Towards Life Cycle Assessment for the Environmental Evaluation of District Heating and Cooling: A Critical Review
Abstract
:1. Introduction
2. Research Methodology
3. Results
3.1. Preliminary Analysis of the Collected Documentation
3.2. Preliminary Analysis of the DHC Typology
3.3. Literature Review of Scientific Articles
3.4. Literature Review of the Case Studies
3.4.1. DHC Environmental Profile for Optimization of Peak Loads and Decarbonization Scenarios
3.4.2. DHC Environmental Profile for Alternative Decarbonization Scenarios
3.4.3. DHC Environmental Profile for Geothermal Plant Evaluation
3.4.4. Environmental Profile of DHC Systems Using Biomass as an Alternative Energy Source
3.4.5. DHC Environmental Profile for Validation and Energy Mapping
3.4.6. DHC Environmental Profile for Innovative Operation Configurations
Author | Generation System | Context of Application | Type of LCA Application | GWP Source | Network Type | GWP [gCO2eq/kWhth] |
---|---|---|---|---|---|---|
Uhrmann et al. (2023) [43] | Implementation of a geothermal plant in DH in Germany with various boiler backup decarbonization solutions | Germany | Attributional | Declared by the authors | 4GDH | 78.60 |
4GDH | 74.10 | |||||
4GDH | 62.20 | |||||
4GDH | 73.00 | |||||
Pratiwi and Trutnevyte, (2021) [57] | Study on various geothermal plant configurations | Switzerland | Attributional | Declared by the authors | 4GDH | 18.10 |
4GDH | 14.90 | |||||
4GDH | 18.90 | |||||
4GDH | 17.30 | |||||
DC | 6.30 | |||||
DC | 7.50 | |||||
DC | 10.20 | |||||
DC | 7.80 | |||||
Olsson et al. (2015) [39] | Comparative study of DH with fuel oil and biomass for CHP | Sweden | Attributional | Declared in the contribution | 4GDH | 160.00 |
3GDH | 210.00 | |||||
Neirotti et al. (2020) [42] | Study on the application of two different allocation methods to natural gas CHP in DHC in Italy | Italy | Attributional | Declared in the contribution | 3GDH | 100.00 |
3GDH | 470.00 | |||||
Bartolozzi et al. (2017) [38] | Analysis of DH in Italy applied to 3GDH with various decarbonization solutions | Italy | Attributional | Declared in the contribution | 3GDH | 217.00 |
3GDH | 175.00 | |||||
3GDH | 142.00 | |||||
Famiglietti et al. (2022) [40] | Results for a 3GDHN for the presentation of an LCA tool for the evaluation of Milan’s real estate | Italy | Attributional | Declared in the contribution | 3GDH | 161.00 |
Famiglietti et al. (2021) [75] | DH system with heat recovery and waste-to-energy, 4 CHP, and boilers for 3GDH in Italy | Italy | Attributional | Declared in the contribution | 3GDH | 208.00 |
4GDH | 89.00 | |||||
Famiglietti et al. (2023) [15] | DH system with Solar thermal system and Global Warming Potential (GWP) of 4GDH in Italy | Italy | Attributional | Declared in the contribution | 4GDH | 89.00 |
Famiglietti et al. (2023a) [41] | Analysis with DHC supplied by heat pumps powered by photovoltaic modules | Italy | Attributional | Declared in the contribution | 5GDH | 157.00 |
DC | 64.00 | |||||
Spirito et al. (2021) [69] | Decarbonization scenarios of 3GDH and 4GDH in Italy | Italy | Attributional | Declared in the contribution | 3GDH | 290.00 |
4GDH | 190.00 | |||||
4GDH | 140.00 | |||||
4GDH | 130.00 | |||||
Pozzi et al. (2021) [70] | Polygeneration system for 4GDH in Italy | Italy | Attributional | Declared in the contribution | 4GDH | 98.00 |
Ghafghazi et al. (2011) [44] | Analysis of various decarbonization solutions in order to substitute boilers in DH | Europe | Attributional | Declared in the contribution | 3GDH | 240.00 |
