Standardized Design Metrics and Policy Integration for Phytoremediation Systems in Water Contaminant Management
Abstract
1. Introduction
2. Application Status of Phytoremediation
3. Current Design Approaches in Phytoremediation Systems
4. Critical Environmental Factors Affecting Phytoremediation Efficiency
5. Contaminant Characteristics
6. Post-Harvest Management of Contaminant-Loaded Biomass
- -
- Secure Containment and Disposal—For biomass containing high levels of persistent or highly toxic elements (e.g., Hg, Cd, Pb), secure landfill disposal or hazardous-waste incineration remains the most widely accepted option. Ashes from high-temperature incineration must be stabilized or vitrified before landfilling to avoid leaching.
- -
- Thermochemical Conversion—Where metals are present at moderate concentrations, pyrolysis, gasification, or controlled combustion can recover energy and leave a reduced-volume ash that can be further treated. Recent studies show that co-firing Typha latifolia and Eichhornia crassipes with conventional biomass can yield renewable heat while concentrating metals into an ash phase for recycling or secure disposal [3].
- -
- Phytomining and Metal Recovery—Hyperaccumulator biomass rich in Ni, Zn, or Au can be processed to recover valuable metals through smelting or bio-hydrometallurgical leaching. Pilot projects using Pteris vittata for As and Brassica juncea for Pb recovery demonstrate technical feasibility, although economic viability depends on metal market prices and biomass logistics [13,87].
- -
- Composting and Biochar Production—For biomass primarily laden with nutrients or low-toxicity organics, composting can recycle organic matter, provided periodic leachate monitoring confirms contaminant levels remain below agronomic thresholds. Alternatively, converting biomass to biochar via low-temperature pyrolysis immobilizes many metals and generates a sorptive material useful for further water treatment [104].
- -
- Carbon Sequestration and Ecosystem Services—Fast-growing species such as willow and poplar can be harvested in short rotations; their incorporation into bioenergy-carbon-capture chains contributes to negative-emission strategies while safely removing pollutants from aquatic systems [85].
- -
- -
- Life-Cycle Assessment (LCA)—Incorporating LCA into design guidelines helps compare disposal routes on the basis of greenhouse gas emissions, resource recovery, and long-term liability, guiding stakeholders toward the most resilient option [108].
7. Implications for Policy and Large-Scale Adoption
7.1. Opportunities for National Environmental Remediation Programs
7.2. Integration into Regulatory Guidelines and Sustainability Plans
7.3. Recommendations for Policymakers and Stakeholders
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BOD | Biological Oxygen Demand |
| COD | Chemical Oxygen Demand |
| EC | Electrical Conductivity |
| TDS | Total Dissolved Solids |
| WHO | World Health Organization |
| EPA | Environmental Protection Agency |
| PAHs | Polycyclic Aromatic Hydrocarbons |
| BTEX | Benzene, Toluene, Ethylbenzene, Xylenes |
| TPH | Total Petroleum Hydrocarbons |
| PTEs | Potentially Toxic Elements |
| TSS | Total Suspended Solids |
| pH | Potential of Hydrogen |
References
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.; Yavaş, İ.; Ünay, A.; Abdel-Daim, M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Pivetz, B.E. Phytoremediation of Contaminated Soil and Ground Water at Hazardous Waste Sites; EPA/540/S-01/500; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Gallagher, J.L. Halophytic crops for cultivation at seawater salinity. Plant Soil 1985, 89, 323–336. [Google Scholar] [CrossRef]
- Sekomo, C.B.; Rousseau, D.P.L.; Saleh, S.A.; Lens, P.N.L. Heavy Metal Removal in Duckweed and Algae Ponds as a Polishing Step for Textile Wastewater Treatment. Ecol. Eng. 2012, 44, 102–110. [Google Scholar] [CrossRef]
- Guidi Nissim, W.; Castiglione, S.; Guarino, F.; Pastore, M.C.; Labra, M. Beyond Cleansing: Ecosystem Services Related to Phytoremediation. Plants 2023, 12, 1031. [Google Scholar] [CrossRef]
