Asymmetric Effect of Natural Resource Exploitation on Climate Change in Resource-Rich African Countries
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Model Specification
3.2. Estimation Procedure
3.3. Data
4. Discussion of Results
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate, Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- [NASEM] National Academies of Sciences, Engineering, and Medicine. Attribution of Extreme Weather Events in the Context of Climate Change; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- [USGCRP] US Global Change Research Program. Climate Science Special Report: Fourth National Climate Assessment, Vol I; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; US Global Change Research Program: Washington, DC, USA, 2017. [Google Scholar]
- Wang, S.; Zhang, Y.; Cheng, J.; Li, Y.; Li, F.; Li, Y.; Shi, Z. Pollution assessment and source apportionment of soil heavy metals in a coastal industrial city, Zhejiang, southeastern China. Int. J. Environ. Res. Public Health 2022, 19, 3335. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Albers, P.N.; Wright, C.Y.; Voyi, K.V.; Mathee, A. Household fuel use and child respiratory ill health in two towns in Mpumalanga, South Africa. S. Afr. Med. J. 2015, 105, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Abraham, J.P.; et al. An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 2021, 8, 642372. [Google Scholar] [CrossRef]
- Cloete, Y.C.; Shaddock, B.F.; Nel, A. The use of two microbiotests to evaluate the toxicity of sediment from Mpumalanga, South Africa. Water SA 2017, 43, 409–412. [Google Scholar] [CrossRef]
- McMichael, C.; Dasgupta, S.; Ayeb-Karlsson, S.; Kelman, I. A review of estimating population exposure to sea-level rise and the relevance for migration. Environ. Res. Lett. 2020, 15, 123005. [Google Scholar] [CrossRef]
- Reimann, L.; Vafeidis, A.T.; Honsel, L.E. Population development as a driver of coastal risk: Current trends and future pathways. Camb. Prism. Coast. Futures 2023, 1, e14. [Google Scholar] [CrossRef]
- Monteiro, N.B.R.; da Silva, E.A.; Neto, J.M.M. Sustainable development goals in mining. J. Clean. Prod. 2019, 228, 509–520. [Google Scholar] [CrossRef]
- Sun, Y.; Guan, W.; Mehmood, U.; Yang, X. Asymmetric impacts of natural resources on ecological footprints: Exploring the role of economic growth, FDI and renewable energy in G-11 countries. Resour. Policy 2022, 79, 103026. [Google Scholar] [CrossRef]
- Zhai, M.; Hu, R.; Wang, Y.; Jiang, S.; Wang, R.; Li, J.; Chen, H.; Yang, Z.; Lü, Q.; Zhu, X.; et al. Mineral resource science in China: Review and perspective. Geogr. Sustain. 2021, 2, 107–114. [Google Scholar] [CrossRef]
- Arendt, R.; Bach, V.; Finkbeiner, M. The global environmental costs of mining and processing abiotic raw materials and their geographic distribution. J. Clean. Prod. 2022, 361, 132232. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Mudd, G.M. The environmental sustainability of mining in Australia: Key mega-trends and looming constraints. Resour. Policy 2010, 35, 98–115. [Google Scholar] [CrossRef]
- Jiskani, I.M.; Moreno-Cabezali, B.M.; Rehman, A.U.; Fernandez-Crehuet, J.M.; Uddin, S. Implications to secure mineral supply for clean energy technologies for developing countries: A fuzzy based risk analysis for mining projects. J. Clean. Prod. 2022, 358, 132055. [Google Scholar] [CrossRef]
- Helbig, C.; Bradshaw, A.M.; Wietschel, L.; Thorenz, A.; Tuma, A. Supply risks associated with lithium-ion battery materials. J. Clean. Prod. 2018, 172, 274–286. [Google Scholar] [CrossRef]
- Ballinger, B.; Stringer, M.; Schmeda-Lopez, D.R.; Kefford, B.; Parkinson, B.; Greig, C.; Smart, S. The vulnerability of electric vehicle deployment to critical mineral supply. Appl. Energy 2019, 255, 113844. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Matter, J. In situ carbonation of peridotite for CO2 storage. Proc. Natl. Acad. Sci. USA 2008, 105, 17295–17300. [Google Scholar] [CrossRef]
- Reuter, M.; Hudson, C.; Van Schaik, A.; Heiskanen, K.; Meskers, C.; Hagelüken, C. Metal Recycling: Opportunities, Limits, Infrastructure; A Report of the Working Group on the Global Metal Flows to the International Resource Panel; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2013. [Google Scholar]
- Islam, M.M.; Sohag, K.; Hammoudeh, S.; Mariev, O.; Samargandi, N. Minerals import demands and clean energy transitions: A disaggregated analysis. Energy Econ. 2022, 113, 106205. [Google Scholar] [CrossRef]
- Feng, C.Y.; Yang, X.; Afshan, S.; Irfan, M. Can renewable energy technology innovation promote mineral resources’ green utilization efficiency? Novel insights from regional development inequality. Resour. Policy 2023, 82, 103449. [Google Scholar] [CrossRef]
- Sun, Y.; Tian, W.; Mehmood, U.; Zhang, X.; Tariq, S. How do natural resources, urbanization, and institutional quality meet with ecological footprints in the presence of income inequality and human capital in the next eleven countries? Resour. Policy 2023, 85, 104007. [Google Scholar] [CrossRef]
- Maddala, V.K.S.; Sharma, S.; Chohan, J.; Kumar, R.; Singh, S. Green mining techniques to curb environmental problems—A review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 889, p. 012026. [Google Scholar]
- Hund, K.; La Porta, D.; Fabregas, T.P.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition. 2020. Available online: https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf (accessed on 12 August 2024).