4GDH | 39.40 | |||||
5GDH | 15.80 | |||||
5GDH | 24.60 | |||||
Guarino et al. (2020) [49] | Comparative study of DH in Canada, covered by heat pumps and a BTES with Solar thermal system | Canada | Attributional | Calculated by the authors | 4GDH | 54.43 |
4GDH | 61.27 | |||||
Kiehle et al. (2023) [50] | Life cycle emissions analysis of peat-powered DH in Finland | Finland | Attributional | Calculated by the authors | 3GDH | 221.00 |
Maione et al. (2022) [45] | Analysis of a geothermal plant with 4GDH connected to ORC system for heating and a heat pump system for cooling | Italy | Attributional | Calculated by the authors | 4GDH | 64.74 |
DC | 14.89 | |||||
Guillén-Lambea et al. (2021) [2] | LCA analysis of various thermal storage configurations | Spain | Attributional | Calculated by the authors | 4GDH | 57.00 |
4GDH | 52.46 | |||||
4GDH | 61.82 | |||||
DC | 17.12 | |||||
DC | 15.56 | |||||
DC | 18.45 | |||||
Karlsdottir et al. (2020) [46] | Study with high-temperature geothermal technology with carbon capture in Iceland for 4GDH | Iceland | Attributional | Calculated by the authors | 4GDH | 15.80 |
4GDH | 11.20 | |||||
Nitkiewicz and Sekret, (2014) [47] | Study in Poland of DH with various decarbonization technologies applied to 5GDH | Poland | Attributional | Calculated by the authors | 5GDH | 50.00 |
5GDH | 45.00 | |||||
5GDH | 65.00 | |||||
Diaz et al. (2020) [48] | Analysis of DH with a biomass generator and backup boiler for 3GDH and 4GDH | Europe | Consequential | Calculated by the authors | 3GDH | 95.00 |
4GDH | 83.00 | |||||
Ristimaki et al. (2013) [76] | Climate profile of 3GDH in Finland | Finland | Attributional | Calculated by the authors | 3GDH | 142.00 |
Mahon et al. (2020) [52] | Analysis of various decarbonization solutions in order to substitute boilers into DH | Ireland | Attributional | Calculated by the authors | 3GDH | 268.00 |
4GDH | 200.00 | |||||
4GDH | 186.00 | |||||
Abrahmsen et al. (2023) [64] | Analysis of the environmental performance of a nearly zero-energy university building’s energy system | Norway | Attributional | Calculated by the authors | 3GDH | 229.00 |
Jeandreau et al. (2021) [51] | Analysis and general recommendations on decarbonization scenario for DH systems | Europe | Attributional | Calculated by the authors | 3GDH | 270.00 |
4GDH | 50.00 | |||||
4GDH | 160.00 | |||||
4GDH | 100.00 | |||||
4GDH | 200.00 | |||||
Pericault et al. (2018) [53] | Analysis of the use of sewer water for DH decarbonization scenarios | Sweden | Attributional | Calculated by the authors | 3GDH | 56.00 |
4GDH | 53.00 | |||||
4GDH | 52.00 | |||||
Gustafsson et al. (2022) [71] | Climate profile of 4GDH in Sweden | Sweden | Attributional | Declared in the contribution | 4GDH | 89.00 |
No. of Samples | Minimum | Mean | Maximum | |
---|---|---|---|---|
- | - | [gCO2eq/kWhth] | [gCO2eq/kWhth] | [gCO2eq/kWhth] |
3GDH | 17 | 56 | 204 | 470 |
4GDH | 34 | 11 | 63 | 200 |
5GDH | 6 | 16 | 60 | 157 |
DC | 9 | 6 | 18 | 64 |
3.5. Results Concerning a Multifunctionality Approach in the Case Studies
- -
- No. 1 cases incorporate relationships beyond system boundaries (Separate Production Reference (SPR)).
- -
- No. 2 cases adopt physical relationships (exergy and energy content).
- -
- The No. 1 method adopts considerations based on the energy selling price.
- -
- One case where the entire emissions are allocated to electricity production;
- -
- One case where the emissions are allocated to heat production.