- Haris, H.; Fai, C.M.; Bahruddin, A.S.; Dinesh, A.A.A. Effect of Temperature on Nutrient Removal Efficiency of Water Hyacinth for Phytoremediation Treatment. Int. J. Eng. Technol. 2018, 7, 81–84. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2019: Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Nguyen, H.M.N.; Khieu, H.T.; Ta, N.A.; Le, H.Q.; Nguyen, T.Q.; Do, T.Q.; Hoang, A.Q.; Kannan, K.; Tran, T.M. Distribution of Cyclic Volatile Methylsiloxanes in Drinking Water, Tap Water, Surface Water, and Wastewater in Hanoi, Vietnam. Environ. Pollut. 2021, 285, 117260. [Google Scholar] [CrossRef]
- Kudo, H.; Qian, Z.; Inoue, C.; Chien, M.-F. Temperature Dependence of Metals Accumulation and Removal Kinetics by Arabidopsis halleri ssp. gemmifera. Plants 2023, 12, 877. [Google Scholar] [CrossRef] [PubMed]
- Cristaldi, A.; Oliveri Conti, G.; Cosentino, S.L.; Mauromicale, G.; Copat, C.; Grasso, A.; Zuccarello, P.; Fiore, M.; Restuccia, C.; Ferrante, M. Phytoremediation Potential of Arundo donax (Giant Reed) in Contaminated Soil by Heavy Metals. Environ. Res. 2020, 185, 109427. [Google Scholar] [CrossRef] [PubMed]
- Green, C.; Hoffnagle, A. Phytoremediation Field Studies Database for Chlorinated Solvents, Pesticides, Explosives, and Metals; EPA Report; U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- Al-Baldawi, I.A.; Abdullah, S.R.S.; Anuar, N.; Hasan, H.A. Phytotransformation of Methylene Blue from Water Using Aquatic Plant (Azolla pinnata). Environ. Technol. Innov. 2018, 11, 15–22. [Google Scholar] [CrossRef]
- Crum, S.J.H.; van Kammen-Polman, A.M.M.; Leistra, M. Sorption of Nine Pesticides to Three Aquatic Macrophytes. Arch. Environ. Contam. Toxicol. 1999, 37, 310–316. [Google Scholar] [CrossRef]
- Durjava, M.; Kolar, B. Bioavailability-Based Environmental Quality Standards for Metals under the Water Framework Directive. Acta Hydrotech. 2023, 36, 17–29. [Google Scholar] [CrossRef]
- Dincau, B.; Tang, C.; Dressaire, E.; Sauret, A. Clog Mitigation in a Microfluidic Array via Pulsatile Flows. Soft Matter 2022, 18, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Calderon, J.L.; Kaunda, R.B.; Sinkala, T.; Workman, C.F.; Bazilian, M.D.; Clough, G. Phytoremediation and Phytoextraction in Sub-Saharan Africa: Addressing Economic and Social Challenges. Ecotoxicol. Environ. Saf. 2021, 226, 112864. [Google Scholar] [CrossRef]
- Cai, Y.; Cao, X.; Liu, B.; Lin, H.; Luo, H.; Liu, F.; Su, D.; Lv, S.; Lin, Z.; Lin, D. Saline-Alkali Tolerance Evaluation of Giant Reed (Arundo donax) Genotypes under Saline-Alkali Stress at Seedling Stage. Agronomy 2025, 15, 463. [Google Scholar] [CrossRef]
- Rizvi, Z.F.; Jamal, M.; Parveen, H.; Sarfraz, W.; Nasreen, S.; Khalid, N.; Muzammil, K. Phytoremediation Potential of Pistia stratiotes, Eichhornia crassipes, and Typha latifolia for Chromium with Stimulation of Secondary Metabolites. Heliyon 2024, 10, e29078. [Google Scholar] [CrossRef] [PubMed]
- Urucu, O.A.; Garosi, B.; Musah, R.A. Efficient Phytoremediation of Methyl Red and Methylene Blue Dyes from Aqueous Solutions by Juncus effusus. ACS Omega 2025, 10, 1943–1953. [Google Scholar] [CrossRef]
- Buta, E.; Borșan, I.L.; Omotă, M.; Trif, E.B.; Bunea, C.I.; Mocan, A.; Bora, F.D.; Rózsa, S.; Nicolescu, A. Comparative Phytoremediation Potential of Eichhornia crassipes, Lemna minor, and Pistia stratiotes in Two Treatment Facilities in Cluj County, Romania. Horticulturae 2023, 9, 503. [Google Scholar] [CrossRef]
- Paes, É.C.; Veloso, G.V.; de Castro Filho, M.N.; Barroso, S.H.; Fernandes-Filho, E.I.; Fontes, M.P.F.; Soares, E.M.B. Potential of Plant Species Adapted to Semi-Arid Conditions for Phytoremediation of Contaminated Soils. J. Hazard. Mater. 2023, 449, 131034. [Google Scholar] [CrossRef]
- Kola, E.; Munyai, C.; Dalu, T. A Review of Macrophyte Phytoremediation in Africa: Current Research and Challenges. Chem. Ecol. 2025, 41, 710–728. [Google Scholar] [CrossRef]
- Brown, D.S.; Kreissl, J.S.; Gearhart, R.A.; Kruzic, A.P.; Boyle, W.C.; Otis, R.J. Manual—Constructed Wetlands Treatment of Municipal Wastewaters; EPA/625/R-99/010 (NTIS PB2001-101833); U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Ghosh, M.; Singh, S.P. A Review on Phytoremediation of Heavy Metals and Utilization of Its Byproducts. Appl. Ecol. Environ. Res. 2005, 3, 214–231. [Google Scholar] [CrossRef]
- Trinh, H.T.; Marcussen, H.; Hansen, H.C.B.; Le, G.T.; Duong, H.T.; Ta, N.T.; Nguyen, T.Q.; Hansen, S.; Strobel, B.W. Screening of Inorganic and Organic Contaminants in Floodwater in Paddy Fields of Hue and Thanh Hoa in Vietnam. Environ. Sci. Pollut. Res. 2017, 24, 7348–7358. [Google Scholar] [CrossRef]
