Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material
2.3. PEF Apparatus
2.4. PEF and Non-PEF Assisted Extraction
2.5. Total Polyphenol Content of Extracts
2.6. High-Performance Liquid Chromatography Diode Array (HPLC-DAD)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Total Polyphenol Content of the Extracts
3.2. Polyphenol Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.S.A.; Ahmad, I.; Chattopadhyay, D. Herbal Medicine: Current Trends and Future Prospects. In New Look to Phytomedicine, 1st ed.; Khan, M.S.A., Ahmad, I., Eds.; Academic Press: London, UK, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Atmakuri, L.R.; Dathi, S. Current Trends in Herbal Medicines. J. Pharm. Res. 2010, 3, 109–113. [Google Scholar]
- Flamini, R.; Mattivi, F.; Rosso, M.D.; Arapitsas, P.; Bavaresco, L. Advanced Knowledge of Three Important Classes of Grape Phenolics: Anthocyanins, Stilbenes and Flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef] [PubMed]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res. 2016, 30, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xiao, Y.Y. Grape Phytochemicals and Associated Health Benefits. Crit. Rev. Food Sci. Nutr. 2013, 53, 1202–1225. [Google Scholar] [CrossRef]
- Abu-Izneid, T.; Rauf, A.; Khalil, A.A.; Olatunde, A.; Khalid, A.; Alhumaydhi, F.A.; Aljohani, A.S.M.; Sahab Uddin, M.; Heydari, M.; Khayrullin, M.; et al. Nutritional and health beneficial properties of saffron (Crocus sativus L): A comprehensive review. Crit. Rev. Food Sci. Nutr. 2020, 1–24. [Google Scholar] [CrossRef]
- Razak, S.I.A.; Anwar Hamzah, M.S.; Yee, F.C.; Kadir, M.R.A.; Nayan, N.H.M. A Review on Medicinal Properties of Saffron toward Major Diseases. J. Herbs Spices Med. Plants 2017, 23, 98–116. [Google Scholar] [CrossRef]
- González-Burgos, E.; Carretero, M.E.; Gómez-Serranillos, M.P. Sideritis spp.: Uses, chemical composition and pharmacological activities—A review. J. Ethnopharmacol. 2011, 135, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Todorova, M.; Trendafilova, A. Sideritis scardica Griseb., an endemic species of Balkan peninsula: Traditional uses, cultivation, chemical composition, biological activity. J. Ethnopharmacol. 2014, 152, 256–265. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- George, V.C.; Dellaire, G.; Rupasinghe, H.P.V. Plant flavonoids in cancer chemoprevention: Role in genome stability. J. Nutr. Biochem. 2017, 45, 1–14. [Google Scholar] [CrossRef]
- Iqbal, J.; Abbasi, B.A.; Mahmood, T.; Kanwal, S.; Ali, B.; Shah, S.A.; Khalil, A.T. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 2017, 7, 1129–1150. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C. The Role of Phenolic Compounds in the Fight against Cancer—A Review. Anti-Cancer Agents Med. Chem. 2013, 13, 1236–1258. [Google Scholar] [CrossRef] [PubMed]
- Bozinou, E.; Karageorgou, I.; Batra, G.; Dourtoglou, V.; Lalas, S. Pulsed Electric Field Extraction and Antioxidant Activity Determination of Moringa oleifera Dry Leaves: A Comparative Study with Other Extraction Techniques. Beverages 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S.M.T.; Radojčin, M.; Putnik, P.; Bursać Kovačević, D. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. J. Food Process Eng. 2018, 41. [Google Scholar] [CrossRef]
- Niu, D.; Zeng, X.A.; Ren, E.F.; Xu, F.Y.; Li, J.; Wang, M.S.; Wang, R. Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef] [PubMed]
- Panja, P. Green extraction methods of food polyphenols from vegetable materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Ferrari, G. Effect of PEF Pre-Treatment and Extraction Temperature on the Recovery of Carotenoids from Tomato Wastes. Chem. Eng. Trans. 2019, 75, 139–144. [Google Scholar] [CrossRef]
- Maza, M.A.; Pereira, C.; Martínez, J.M.; Camargo, A.; Álvarez, I.; Raso, J. PEF treatments of high specific energy permit the reduction of maceration time during vinification of Caladoc and Grenache grapes. Innov. Food Sci. Emerg. Technol. 2020, 63, 102375. [Google Scholar] [CrossRef]