4. Discussion
4.1. Discussion Concerning Network Categorization
4.2. Discussion Concerning the Multifunctionality Approach
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
3GDH | Third-Generation District Heating |
4GDH | Fourth-Generation District Heating |
5GDH | Fifth-Generation District Heating |
5GDHC | Fifth-Generation District Heating and Cooling |
Subscripts | |
el | Electric |
th | Thermal |
Abbreviations | |
CHP | Combined Heat and Power |
DC | District Cooling |
DH | District Heating |
DHC | District Heating and Cooling |
DHN | District Heating Network |
DHCN | District Heating and Cooling Network |
EC | European Commission |
EPBD | European Performance of Building Directive |
GHG | Greenhouse Gas |
GWP | Global Warming Potential |
IECR | Incremental Electricity-Centered Reference |
IHCR | Incremental Heat-Centered Reference |
IPCC | International Panel on Climate Change |
LCA | Life Cycle Assessment |
LTS | Long-Term Strategy |
RES | Renewable Energy Source |
SPR | Separate Production Reference |
STALPR | Self-Tuned Average-Local-Productions Reference |
WtE | Waste-to-Energy |
Appendix A
Author | Year | Typology | fU | Database | Characterization Method | LCA Approach | Comparison | Multifunctionality |
---|---|---|---|---|---|---|---|---|
Tester et al. [63] | 2019 | - | 1 kWhth produced | ecoinvent | - | - | Yes | - |
Guarino et al. [49] | 2020 | 4GDH | Not declared | - | ILCD 2011 midpoint impact assessment method | - | Yes | - |
Neirotti et al. [42] | 2020 | 3GDH | 1 kWhth generated | ecoinvent | CML | Attributional | Yes | Energy method |
Bartolozzi et al. [38] | 2017 | 3GDH | 1 kWhth distributed | ecoinvent | ILCD 2011 midpoint impact assessment method | Attributional | Yes | Exergy/energy method |
Vauchez et al. [1] | 2023 | - | Not declared | ecoinvent | EF 3.1 | Attributional | Yes | 50/50 |
Kiehle et al. [50] | 2023 | 3GDH | Not declared | - | - | - | No | - |
Abu Rayash et al. [50] | 2023 | - | 1 kWhele generated | - | TRACI | - | No | - |
Urhmann et al. [43] | 2023 | 4GDH | 1 kWhth distributed | ecoinvent | ReCiPe midpoint (H) | Attributional | Yes | Energy method |
Maione et al. [45] | 2022 | 4GDH | Not declared | ecoinvent | ReCiPe midpoint (H) | Attributional | Yes | Energy method |
Wang et al. [61] | 2022 | - | Unit of input energy | GaBi | - | Attributional | Yes | - |
Temporim et al. [65] | 2022 | - | Unit of input energy | - | ReCiPe | Attributional | No | - |
Hampoo et al. [73] | 2021 | - | Unit of input energy | ecoinvent | ReCiPe midpoint impact assessment technique | - | ||
Guillen-Lambea et al. [2] | 2019 | 4GDH/DC | Not declared | ecoinvent | ReCiPe and IPCC 2013 GWP 100 y | Attributional | Yes | - |
Liu et al. [80] | 2019 | - | Not declared | GaBi | CML2001 | Attributional | Yes | Energy method |
Pratiwi et al. [57] | 2021 | 4GDH/DC | 1 kWhth generated | ecoinvent | ReCiPe midpoint nt 2016 H | Attributional | Yes | Exergy method |
Roux et al. [81] | 2017 | - | Not declared | ecoinvent | ReCiPe midpoint 2016 H | Consequential | Yes | - |
Kanematsu et al. [66] | 2017 | - | Not declared | ecoinvent | - | Attributional | No | Energy method |
Karlsdottir et al. [46] | 2020 | 4GDH | 1 kWhth generated | ecoinvent | CML-IA baseline | Attributional | Yes | 50/50 |
Olsson et al. [39] | 2015 | 3GDH | 1 kWhth generated | - | - | Attributional | Yes | Exergy method |