- Parra, L.-M.M.; Torres, G.; Arenas, A.D.; Sánchez, E.; Rodríguez, K. Phytoremediation of Low Levels of Heavy Metals Using Duckweed (Lemna minor). In Abiotic Stress Responses in Plants; Springer: New York, NY, USA, 2012; pp. 451–463. [Google Scholar] [CrossRef]
- Sharma, R.; Saini, H.; Paul, D.R.; Chaudhary, S.; Nehra, S.P. Removal of Organic Dyes from Wastewater Using Eichhornia crassipes: A Potential Phytoremediation Option. Environ. Sci. Pollut. Res. 2021, 28, 7116–7122. [Google Scholar] [CrossRef]
- Pulford, I.; Watson, C. Phytoremediation of Heavy Metal-Contaminated Land by Trees: A Review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Sawarkar, R.; Shakeel, A.; Kumar, T.; Ansari, S.A.; Agashe, A.; Singh, L. Evaluation of Plant Species for Air Pollution Tolerance and Phytoremediation Potential in Proximity to a Coal Thermal Power Station: Implications for Smart Green Cities. Environ. Geochem. Health 2023, 45, 7303–7322. [Google Scholar] [CrossRef] [PubMed]
- Aryal, M. Phytoremediation Strategies for Mitigating Environmental Toxicants. Heliyon 2024, 10, e38683. [Google Scholar] [CrossRef] [PubMed]
- Chander, P.D.; Fai, C.M.; Kin, C.M. Removal of Pesticides Using Aquatic Plants in Water Resources: A Review. IOP Conf. Ser. Earth Environ. Sci. 2018, 164, 012027. [Google Scholar] [CrossRef]
- Truong, D.A.; Trinh, H.T.; Le, G.T.; Phan, T.Q.; Duong, H.T.; Tran, T.T.L.; Nguyen, T.Q.; Hoang, M.T.T.; Nguyen, T.V. Occurrence and Ecological Risk Assessment of Organophosphate Esters in Surface Water from Rivers and Lakes in Urban Hanoi, Vietnam. Chemosphere 2023, 331, 138805. [Google Scholar] [CrossRef]
- UN Environment. Global Environment Outlook—GEO-6: Healthy Planet, Healthy People; UN Environment: Nairobi, Kenya, 2019. [Google Scholar] [CrossRef]
- Malunguja, G.K.; Paschal, M. Evaluating Potential Phytoremediators to Combat Detrimental Impacts of Mining on Biodiversity: A Review Focused in Africa. Discov. Environ. 2024, 2, 94. [Google Scholar] [CrossRef]
- O’Donnell, M.S.; Whipple, A.L.; Inman, R.D.; Tarbox, B.C.; Monroe, A.P.; Robb, B.S.; Aldridge, C.L. Remote Sensing for Monitoring Mine Lands and Recovery Efforts; Circular 1525; U.S. Geological Survey: Reston, VA, USA, 2024. [CrossRef]
- Hudson, J.; Hogye, S.; Frederick, R.; Goo, R.; Kelly, S. US EPA Program Strategy for Decentralized Wastewater Systems. Proc. Water Environ. Fed. 2005, 2005, 5795–5801. [Google Scholar] [CrossRef]
- da Silva, J.; Rosa, G.B.; Sganzerla, W.G.; Ferrareze, J.P.; Simioni, F.J.; Campos, M.L. Strategies and Prospects in the Recovery of Contaminated Soils by Phytoremediation: An Updated Overview. Commun. Plant Sci. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Ahila, K.G.; Ravindran, B.; Muthunarayanan, V.; Nguyen, D.D.; Nguyen, X.C.; Chang, S.W.; Nguyen, V.K.; Thamaraiselvi, C. Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater. Sustainability 2020, 13, 329. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Jayamuthunagai, J.; Praveenkumar, R.; Iyyappan, J. Phytoremediation Techniques for the Removal of Dye in Wastewater. In Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation; Springer: Singapore, 2018; pp. 243–252. [Google Scholar] [CrossRef]
- McIntyre, T.C. Databases and Protocol for Plant and Microorganism Selection: Hydrocarbons and Metals. In Phytoremediation; Wiley: Hoboken, NJ, USA, 2003; pp. 887–904. [Google Scholar] [CrossRef]
- Olette, R.; Couderchet, M.; Biagianti, S.; Eullaffroy, P. Toxicity and Removal of Pesticides by Selected Aquatic Plants. Chemosphere 2008, 70, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef] [PubMed]
- Prasertsup, P.; Ariyakanon, N. Removal of Chlorpyrifos by Water Lettuce (Pistia stratiotes L.) and Duckweed (Lemna minor L.). Int. J. Phytoremediat. 2011, 13, 383–395. [Google Scholar] [CrossRef]
- Salido, A.L.; Hasty, K.L.; Lim, J.-M.; Butcher, D.J. Phytoremediation of Arsenic and Lead in Contaminated Soil Using Chinese Brake Ferns (Pteris vittata) and Indian Mustard (Brassica juncea). Int. J. Phytoremediat. 2003, 5, 89–103. [Google Scholar] [CrossRef]
- Singh, V.; Thakur, L.; Mondal, P. Removal of Lead and Chromium from Synthetic Wastewater Using Vetiveria zizanioides. Clean Soil Air Water 2015, 43, 538–543. [Google Scholar] [CrossRef]
- Alsghayer, R.; Salmiaton, A.; Mohammad, T.; Idris, A.; Ishak, C.F. Removal Efficiencies of Constructed Wetland Planted with Phragmites and Vetiver in Treating Synthetic Wastewater Contaminated with High Concentration of PAHs. Sustainability 2020, 12, 3357. [Google Scholar] [CrossRef]