- Messy, M.A. Corruption-inequality relationship in Sub-Saharan Africa. J. Econ. Criminol. 2024, 5, 100087. [Google Scholar] [CrossRef]
- Befeke, C.I.; Huang, D.; Bosah, C.P.; Shaw, W. The impact of natural resource consumption on carbon emissions: Evidence of a symmetric and asymmetric effect from Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2023, 30, 80963–80977. [Google Scholar] [CrossRef] [PubMed]
- Aladejare, S.A. Natural resource rents, globalisation and environmental degradation: New insight from 5 richest African economies. Resour. Policy 2022, 78, 102909. [Google Scholar] [CrossRef]
- Arogundade, S.; Hassan, A.S. The path to green economy: Do environmental taxes and renewable energy transition matter in OECD countries? World Dev. Sustain. 2024, 5, 100189. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, F.; Hu, D.; Yi, G.; Cao, W. An improved evaluation method to assess the coordination between mineral resource exploitation, economic development, and environmental protection. Ecol. Indic. 2022, 138, 108808. [Google Scholar] [CrossRef]
- Cheng, S.; Shu, C.; Jin, M.; He, Y. Balancing resources and sustainability: Analyzing the impact of mineral resources utilization on green growth. Resour. Policy 2023, 86, 104143. [Google Scholar] [CrossRef]
- Hassan, A.S. Modeling the linkage between coal mining and ecological footprint in South Africa: Does technological innovation matter? Miner. Econ. 2023, 36, 123–138. [Google Scholar] [CrossRef]
- Hassan, A.S. Coal mining and environmental sustainability in South Africa: Do institutions matter? Environ. Sci. Pollut. Res. 2023, 30, 20431–20449. [Google Scholar] [CrossRef]
- Mohammed, K.S.; Pata, U.K. Linking the utilization of mineral resources and climate change: A novel approach with frequency domain analysis. Geosci. Front. 2024, 15, 101683. [Google Scholar] [CrossRef]
- Roy, P.; Pal, S.C.; Chakrabortty, R.; Chowdhuri, I.; Saha, A.; Shit, M. Effects of climate change and sea-level rise on coastal habitat: Vulnerability assessment, adaptation strategies and policy recommendations. J. Environ. Manag. 2023, 330, 117187. [Google Scholar] [CrossRef]
- Alam, M.A.; Sepúlveda, R. Environmental degradation through mining for energy resources: The case of the shrinking Laguna Santa Rosa wetland in the Atacama Region of Chile. Energy Geosci. 2022, 3, 182–190. [Google Scholar] [CrossRef]
- Dunmade, I.; Madushele, N.; Adedeji, P.A.; Akinlabi, E.T. A streamlined life cycle assessment of a coal-fired power plant: The South African case study. Environ. Sci. Pollut. Res. 2019, 26, 18484–18492. [Google Scholar] [CrossRef] [PubMed]
- Tongwane, M.; Mdlambuzi, T.; Moeletsi, M.; Tsubo, M.; Mliswa, V.; Grootboom, L. Greenhouse gas emissions from different crop production and management practices in South Africa. Environ. Dev. 2016, 19, 23–35. [Google Scholar] [CrossRef]
- Olaniyan, T.; Jeebhay, M.; Roosli, M.; Naidoo, R.; Baatjies, R.; Kunzil, N.; Tsai, M.; Davey, M.; de Hoogh, K.; Berman, D.; et al. A prospective cohort study on ambient air pollution and respiratory morbidities including childhood asthma in adolescents from the Western Cape Province: Study protocol. BMC Public Health 2017, 17, 712. [Google Scholar] [CrossRef]
- Ali, A.; Strezov, V.; Davies, P.; Wright, I. Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia. Environ. Monit. Assess. 2017, 189, 408. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Das, N. Coal mining and local environment: A study in Talcher coalfield of India. Air Soil Water Res. 2017, 10, 1178622117728913. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, H.; Chen, L.; Liu, X.; Gu, M.; Ke, X. Regional analysis of the green development level differences in Chinese mineral resource-based cities. Resour. Policy 2019, 61, 261–272. [Google Scholar] [CrossRef]