- Martín, B.; Tylewicz, U.; Verardo, V.; Pasini, F.; Caravaca, A.M.G.; Caboni, M.; Dalla Rosa, M. Pulsed electric field (PEF) as pre-treatment to improve the phenolic compounds recovery from brewers’ spent grains. Innov. Food Sci. Emerg. Technol. 2020, 64, 102402. [Google Scholar] [CrossRef]
- Wouters, P.C.; Alvarez, I.; Raso, J. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 2001, 12, 112–121. [Google Scholar] [CrossRef]
- Kandušer, M.; Miklavčič, D. Electrotechnologies for Extraction from Food Plants and Biomaterial: An overview. In Electrotechnologies for Extraction from Food Plants and Biomaterials, 1st ed.; Vorobiev, E., Lebovka, N., Eds.; Springer: New York, NY, USA, 2008; pp. 1–37. [Google Scholar] [CrossRef] [Green Version]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef]
- Hendrawan, Y.; Larasati, R.; Wibisono, Y.; Umam, C.; Sutan, S.; Hawa, L. Extraction of Phenol and Antioxidant Compounds from Kepok Banana Skin with PEF Pre-Treatment. IOP Conf. Ser. Earth Environ. Sci. 2019, 305, 012065. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov. Food Sci. Emerg. Technol. 2013, 17, 79–84. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving Carotenoid Extraction from Tomato Waste by Pulsed Electric Fields. Front. Nutr. 2014, 1, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pataro, G.; Carullo, D.; Falcone, M.; Ferrari, G. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov. Food Sci. Emerg. Technol. 2020, 63, 102369. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Tsapou, E.A.; Drosou, F.; Bozinou, E.; Lalas, S.; Tataridis, P.; Dourtoglou, V. Pulsed Electric Field Extraction of α and β-Acids from Pellets of Humulus lupulus (Hop). Front. Bioeng. Biotechnol. 2020, 8, 297. [Google Scholar] [CrossRef] [PubMed]
- Tsapou, E.A.; Ntourtoglou, G.; Drosou, F.; Tataridis, P.; Dourtoglou, T.; Lalas, S.; Dourtoglou, V. In situ Creation of the Natural Phenolic Aromas of Beer: A Pulsed Electric Field Applied to Wort-Enriched Flax Seeds. Front. Bioeng. Biotechnol. 2020, 8, 1219. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron Processing Wastes as a Bioresource of High-Value Added Compounds: Development of a Green Extraction Process for Polyphenol Recovery Using a Natural Deep Eutectic Solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Kaltsa, O.; Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. A Green Extraction Process for Polyphenols from Elderberry (Sambucus nigra) Flowers Using Deep Eutectic Solvent and Ultrasound-Assisted Pretreatment. Molecules 2020, 25, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jara-Palacios, M.J.; Hernanz, D.; González-Manzano, S.; Santos-Buelga, C.; Escudero-Gilete, M.L.; Heredia, F.J. Detailed phenolic composition of white grape by-products by RRLC/MS and measurement of the antioxidant activity. Talanta 2014, 125, 51–57. [Google Scholar] [CrossRef]
- Petreska, J.; Stefkov, G.; Kulevanova, S.; Alipieva, K.; Bankova, V.; Stefova, M. Phenolic compounds of mountain tea from the Balkans: LC/DAD/ESI/MSn profile and content. Nat. Prod. Commun. 2011, 6, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vignolini, P.; Heimler, D.; Pinelli, P.; Ieri, F.; Sciullo, A.; Romani, A. Characterization of By-products of Saffron (Crocus Sativus L.) Production. Nat. Prod. Commun. 2008, 3, 1959–1962. [Google Scholar] [CrossRef] [Green Version]
- Jara-Palacios, M.J.; Hernanz, D.; Luisa Escudero-Gilete, M.; Heredia, F.J. Antioxidant potential of white grape pomaces: Phenolic composition and antioxidant capacity measured by spectrophotometric and cyclic voltammetry methods. Food Res. Int. 2014, 66, 150–157. [Google Scholar] [CrossRef]