- Anh, B.T.K.; Ha, N.T.H.; Danh, L.T.; Minh, V.V.; Kim, D.D. Phytoremediation Applications for Metal-Contaminated Soils Using Terrestrial Plants in Vietnam. In Phytoremediation; Springer: Cham, Switzerland, 2017; pp. 157–181. [Google Scholar] [CrossRef]
- Cheng, X.; Jiang, L.; Liu, W.; Song, X.; Kumpiene, J.; Luo, C. Phytoremediation of Trichloroethylene in the Soil/Groundwater Environment: Progress, Problems, and Potential. Sci. Total Environ. 2024, 954, 176566. [Google Scholar] [CrossRef]
- Boonsaner, M.; Borrirukwisitsak, S.; Boonsaner, A. Phytoremediation of BTEX Contaminated Soil by Canna×generalis. Ecotoxicol. Environ. Saf. 2011, 74, 1700–1707. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Le, T.G.; Nguyen, T.T.; Le, V.N.; Hoang, M.T.; Truong, N.M.; Nguyen, N.T.; Bui, Q.M. The Deadlock of Application Research Using Halophytes for Seawater Desalination Due to Rapid Evaporation of Water. SSRN Electron. J. 2023. [Google Scholar] [CrossRef]
- Virú-Vasquez, P.; Pilco-Nuñez, A.; Tineo-Cordova, F.; Madueño-Sulca, C.T.; Quispe-Ojeda, T.C.; Arroyo-Paz, A.; Alvarez-Arteaga, R.; Velasquez-Zuñiga, Y.; Oscanoa-Gamarra, L.L.; Saldivar-Villarroel, J.; et al. Integrated Biochar-Compost Amendment for Zea mays L. Phytoremediation in Soils Contaminated with Mining Tailings of Quiulacocha, Peru. Plants 2025, 14, 1448. [Google Scholar] [CrossRef]
- Tarla, D.N.; Erickson, L.E.; Hettiarachchi, G.M.; Amadi, S.I.; Galkaduwa, M.; Davis, L.C.; Nurzhanova, A.; Pidlisnyuk, V. Phytoremediation and Bioremediation of Pesticide-Contaminated Soil. Appl. Sci. 2020, 10, 1217. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Raskin, I.; Smith, R.D.; Salt, D.E. Phytoremediation of Metals: Using Plants to Remove Pollutants from the Environment. Curr. Opin. Biotechnol. 1997, 8, 221–226. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Kaur, H.; Kumar, A.; Bindra, S.; Sharma, A. Phytoremediation: An Emerging Green Technology for Dissipation of PAHs from Soil. J. Geochem. Explor. 2024, 259, 107426. [Google Scholar] [CrossRef]
- Tan, K.A.; Morad, N.; Ooi, J.Q. Phytoremediation of Methylene Blue and Methyl Orange Using Eichhornia crassipes. Int. J. Environ. Sci. Dev. 2016, 7, 724–728. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M. A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng. 2011, 2011, 939161. [Google Scholar] [CrossRef]
- Dordio, A.; Carvalho, A.J.P.; Teixeira, D.M.; Dias, C.B.; Pinto, A.P. Removal of Pharmaceuticals in Microcosm Constructed Wetlands Using Typha spp. and LECA. Bioresour. Technol. 2010, 101, 886–892. [Google Scholar] [CrossRef]
- Uysal, Y.; Taner, F. Bioremoval of Cadmium by Lemna minor in Different Aquatic Conditions. Clean Soil Air Water 2010, 38, 370–377. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Ow, D.W. Promises and Prospects of Phytoremediation. Plant Physiol. 1996, 110, 715–719. [Google Scholar] [CrossRef]
- Rock, S.; Pivetz, B.; Madalinski, K.; Adams, N.; Wilson, T. Introduction to Phytoremediation; EPA/600/R-99/107 (NTIS PB2000-106690); U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Córdoba-Tovar, L.; Marrugo-Madrid, S.; Castro, L.P.; Tapia-Contreras, E.E.; Marrugo-Negrete, J.; Díez, S. Exploring the Phytoremediation Potential of Plant Species in Soils Impacted by Gold Mining in Northern Colombia. Environ. Sci. Pollut. Res. 2025, 32, 3795–3808. [Google Scholar] [CrossRef] [PubMed]
- Bernardino, C.A.R.; Mahler, C.F.; Preussler, K.H.; Novo, L.A.B. State of the Art of Phytoremediation in Brazil, Review and Perspectives. Water Air Soil Pollut. 2016, 227, 272. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, W.; Tong, W. Clogging Processes Caused by Biofilm Growth and Organic Particle Accumulation in Lab-Scale Vertical Flow Constructed Wetlands. J. Environ. Sci. 2009, 21, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, R.V.; Boralkar, D.B.; Chavhan, R.D. Remediation Capabilities of Pilot-Scale Wetlands Planted with Typha angustifolia and Acorus calamus to Treat Landfill Leachate. J. Ecol. Environ. 2018, 42, 23. [Google Scholar] [CrossRef]
- Dennis, G.; Shin, P.E. Brownfields Technology Primer: Selecting and Using Phytoremediation for Site Cleanup; EPA 542-R-01-006; U.S. Environmental Protection Agency: Washington, DC, USA, 2001.