- Nathaniel, S.P. Natural resources, urbanisation, economic growth and the ecological footprint in South Africa: The moderating role of human capital. Quaest. Geogr. 2021, 40, 63–76. [Google Scholar] [CrossRef]
- Bekun, F.V.; Alola, A.A.; Sarkodie, S.A. Toward a sustainable environment: Nexus between CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries. Sci. Total Environ. 2019, 657, 1023–1029. [Google Scholar] [CrossRef]
- Aeknarajindawat, N.; Suteerachai, B.; Suksod, P. The impact of natural resources, renewable energy, economic growth on carbon dioxide emission in Malaysia. Int. J. Energy Econ. Policy 2020, 10, 211–218. [Google Scholar] [CrossRef]
- Shen, Y.; Su, Z.W.; Malik, M.Y.; Umar, M.; Khan, Z.; Khan, M. Does green investment, financial development and natural resources rent limit carbon emissions? A provincial panel analysis of China. Sci. Total Environ. 2021, 755, 142538. [Google Scholar] [CrossRef] [PubMed]
- Umar, M.; Ji, X.; Kirikkaleli, D.; Shahbaz, M.; Zhou, X. Environmental cost of natural resources utilization and economic growth: Can China shift some burden through globalization for sustainable development? Sustain. Dev. 2020, 28, 1678–1688. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Lin, J.; Bentley, Y. The availability of critical minerals for China’s renewable energy development: An analysis of physical supply. Nat. Resour. Res. 2020, 29, 2291–2306. [Google Scholar] [CrossRef]
- Calvo, G.; Valero, A. Strategic mineral resources: Availability and future estimations for the renewable energy sector. Environ. Dev. 2022, 41, 100640. [Google Scholar] [CrossRef]
- Dallas, J.A.; Raval, S.; Saydam, S.; Dempster, A.G. Investigating extraterrestrial bodies as a source of critical minerals for renewable energy technology. Acta Astronaut. 2021, 186, 74–86. [Google Scholar] [CrossRef]
- Jones, B.; Nguyen-Tien, V.; Elliott, R.J. The electric vehicle revolution: Critical material supply chains, trade and development. World Econ. 2023, 46, 2–26. [Google Scholar] [CrossRef]
- Mehta, K.; Mingaleva, E.; Zörner, W.; Degembaeva, N.; Baibagyshov, E. Comprehensive analysis of the energy legislative framework of Kyrgyzstan: Investigation to develop a roadmap of Kyrgyz renewable energy sector. Clean. Energy Syst. 2022, 2, 100013. [Google Scholar] [CrossRef]
- Zheng, L.; Xu, J.; Li, D.; Xia, Z.; Chen, Y.; Xu, G.; Lu, D. Increasing control of climate warming on the greening of alpine pastures in central Asia. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102606. [Google Scholar] [CrossRef]
- Henckens, T. Scarce mineral resources: Extraction, consumption and limits of sustainability. Resour. Conserv. Recycl. 2021, 169, 105511. [Google Scholar] [CrossRef]
- Henckens, M.L.C.M.; Ryngaert, C.M.J.; Driessen, P.P.J.; Worrell, E. Normative principles and the sustainable use of geologically scarce mineral resources. Resour. Policy 2018, 59, 351–359. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Long, R.; Liu, B.; Jiang, S.; Yang, X.; Yang, M. Evaluating green development level of mineral resource-listed companies: Based on a “dark green” assessment framework. Resour. Policy 2021, 71, 102012. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Le, H.P. The impact of natural resources, energy consumption, and population growth on environmental quality: Fresh evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef] [PubMed]
- Danish, H.S.; Baloch, M.A.; Mahmood, N.; Zhang, J. Linking economic growth and ecological footprint through human capital and biocapacity. Sustain. Cities Soc. 2019, 47, 101516. [Google Scholar] [CrossRef]
