Study on thermal characteristics of TNT based melt-cast explosives. Propellants Explos. Pyrotech. 2019, 44, 1270–1281. [Google Scholar] [CrossRef]
- Roduit, B.; Folly, P.; Berger, B.; Mathieu, J.; Sarbach, A.; Andres, H.; Ramin, M.; Vogelsanger, B. Evaluating sadt by advanced kinetics-based simulation approach. J. Therm. Anal. 2008, 93, 153–161. [Google Scholar] [CrossRef]
- Lee, J.S.; Hsu, C.K.; Chang, C.L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim. Acta 2002, 392–393, 173–176. [Google Scholar] [CrossRef]
- Zou, H.M.; Chen, S.S.; Li, X.; Jin, S.H.; Niu, H.; Wang, F.; Chao, H.; Fang, T.; Shu, Q.H. Preparation, thermal investigation and detonation properties of ε-CL-20-based polymer-bonded explosives with high energy and reduced sensitivity. Mater. Express 2017, 7, 199–208. [Google Scholar] [CrossRef]
- Muravyev, N.V.; Monogarov, K.A.; Asachenko, A.F.; Nechaev, M.S.; Ananyev, I.V.; Fomenkov, I.V.; Kiselev, V.G.; Pivkina, A.N. Pursuing reliable thermal analysis techniques for energetic materials: Decomposition kinetics and thermal stability of dihydroxylammonium 5,5’-Bistetrazole-1,1’-Diolate (TKX-50). Phys. Chem. Chem. Phys. 2017, 19, 436–449. [Google Scholar] [CrossRef]
- Meyer, R.; Köhler, J.; Homburg, A. Explosives, 7th ed.; Wiley-VCH: Weinheim, Germany, 2010; pp. 32, 176, 179. ISBN 978-3-527-33776-7. [Google Scholar]
- Klapötke, T.M. Energetic materials research at Ludwig Maximilian University of Munich (LMU). Eng. Sci. Mil. Technol. 2018, 2, 1–9. [Google Scholar] [CrossRef]
Sample No. | Content of the Ingredients (wt %) | |||||||
---|---|---|---|---|---|---|---|---|
Main Ingredients | Additional Ingredients | |||||||
NC | HTPB | RDX | CL-20 | TKX-50 | 2,4-DNT | DBP | DPA | |
M1 | 100 | 11.76 | 5.88 | 1.18 | ||||
NHR05 | 75 | 20 | 5 | |||||
NHR10 | 70 | 20 | 10 | |||||
NHC05 | 75 | 20 | 5 | |||||
NHC10 | 70 | 20 | 10 | |||||
NHT05 | 75 | 20 | 5 | |||||
NHT10 | 70 | 20 | 10 |
Sample No. | Temperature of Peak (TP) (°C) | Activation Energy (Ea) (kJ/mol) | ||||
---|---|---|---|---|---|---|
Heating Rate (β) (°C min−1) | Kissinger Method | Ozawa Method | ||||
1 | 2 | 5 | 10 | |||
M1 | 187.0 | 193.7 | 201.8 | 209.4 | 184.0 | 182.4 |
NHR05 | 184.8 | 191.8 | 200.4 | 208.2 | 174.2 | 173.0 |
NHR10 | 184.0 | 190.9 | 199.9 | 207.5 | 172.0 | 170.9 |
NHC05 | 186.2 | 192.4 | 201.2 | 208.1 | 185.0 | 183.4 |
NHC10 | 185.7 | 192.1 | 200.6 | 207.0 | 190.0 | 188.1 |
NHT05 | 185.8 | 192.3 | 201.5 | 208.5 | 178.0 | 176.7 |
NHT10 | 186.0 | 192.5 | 201.8 | 208.9 | 176.5 | 175.3 |
Sample No. | VST Test | BC Test | Sensitivity Test | ||
---|---|---|---|---|---|
∆V (mL/g) | Explosion Heat (J/g) | Impact | Friction (N) | ||
H50 (cm) | E50 (J) | ||||
M1 | 0.26 | 2911 | 26 | 12.74 | 240 |
NHR05 | 0.22 | 3092 | 32 | 15.68 | 283 |
NHR10 | 0.18 | 3163 | 38 | 18.62 | 283 |
NHC05 | 0.20 | 3184 | 30 | 14.70 | 252 |
NHC10 | 0.14 | 3276 | 34 | 16.66 | 252 |
NHT05 | 0.17 | 3134 | 36 | 17.64 | 283 |
NHT10 | 0.09 | 3255 | 44 | 21.56 | 283 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-H.; Yang, T.-M.; Li, J.-S.; Lu, K.-T.; Yeh, T.-F. Preliminary Study on Characteristics of NC/HTPB-Based High-Energy Gun Propellants. ChemEngineering 2022, 6, 80. https://doi.org/10.3390/chemengineering6050080
Lin Y-H, Yang T-M, Li J-S, Lu K-T, Yeh T-F. Preliminary Study on Characteristics of NC/HTPB-Based High-Energy Gun Propellants. ChemEngineering. 2022; 6(5):80. https://doi.org/10.3390/chemengineering6050080
Chicago/Turabian StyleLin, Yi-Hsien, Tsung-Mao Yang, Jin-Shuh Li, Kai-Tai Lu, and Tsao-Fa Yeh. 2022. "Preliminary Study on Characteristics of NC/HTPB-Based High-Energy Gun Propellants" ChemEngineering 6, no. 5: 80. https://doi.org/10.3390/chemengineering6050080
APA StyleLin, Y. -H., Yang, T. -M., Li, J. -S., Lu, K. -T., & Yeh, T. -F. (2022). Preliminary Study on Characteristics of NC/HTPB-Based High-Energy Gun Propellants. ChemEngineering, 6(5), 80. https://doi.org/10.3390/chemengineering6050080