- Riccioli, F.; Guidi Nissim, W.; Masi, M.; Palm, E.; Mancuso, S.; Azzarello, E. Modeling the Ecosystem Services Related to Phytoextraction: Carbon Sequestration Potential Using Willow and Poplar. Appl. Sci. 2020, 10, 8011. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, T.; Carvalho, P.N.; Arias, C.A.; Chen, Z.; Brix, H. Removal of the Pharmaceuticals Ibuprofen and Iohexol by Four Wetland Plant Species in Hydroponic Culture: Plant Uptake and Microbial Degradation. Environ. Sci. Pollut. Res. 2016, 23, 2890–2898. [Google Scholar] [CrossRef] [PubMed]
- Siyar, R.; Doulati Ardejani, F.; Farahbakhsh, M.; Norouzi, P.; Yavarzadeh, M.; Maghsoudy, S. Potential of Vetiver Grass for the Phytoremediation of a Real Multi-Contaminated Soil, Assisted by Electrokinetic. Chemosphere 2020, 246, 125802. [Google Scholar] [CrossRef]
- Xia, H.; Ma, X. Phytoremediation of Ethion by Water Hyacinth (Eichhornia crassipes) from Water. Bioresour. Technol. 2006, 97, 1050–1054. [Google Scholar] [CrossRef]
- Brix, H. Do Macrophytes Play a Role in Constructed Treatment Wetlands? Water Sci. Technol. 1997, 35, 11–17. [Google Scholar] [CrossRef]
- Abdallah, M.A.M. Phytoremediation of Heavy Metals from Aqueous Solutions by Two Aquatic Macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ. Technol. 2012, 33, 1609–1614. [Google Scholar] [CrossRef]
- Ahmadi, F.; Mohammadkhani, N.; Servati, M. Halophytes Play Important Role in Phytoremediation of Salt-Affected Soils in the Bed of Urmia Lake, Iran. Sci. Rep. 2022, 12, 12223. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wan, X.; Lei, M.; Wang, L.; Chen, T. Research Advances in Mechanisms of Arsenic Hyperaccumulation of Pteris vittata: Perspectives from Plant Physiology, Molecular Biology, and Phylogeny. J. Hazard. Mater. 2023, 460, 132463. [Google Scholar] [CrossRef]
- Akinpelu, E.A.; Nchu, F. Advancements in Phytoremediation Research in South Africa (1997–2022). Appl. Sci. 2024, 14, 7660. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of Heavy Metals: Mechanisms, Methods and Enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Baker, A.J.M.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Polluted Soils. In Phytoremediation of Contaminated Soils; Terry, N., Vangronsveld, J., Banuelos, G., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 85–107. [Google Scholar]
- Danh, L.T.; Truong, P.; Mammucari, R.; Foster, N. Economic Incentive for Applying Vetiver Grass to Remediate Lead, Copper and Zinc Contaminated Soils. Int. J. Phytoremediat. 2010, 13, 47–60. [Google Scholar] [CrossRef]
- de Lima Barizão, A.C.; Silva, M.F.; Andrade, M.; Brito, F.C.; Gomes, R.G.; Bergamasco, R. Green Synthesis of Iron Oxide Nanoparticles for Tartrazine and Bordeaux Red Dye Removal. J. Environ. Chem. Eng. 2020, 8, 103618. [Google Scholar] [CrossRef]
- Zhao, F.; Han, Y.; Shi, H.; Wang, G.; Zhou, M.; Chen, Y. Arsenic in the Hyperaccumulator Pteris vittata: A Review of Benefits, Toxicity, and Metabolism. Sci. Total Environ. 2023, 896, 165232. [Google Scholar] [CrossRef]
- Le, T.M.; Pham, P.T.; Nguyen, T.Q.; Nguyen, T.Q.; Bui, M.Q.; Nguyen, H.Q.; Vu, N.D.; Kannan, K.; Tran, T.M. A Survey of Parabens in Aquatic Environments in Hanoi, Vietnam and Its Implications for Human Exposure and Ecological Risk. Environ. Sci. Pollut. Res. 2022, 29, 46767–46777. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, H.; Kim, J.-G. Current Status of and Challenges for Phytoremediation as a Sustainable Environmental Management Plan for Abandoned Mine Areas in Korea. Sustainability 2023, 15, 2761. [Google Scholar] [CrossRef]
- Fooladi, M.; Moogouei, R.; Jozi, S.A.; Golbabaei, F.; Tajadod, G. Phytoremediation of BTEX from Indoor Air by Hyrcanian Plants. Environ. Health Eng. Manag. 2019, 6, 233–240. [Google Scholar] [CrossRef]
- Dubey, N.K.; Kumar, V.; Chandra, R. Phytoremediation of Environmental Pollutants; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- UN-HABITAT. Constructed Wetlands Manual; UN-HABITAT Water for Asian Cities Programme: Nairobi, Nepal, 2008. [Google Scholar]
- Odoh, C.K.; Zabbey, N.; Sam, K.; Eze, C.N. Status, Progress and Challenges of Phytoremediation, An African Scenario. J. Environ. Manag. 2019, 237, 365–378. [Google Scholar] [CrossRef]