- Danish; Ulucak, R.; Khan, S.U.D. Determinants of the ecological footprint: Role of renewable energy, natural resources, and urbanization. Sustain. Cities Soc. 2020, 54, 101996. [Google Scholar] [CrossRef]
- Kwakwa, P.A.; Alhassan, H.; Aboagye, S. Environmental Kuznets curve hypothesis in a financial development and natural resource extraction context: Evidence from Tunisia. Aims Press 2018, 2, 981–1000. [Google Scholar]
- Sarkodie, S.A. The invisible hand and EKC hypothesis: What are the drivers of environmental degradation and pollution in Africa? Environ. Sci. Pollut. Res. 2018, 25, 21993–22022. [Google Scholar] [CrossRef] [PubMed]
- Effiong, E.L.; Iriabije, A.O. Let the data speak: Semiparametric evidence on the environmental Kuznets curve in Africa. Qual. Quant. 2018, 52, 771–782. [Google Scholar] [CrossRef]
- Beyene, S.D.; Kotosz, B. Testing the environmental Kuznets curve hypothesis: An empirical study for East African countries. Int. J. Environ. Stud. 2020, 77, 636–654. [Google Scholar] [CrossRef]
- Halliru, A.M.; Loganathan, N.; Hassan, A.A.G.; Mardani, A.; Kamyab, H. Re-examining the environmental Kuznets curve hypothesis in the Economic Community of West African States: A panel quantile regression approach. J. Clean. Prod. 2020, 276, 124247. [Google Scholar] [CrossRef]
- Hao, L.; Meng, Q.; Umar, M.; Long, C. Mineral resources and intellectual capital: Asymmetrical impacts and sustainable development outcomes. Resour. Policy 2024, 91, 104936. [Google Scholar] [CrossRef]
- Han, Z.; Gong, L.; Chen, H.; Yüksel, S. The role of mineral and oil resources in achieving a clean environment in emerging economies: An asymmetric analysis. Resour. Policy 2023, 86, 104099. [Google Scholar] [CrossRef]
- Ben-Salha, O.; Zmami, M. Analyzing the symmetric and asymmetric effects of disaggregate natural resources on the ecological footprint in Saudi Arabia: Insights from the dynamic ARDL approach. Environ. Sci. Pollut. Res. 2023, 30, 59424–59442. [Google Scholar] [CrossRef]
- Dietz, T.; Rosa, E.A. Effects of population and affluence on CO2 emissions. Proc. Natl. Acad. Sci. USA 1997, 94, 175–179. [Google Scholar] [CrossRef]
- Meng, M.; Niu, D.; Shang, W. CO2 emissions and economic development: China’s 12th five-year plan. Energy Policy 2012, 42, 468–475. [Google Scholar] [CrossRef]
- Malik, M.Y.; Latif, K.; Khan, Z.; Butt, H.D.; Hussain, M.; Nadeem, M.A. Symmetric and asymmetric impact of oil price, FDI and economic growth on carbon emission in Pakistan: Evidence from ARDL and non-linear ARDL approach. Sci. Total Environ. 2020, 726, 138421. [Google Scholar] [CrossRef]
- Hassan, A.S. Asymmetric effects of oil revenue on government expenditure: Insights from oil-exporting developing countries. OPEC Energy Rev. 2021, 45, 257–274. [Google Scholar] [CrossRef]
- Hassan, A.S.; Mhlanga, D. The asymmetric effect of oil price on ecological footprint: Evidence from oil-producing African countries. Sustain. Energy Res. 2023, 10, 16. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels; CESifo Working Papers No 1233; CESifo: Munich, Germany, 2004; pp. 255–260. [Google Scholar]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for error correction in panel data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef]
- Ditzen, J. Estimating long-run effects and the exponent of cross-sectional dependence: An update to xtdcce2. Stata J. 2021, 21, 687–707. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J. Econ. 2015, 188, 393–420. [Google Scholar] [CrossRef]