- Ibraliu, A.B.; Trendafilova, A.D.; Anđelković, B.; Qazimi, B.M.; Gođevac, D.; Shengjergji, D.; Bebeci, E.; Stefkov, G.; Zdunic, G.I.; Aneva, I.; et al. Comparative Study of Balkan Sideritis Species from Albania, Bulgaria and Macedonia. Eur. J. Med. Plants 2014, 5, 328–340. [Google Scholar] [CrossRef]
- Serrano-Díaz, J.; Estevan, C.; Sogorb, M.; Carmona, M.; Alonso, G.L.; Vilanova, E. Cytotoxic effect against 3T3 fibroblasts cells of saffron floral bio-residues extracts. Food Chem. 2014, 147, 55–59. [Google Scholar] [CrossRef]
Extraction Condition | Electric Field Intensity (kV/cm) |
---|---|
PEF 1 | 2.0 |
PEF 2 | 1.7 |
PEF 3 | 1.4 |
PEF 4 | 1.2 |
Control | - |
Extraction Condition | Individual Polyphenol Content, mg g−1dw † (Mean Values of Three Replicates, RSD ‡ = 0.05–1%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Quercetin 3-Rutinoside | Quercetin 3-Glucoside | Kaempferol 3-Glucoside | Quercetin 3-Glucuronide | Gallic Acid | ||||||
Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | |
PEF 4 | 0.069 ± 0.0006 | 54 | 0.586 ± 0.0028 | 42 | 0.133 ± 0.0012 | 45 | 0.517 ± 0.0006 | 41 | 0.116 ± 0.0009 | 52 |
PEF 3 | 0.083 ± 0.0007 | 85 | 0.624 ± 0.0025 | 51 | 0.153 ± 0.0009 | 66 | 0.543 ± 0.0003 | 48 | 0.124 ± 0.0011 | 63 |
PEF 2 | 0.061 ± 0.0006 | 35 | 0.529 ± 0.0032 | 28 | 0.121 ± 0.0011 | 32 | 0.459 ± 0.0032 | 25 | 0.104 ± 0.0008 | 37 |
PEF 1 | 0.054 ± 0.0005 | 21 | 0.496 ± 0.0044 | 20 | 0.113 ± 0.0008 | 23 | 0.440 ± 0.0042 | 20 | 0.094 ± 0.0008 | 24 |
Reference (Control) | 0.045 ±0.0004 | - | 0.413 ± 0.0036 | - | 0.092 ± 0.0007 | - | 0.367 ± 0.0009 | - | 0.076 ± 0.0005 | - |
Extraction Condition | Individual Polyphenol Content, mg g−1dw † (Mean Values of Three Replicates, RSD ‡ = 0.05–1%) | |||||||
---|---|---|---|---|---|---|---|---|
Chlorogenic Acid | Verbascoside | 5-Caffeoylquinic Acid | Apigenin 7-O-Glucoside | |||||
Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | |
PEF 4 | 1.096 ± 0.0092 | 54 | 1.366 ± 0.0120 | 48 | 0.844 ± 0.0081 | 45 | 1.017 ± 0.0088 | 56 |
PEF 3 | 1.054 ± 0.0079 | 48 | 1.218 ± 0.0089 | 32 | 0.786 ± 0.0074 | 35 | 0.913 ± 0.0072 | 40 |
PEF 2 | 0.854 ± 0.0061 | 20 | 1.126 ± 0.0110 | 22 | 0.698 ± 0.0066 | 20 | 0.782 ± 0.0076 | 20 |
PEF 1 | 0.862 ± 0.0028 | 21 | 1.145 ± 0.0088 | 24 | 0.704 ± 0.0053 | 21 | 0.802 ± 0.0069 | 23 |
Reference (Control) | 0.712 ± 0.0047 | - | 0.923 ± 0.0077 | - | 0.582 ± 0.0052 | - | 0.652 ± 0.0065 | - |
Extraction Condition | Individual Polyphenol Content, mg g−1dw † (Mean Values of Three Replicates, RSD ‡ = 0.05–1%) | |||||||
---|---|---|---|---|---|---|---|---|
Kaempferol 3-O-Sophoroside-7-Glucoside | Quercetin 3-O-Sophoroside | Kaempferol 3-O-Sophoroside | Kaempferol 3-O-Glucoside | |||||
Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | Average ± SD § | Increase (%) | |
PEF 4 | 3.865 ± 0.0321 | 52 | 3.313 ± 0.0238 | 56 | 25.565 ± 0.1563 | 25 | 1.496 ± 0.0131 | 64 |
PEF 3 | 3.662 ± 0.0283 | 44 | 3.207 ± 0.0259 | 51 | 24.542 ± 0.2354 | 20 | 1.350 ± 0.0091 | 48 |
PEF 2 | 3.357 ± 0.0315 | 32 | 2.676 ± 0.0123 | 26 | 23.520 ± 0.0171 | 15 | 1.140 ± 0.0112 | 25 |
PEF 1 | 3.077 ± 0.0128 | 21 | 2.591 ± 0.0204 | 22 | 22.906 ± 0.0228 | 12 | 1.094 ± 0.0078 | 20 |
Reference (Control) | 2.543 ± 0.0229 | - | 2.124 ± 0.0163 | - | 20.452 ± 0.0189 | - | 0.912 ± 0.0089 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering 2021, 5, 25. https://doi.org/10.3390/chemengineering5020025
Lakka A, Bozinou E, Makris DP, Lalas SI. Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering. 2021; 5(2):25. https://doi.org/10.3390/chemengineering5020025
Chicago/Turabian StyleLakka, Achillia, Eleni Bozinou, Dimitris P. Makris, and Stavros I. Lalas. 2021. "Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus" ChemEngineering 5, no. 2: 25. https://doi.org/10.3390/chemengineering5020025
APA StyleLakka, A., Bozinou, E., Makris, D. P., & Lalas, S. I. (2021). Evaluation of Pulsed Electric Field Polyphenol Extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. ChemEngineering, 5(2), 25. https://doi.org/10.3390/chemengineering5020025