- Cruz, F.V.S.; Venne, P.; Segura, P.; Juneau, P. Effect of Temperature on the Physiology and Phytoremediation Capacity of Spirodela polyrhiza Exposed to Atrazine and S-metolachlor. Aquat. Toxicol. 2025, 282, 107304. [Google Scholar] [CrossRef]
- Khan, A.U.; Khan, A.N.; Waris, A.; Ilyas, M.; Zamel, D. Phytoremediation of Pollutants from Wastewater: A Concise Review. Open Life Sci. 2022, 17, 488–496. [Google Scholar] [CrossRef]
- Nazir, M.; Idrees, I.; Idrees, P.; Ahmad, S.; Ali, Q.; Malik, A. Potential of Water Hyacinth (Eichhornia crassipes L.) for Phytoremediation of Heavy Metals from Waste Water. Biol. Clin. Sci. Res. J. 2020, 2020, 1–6. [Google Scholar] [CrossRef]
- Gomes, M.P. Climate Change and Aquatic Phytoremediation of Contaminants: Exploring the Future of Contaminant Removal. Phyton 2024, 93, 2127–2147. [Google Scholar] [CrossRef]
- Anh, B.T.K.; Minh, N.N.; Ha, N.T.H.; Kim, D.D.; Kien, N.T.; Trung, N.Q.; Cuong, T.T.; Danh, L.T. Field Survey and Comparative Study of Pteris vittata and Pityrogramma calomelanos Grown on Arsenic Contaminated Lands with Different Soil pH. Bull. Environ. Contam. Toxicol. 2018, 100, 720–726. [Google Scholar] [CrossRef]
- Ahmad, A. Phytoremediation of Heavy Metals and Total Petroleum Hydrocarbon and Nutrients Enhancement of Typha latifolia in Petroleum Secondary Effluent for Biomass Growth. Environ. Sci. Pollut. Res. 2022, 29, 5777–5786. [Google Scholar] [CrossRef] [PubMed]
- Lazo, A.; Lazo, P.; Urtubia, A.; Lobos, M.G.; Hansen, H.K.; Gutiérrez, C. An Assessment of the Metal Removal Capability of Endemic Chilean Species. Int. J. Environ. Res. Public Health 2022, 19, 3583. [Google Scholar] [CrossRef] [PubMed]
- Kristanti, R.A.; Tirtalistyani, R.; Tang, Y.Y.; Thao, N.T.T.; Kasongo, J.; Wijayanti, Y. Phytoremediation Mechanism for Emerging Pollutants: A Review. Trop. Aquat. Soil Pollut. 2023, 3, 88–108. [Google Scholar] [CrossRef]
- Bui, T.K.A.; Dang, D.K.; Nguyen, T.K.; Nguyen, N.M.; Nguyen, Q.T.; Nguyen, H.C. Phytoremediation of Heavy Metal Polluted Soil and Water in Vietnam. J. Viet. Environ. 2014, 6, 47–51. [Google Scholar] [CrossRef]
- Khandare, R.V.; Govindwar, S.P. Phytoremediation of Textile Dyes and Effluents: Current Scenario and Future Prospects. Biotechnol. Adv. 2015, 33, 1697–1714. [Google Scholar] [CrossRef]
- Hanh, D.T.; Kadokami, K.; Matsuura, N.; Trung, N.Q. Screening Analysis of a Thousand Micro-Pollutants in Vietnamese Rivers. Southeast Asian Water Environ. 2013, 5, 195–202. [Google Scholar]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 643–668. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, Plant Selection and Enhancement by Natural and Synthetic Agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer: Dordrecht, The Netherlands, 2008; Volume 14. [Google Scholar] [CrossRef]
- Wang, H.; Sheng, L.; Xu, J. Clogging Mechanisms of Constructed Wetlands: A Critical Review. J. Clean. Prod. 2021, 295, 126455. [Google Scholar] [CrossRef]
- Wang, J.; Aghajani Delavar, M. Techno-Economic Analysis of Phytoremediation: A Strategic Rethinking. Sci. Total Environ. 2023, 902, 165949. [Google Scholar] [CrossRef] [PubMed]
- Zulkernain, N.H.; Uvarajan, T.; Ng, C.C. Roles and Significance of Chelating Agents for Potentially Toxic Elements (PTEs) Phytoremediation in Soil: A Review. J. Environ. Manag. 2023, 341, 117926. [Google Scholar] [CrossRef]
- El-Sadaawy, M.M.; Agib, N.S. Removal of Textile Dyes by Ecofriendly Aquatic Plants from Wastewater: A Review on Plant Species, Mechanisms, and Perspectives. Blue Econ. 2024, 2, 1. [Google Scholar] [CrossRef]
- Lazo, P.; Lazo, A. Assessment of Native and Endemic Chilean Plants for Removal of Cu, Mo and Pb from Mine Tailings. Minerals 2020, 10, 1020. [Google Scholar] [CrossRef]
- Reed, S.C.; Crites, R.W.; Middlebrooks, E.J. Natural Systems for Waste Management and Treatment, 2nd ed.; McGraw Hill: New York, NY, USA, 1995. [Google Scholar]
- Interstate Technology & Regulatory Council (ITRC). Phytotechnology Technical and Regulatory Guidance and Decision Trees, Revised; PHYTO-3; ITRC: Washington, DC, USA, 2009. [Google Scholar]