- Chaudhry, I.S.; Yusop, Z.; Habibullah, M.S. Financial inclusion-environmental degradation nexus in OIC countries: New evidence from environmental Kuznets curve using DCCE approach. Environ. Sci. Pollut. Res. 2022, 29, 5360–5377. [Google Scholar] [CrossRef]
- Mark, N.C.; Ogaki, M.; Sul, D. Dynamic seemingly unrelated cointegrating regressions. Rev. Econ. Stud. 2005, 72, 797–820. [Google Scholar] [CrossRef]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Adom, P.K.; Amoani, S. The role of climate adaptation readiness in economic growth and climate change relationship: An analysis of the output/income and productivity/institution channels. J. Environ. Manag. 2021, 293, 112923. [Google Scholar] [CrossRef]
- Arogundade, S.; Hassan, A.S.; Mduduzi, B. Is climate change hindering the economic progress of Nigerian economy? Insights from dynamic models. Heliyon 2024, 10, e39288. [Google Scholar] [CrossRef]
- Arogundade, S.; Mduduzi, B.; Hassan, A.S. Spatial impact of foreign direct investment on ecological footprint in Africa. Environ. Sci. Pollut. Res. 2022, 29, 51589–51608. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- Hassan, A.S. Foreign aid and economic growth in Nigeria: The role of institutional quality. Stud. Appl. Econ. 2021, 39. [Google Scholar] [CrossRef]
- Adekola, O.; Mitchell, G.; Grainger, A. Inequality and ecosystem services: The value and social distribution of Niger Delta wetland services. Ecosyst. Serv. 2015, 12, 42–54. [Google Scholar] [CrossRef]
- Ebegbulem, J.C.; Ekpe, D.; Adejumo, T.O. Oil exploration and poverty in the Niger delta region of Nigeria: A critical analysis. Int. J. Bus. Soc. Sci. 2013, 4, 279–287. [Google Scholar]
- Lawrence, D.; Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Chang. 2015, 5, 27–36. [Google Scholar] [CrossRef]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; Von, M.G. World Atlas of Desertification; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Giannini, A.; Biasutti, M.; Verstraete, M.M. A climate model-based review of drought in the Sahel: Desertification, the re-greening and climate change. Glob. Planet. Chang. 2008, 64, 119–128. [Google Scholar] [CrossRef]
- World Bank. Angola: Country Climate and Development Report. World Bank Report. 2022. Available online: https://documents1.worldbank.org/curated/en/099150012022242096/pdf/P1769171f457c3010198d31b375aaddd937.pdf (accessed on 12 August 2024).
Variable | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|
Temperature | 23.477 | 2.720 | 17.100 | 28.070 |
Precipitation | 825.945 | 618.694 | 11.210 | 2233.360 |
Natural resources rent | 18.843 | 13.041 | 2.489 | 66.059 |
Urban population | 48.555 | 16.629 | 21.970 | 87.651 |
GDP per capita | 3595.173 | 3165.213 | 322.440 | 13,729.16 |
Energy use | 1086.977 | 865.211 | 257.781 | 3243.823 |
TEMP | PREC | NR+ | NR− | URB | GDP | EC | |
---|---|---|---|---|---|---|---|
CSD test | 10.355 *** | 8.349 ** | 7.132 *** | 15.017 *** | 11.957 ** | 18.834 *** | 8.446 *** |
p-value | 0.000 | 0.031 | 0.000 | 0.000 | 0.010 | 0.000 | 0.000 |
Variable | CADF | CIPS | ||
---|---|---|---|---|
Level | First Difference | Level | First Difference | |
TEMP | −1.527 | −5.307 *** | −0.992 | −8.621 *** |
PREC | −2.113 | −5.437 ** | −1.351 | −5.424 *** |
NR+ | 0.894 | −6.638 *** | 0.944 | −7.809 ** |
NR− | 1.117 | −4.201 ** | −1.521 | −2.331 ** |
URB | 2.013 | −3.384 *** | −2.007 | −4.794 *** |
GDP | −1.841 | −6.441 *** | 1.346 | −9.162 ** |
EC | 0.982 | −3.865 *** | −1.230 | −3.550 *** |
Statistic | No Constant | Constant | Constant and Trend | |||
---|---|---|---|---|---|---|
Value | p-Value | Value | p-Value | Value | p-Value | |
Gt | −2.217 *** | 0.000 | −5.822 *** | 0.000 | −1.649 *** | 0.000 |