- Kaewtubtim, P. Heavy Metal Phytoremediation Potential of Plant Species in a Mangrove Ecosystem in Pattani Bay, Thailand. Appl. Ecol. Environ. Res. 2016, 14, 367–382. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Huang, X.-D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and Rhizoremediation of Organic Soil Contaminants: Potential and Challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- O’Brien, R.M.; Phelan, T.J.; Smith, N.M.; Smits, K.M. Remediation in Developing Countries: A Review of Previously Implemented Projects and Analysis of Stakeholder Participation Efforts. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1259–1280. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals: Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]


| Plant | Type | Contaminant | Ref. |
|---|---|---|---|
| S. molesta | Dye | Tartrazine and Bordeaux red | [36] |
| Azolla pinnata | Dye | Methylene blue | [37] |
| Aster amellus, Glandularia pulchella, Zinnia angustifolia | Dye | Acid Orange 7 and Sulfonated anthraquinones | [38] |
| Eichhornia crassipes | Dye | Methylene Blue and Methyl Orange Rose bengal, Methylene blue, Crystal violet, Auramine O, Rhodamine B, Xylenol orange, Phenol red, Cresol red, Methyl orange | [39,40] |
| Lemna minor L. | Dye | Basic Red 46 dye | [41] |
| Juncus effusus | Dye | Methyl Red and Methylene Blue | [42] |
| Pistia stratiotes L., Salvinia adnata Desv, and Hydrilla verticillata (L.f) | Dye | Dyeing effluent | [43] |
| Ceratophyllum demersum and Lemna gibba | Heavy metals | Pb and Cr | [44] |
| Duckweed (Lemna minor) | Heavy metals | As, Hg, Pb, Cr, Cu, and Zn | [45] |
| Duckweed (Lemna minor) | Heavy metals | Pb, Cd, Cu, Cr and Zn | [46] |
| Duckweed (Lemna minor) | Heavy metals | Cd | [47] |
| Hyacinth (E. crassipes) | Heavy metals | Cd, As and Hg | [48] |
| Vetiveria zizanioides, Phragmites australis, Eichhornia crassipes, Pistia stratiotes, Ipomoea aquatica, Nypa fruticans and Enhydra fluctuans | Heavy metals | Pb, Cr, Ni, Zn, Cu, As, Cd and Fe | [49] |
| Pteris vittata and Pityrogramma calomelanos | Heavy metals | As | [50] |
| Lemna minor (L. minor), Elodea canadensis (E. canadensis) and Cabomba aquatica (C. aquatica) | Pesticides | Copper sulfate (fungicide), flazasulfuron (herbicide) and dimethomorph (fungicide) | [51] |
| E. crassipes, L. minor, and Elodea canadensis | Pesticides | Atrazine, Carbendazim, Chlorpyrifos, Coumaphos, Diazinon, Ethoprophos, Linuron, Parathion, Prochloraz | [52] |
| Hyacinth (E. crassipes) | Pesticides | Ethion | [53] |
| Water Lettuce (Pistia stratiotes L.) and Duckweed (Lemna minor L.) | Pesticides | Chlorpyrifos | [54] |
| Typha spp. | Pharmaceuticals | Ibuprofen, Carbamazepine and Clofibric acid | [55] |
| Typha, Phragmites, Iris, and Juncus | Pharmaceuticals | Ibuprofen and Iohexol | [56] |
| Vetiver and Phragmites | Hydrocarbons | PAHs | [57] |
| Bruguiera gymnorrhiza, Ceriops candolleana, Kandelia candel, and Rhizophora mucronata | Salts | Desalination | [58] |
| Sporobolus virginicus | Salts | Desalination | [59] |
| Parameter | Unit | Proposed Value | Significance and Notes | Ref. |
|---|---|---|---|---|
| pH | - | 6.0–8.0 | A neutral pH range optimizes metal uptake and microbial activity. | [7,10,46] |
| Electrical Conductivity (EC) | µS/cm | ≤2500 | High values may indicate salinity or ionic pollution, which can affect plant health. | [11,22,52] |
| Dissolved Oxygen (DO) | mg/L | ≥5.0 | Essential for root and microbial respiration in the rhizosphere. | [101,105] |
| Nitrate (NO3−) | mg/L | ≤10 | High concentrations can lead to eutrophication; plants can absorb and reduce the load. | [11,27,53,54] |
| Phosphate (PO43−) | mg/L | ≤0.1 | Limited to prevent eutrophication; aquatic plants can absorb it effectively. | [9,27] |
| Cadmium (Cd) | µg/L | ≤5 | Highly toxic; must be controlled to avoid harm to plants and aquatic life. | [11,103] |
| Lead (Pb) | µg/L | ≤10 | Highly toxic; plants can absorb and accumulate it in tissues. | [1,8,12,14,46,78] |
| Arsenic (As) | µg/L | ≤10 | Highly toxic; must be regulated to ensure ecological safety. | [11,22,81,90] |
| Zinc (Zn) | µg/L | ≤5000 | Essential in trace amounts; high levels can be phytotoxic. | [34,55] |
| Copper (Cu) | µg/L | ≤2000 | Essential in trace amounts; high concentrations may be toxic to plants. | [27,34] |
| System Type | Recommended HLR | Reference Source |
|---|---|---|
| Horizontal Subsurface Flow Wetland (HSSF) | 2–10 cm/day | [21,50,54,101] |
| Vertical Subsurface Flow Wetland (VSSF) | 5–20 cm/day | [50,54,104] |
| Municipal Wastewater Treatment System | 0.2–0.5 m3/m2/day | [21,22,101] |