Ga | 1.006 ** | 0.010 | −3.219 *** | 0.000 | 0.893 ** | 0.015 |
Pt | −2.382 *** | 0.000 | −6.384 ** | 0.028 | −2.649 ** | 0.030 |
Pa | −0.981 *** | 0.000 | −2.571 *** | 0.000 | 2.311 *** | 0.000 |
Variables | Model 1: Dependent Variable = Temperature | Model 2: Dependent Variable = Precipitation | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
NR+ | 0.118 *** | 0.000 | −0.207 *** | 0.000 |
NR− | 0.047 *** | 0.000 | −0.051 ** | 0.036 |
URB | −0.094 ** | 0.015 | 0.113 ** | 0.018 |
GDP | 0.186 *** | 0.000 | −0.226 *** | 0.004 |
EC | 0.231 *** | 0.000 | −0.094 ** | 0.027 |
Variables | Model 1: Dependent Variable = Temperature | Model 2: Dependent Variable = Precipitation | ||
---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | |
NR+ | 0.064 ** | 0.022 | −0.168 *** | 0.000 |
NR− | 0.012 *** | 0.000 | −0.045 *** | 0.006 |
URB | 0.121 ** | 0.039 | 0.064 ** | 0.011 |
GDP | 0.246 *** | 0.000 | 0.107 *** | 0.000 |
EC | 0.139 *** | 0.000 | 0.083 ** | 0.043 |
Null Hypothesis. | W-Statistic | Zbar-Statistic | p-Value |
---|---|---|---|
PREC does not homogeneously cause TEMP PREC does not homogeneously cause TEMP | 3.032 4.175 *** | 1.286 2.896 | 0.198 0.004 |
NR does not homogeneously cause TEMP TEMP does not homogeneously cause NR | 3.396 * 1.714 | 1.774 −0.573 | 0.076 0.567 |
URB does not homogeneously cause TEMP TEMP does not homogeneously cause URB | 10.517 *** 3.042 | 11.824 1.305 | 0.000 0.192 |
GDP does not homogeneously cause TEMP TEMP does not homogeneously cause GDP | 8.370 *** 3.896 ** | 8.801 2.508 | 0.000 0.012 |
EC does not homogeneously cause TEMP TEMP does not homogeneously cause TEMP | 5.366 *** 2.419 | 4.359 0.352 | 0.000 0.725 |
NR does not homogeneously cause PREC PREC does not homogeneously cause NR | 2.332 0.995 | 0.281 −1.586 | 0.779 0.113 |
URB does not homogeneously cause PREC PREC does not homogeneously cause URB | 4.126 *** 2.603 | 2.831 0.686 | 0.005 0.493 |
GDP does not homogeneously cause PREC PREC does not homogeneously cause GDP | 3.716 ** 1.748 | 2.250 −0.529 | 0.024 0.597 |
EC does not homogeneously cause PREC PREC does not homogeneously cause EC | 3.129 1.947 | 1.315 −0.279 | 0.189 0.781 |
URB does not homogeneously cause NR NR does not homogeneously cause URB | 3.061 2.444 | 1.316 0.450 | 0.188 0.653 |
GDP does not homogeneously cause NR NR does not homogeneously cause GDP | 2.272 3.328 | 0.206 1.621 | 0.837 0.105 |
EC does not homogeneously cause NR NR does not homogeneously cause EC | 2.620 2.935 | 0.623 1.036 | 0.533 0.300 |
GDP does not homogeneously cause URB URB does not homogeneously cause GDP | 4.185 *** 5.351 *** | 2.908 4.553 | 0.004 0.000 |
EC does not homogeneously cause URB URB does not homogeneously cause EC | 1.338 4.843 *** | −0.684 3.661 | 0.531 0.000 |
EC does not homogeneously cause GDP GDP does not homogeneously cause EC | 3.420 * 9.574 *** | 1.722 10.076 | 0.085 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.S. Asymmetric Effect of Natural Resource Exploitation on Climate Change in Resource-Rich African Countries. Standards 2025, 5, 7. https://doi.org/10.3390/standards5010007
Hassan AS. Asymmetric Effect of Natural Resource Exploitation on Climate Change in Resource-Rich African Countries. Standards. 2025; 5(1):7. https://doi.org/10.3390/standards5010007
Chicago/Turabian StyleHassan, Adewale Samuel. 2025. "Asymmetric Effect of Natural Resource Exploitation on Climate Change in Resource-Rich African Countries" Standards 5, no. 1: 7. https://doi.org/10.3390/standards5010007
APA StyleHassan, A. S. (2025). Asymmetric Effect of Natural Resource Exploitation on Climate Change in Resource-Rich African Countries. Standards, 5(1), 7. https://doi.org/10.3390/standards5010007