| Domestic Wastewater Treatment System | 0.15–0.3 m3/m2/day | [20,52,83,85,91,102,103] |
| Light Industrial Wastewater Treatment System | 0.1–0.25 m3/m2/day | [85,89,107] |
| Flow Regime | Characteristics | Impact on System | Design Recommendations | Ref. |
|---|---|---|---|---|
| Continuous | Water is continuously supplied to the system. | Maintains a stable environment for microorganisms. - May lead to reduced dissolved oxygen in the rhizosphere. | Suitable for horizontal subsurface flow (HSSF) systems. - Ensure natural aeration or oxygen supplementation. | [108,109,110] |
| Intermittent | Water is supplied in cycles, with resting periods between doses. | Enhances oxidation in the rhizosphere. - Stimulates aerobic microbial activity. - Reduces clogging risks. | Suitable for vertical subsurface flow (VSSF) systems. - Requires timing control for water dosing. | [111,112] |
| Pulsed | Water is delivered in short bursts, creating brief, intense flows. | Improves water and oxygen distribution. - Increases contact efficiency between water and root zone. | Requires precise pumping and control systems. - Suitable for high-load treatment in short periods. | [37] |
| Temperature Range (°C) | Impact on Treatment Efficiency | Suitable Plant Species | Ref. |
|---|---|---|---|
| <15 °C | Reduced plant and microbial metabolic rates. Lower removal efficiency for organic pollutants and heavy metals. | Egeria densa, Ludwigia natans, Eleocharis acicularis | [31,47,51,62] |
| 15–20 °C | Beginning of enhanced biological activity. Slight improvement in treatment performance. | Eichhornia crassipes (water hyacinth), Pistia stratiotes (water lettuce) | [23,85] |
| 20–30 °C | Optimal range for most species. Enhanced uptake of heavy metals and organics. Increased microbial and enzymatic activity. | Typha latifolia (cattail), Ricciocarpus natans, Arundo donax (giant reed), Eichhornia crassipes | [3,24] |
| >30 °C | Reduced performance due to heat stress. Lower metal uptake. Inhibited microbial and enzymatic processes. | Some heat-tolerant species like Arundo donax, but require close monitoring. | [24,31,47,51] |
| Challenge | Description | Example Study or Data | Mitigation Strategy |
|---|---|---|---|
| Low biomass production | Limits uptake of contaminants over time | Biomass of Lemna minor ~30 g/m2/day | Genetic engineering, nutrient supplementation |
| Limited contaminant bioavailability | Metals often bind tightly to soil particles | Pb, Cd mobility reduced by >40% in alkaline soils | Chelating agents (e.g., EDTA, citric acid) |
| Phytotoxicity | High concentrations of pollutants inhibit plant growth | Growth reduction >50% in Eichhornia crassipes exposed to >10 mg/L Cr | Use of tolerant species or gradual exposure |
| Seasonal dependency | Reduced performance in cold or dry seasons | Metal removal dropped ~60% in winter | Controlled environments, year-round species |
| Time-consuming remediation | Often slower than physical/chemical methods | Time for As removal >1 year for 1-hectare site | Combined remediation (phyto + chemical) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.Q.; Nguyen, H.X.; Bui, M.Q.; Pham, D.H.; Truong, H.M.; Nguyen, T.N.; Hoang, T.M.; Truong, M.N. Standardized Design Metrics and Policy Integration for Phytoremediation Systems in Water Contaminant Management. Standards 2025, 5, 25. https://doi.org/10.3390/standards5040025
Nguyen TQ, Nguyen HX, Bui MQ, Pham DH, Truong HM, Nguyen TN, Hoang TM, Truong MN. Standardized Design Metrics and Policy Integration for Phytoremediation Systems in Water Contaminant Management. Standards. 2025; 5(4):25. https://doi.org/10.3390/standards5040025
Chicago/Turabian StyleNguyen, Trung Quang, Hung Xuan Nguyen, Minh Quang Bui, Duc Hung Pham, Hoang Minh Truong, Tung Ngoc Nguyen, Tao Minh Hoang, and Minh Ngoc Truong. 2025. "Standardized Design Metrics and Policy Integration for Phytoremediation Systems in Water Contaminant Management" Standards 5, no. 4: 25. https://doi.org/10.3390/standards5040025
APA StyleNguyen, T. Q., Nguyen, H. X., Bui, M. Q., Pham, D. H., Truong, H. M., Nguyen, T. N., Hoang, T. M., & Truong, M. N. (2025). Standardized Design Metrics and Policy Integration for Phytoremediation Systems in Water Contaminant Management. Standards, 5(4), 25. https://doi.org/10.3390/standards5040025