Caserini et al. [82] | 2010 | - | Not declared | - | CML 2001 | Attributional | No | Energy method |
Nitzewitcz et al. [47] | 2014 | 5GDH | Unit of input energy | - | eco-indicator 1999 | Attributional | Yes | - |
Ristimaki et al. [76] | 2013 | 3GDH | 1 kWhth distributed | - | - | - | No | - |
Famiglietti et al. [40] | 2022 | 3GDH | 1 kWhth distributed | - | Environmental Footprint 3.0 | Attributional | No | Different methods |
Spirito et al. [69] | 2021 | 3GDH/4GDH | 1 kWhth distributed | - | - | - | -- | - |
Pozzi et al. [70] | 2021 | 4GDH | 1 kWhth distributed | - | - | - | -- | - |
Famiglietti et al. [75] | 2021 | 3GDH/4GDH | 1 kWhth distributed | - | Environmental Footprint 3.0 | Attributional | Yes | Expansion (non-computed) |
Menberg et al. [58] | 2023 | 4GDH | 1 kWhth generated | - | IMPACT 2002+ | Attributional | Yes | Exergy method |
Mainar-Toledo et al. [59] | 2023 | 5GDH | 1 kWhth generated | - | ReCiPe 2016 midpoint (H) v 1.04 method | Attributional | Yes | Exergy method |
Solano et al. [83] | 2023 | 5GDH | 1 kWhth distributed | KBOB 2009 | - | Attributional | Yes | - |
Mahon et al. [52] | 2022 | 3GDH | 1 kWhth generated | - | CML 2001 methodology | Attributional | Yes | Efficiency |
Livingstone et al. [84] | 2022 | - | Unit of input energy | - | CML 2015 method | Attributional | No | - |
Abrahmsen et al. [64] | 2022 | 3GDH | - | - | ReCiPe-a hierarchical (H) mid- and endpoint model | Attributional | No | Energy method |
Nilsson et al. [85] | 2021 | - | 1 kg of input material | - | Environmental Footprint 3.0 | Consequential | Yes | Energy method |
Bisinella et al. [54] | 2022 | - | 1 kg of input material | - | Environmental Footprint 3.0 | Consequential | No | - |
Bjornson et al. [86] | 2021 | - | Unit of input energy | - | - | - | No | SPR |
Aborekersh et al. [87] | 2021 | 4GDH | Not declared | - | ReCiPe 2016 midpoint (H) v 1.04 method | - | No | Energy method |
Jeandreau et al. [51] | 2021 | 3GDH | 1 kWhth generated | - | Environmental Footprint 3.0 | Attributional | Yes | Energy method |
Nordestam [88] | 2021 | - | 1 kWhth generated | - | - | Consequential | Yes | - |
Feofivlos et al. [89] | 2019 | 3GDH/4GDH | Not declared | - | IMPACT 2002+ | Attributional | Yes | - |
Pericault et al. [53] | 2018 | 4GDH | Not declared | - | - | Attributional | Yes | - |
Sigurdson et al. [56] | 2015 | - | 1 kWhele generated | - | IPCC 2013 | Consequential | Yes | - |
References
- Vauchez, M.; Famiglietti, J.; Autelitano, K.; Colombert, M.; Scoccia, R.; Motta, M. Life Cycle Assessment of District Heating Infrastructures: A Comparison of Pipe Typologies in France. Energies 2023, 16, 3912. [Google Scholar] [CrossRef]
- Guillén-Lambea, S.; Carvalho, M.; Delgado, M.; Lazaro, A. Sustainable Enhancement of District Heating and Cooling Configurations by Combining Thermal Energy Storage and Life Cycle Assessment. Clean Technol. Environ. Policy 2021, 23, 857–867. [Google Scholar] [CrossRef]
- Passerini, F.; Sterling, R.; Keane, M.; Klobut, K.; Costa, A. Energy Efficiency Facets: Innovative District Cooling Systems. Entrep. Sustain. Issues 2017, 4, 310–318. [Google Scholar] [CrossRef]
- Autelitano, K.; Bolognini, M.; Angelis, E.D.; Fagiano, L.; Autelitano, K.; Bolognini, M.; Angelis, E.D.; Fagiano, L. On the Use of Drones for Vision-Based Digitalization, Diagnostics and Energy Efficiency Assessment of Buildings On the Use of Drones for Vision-Based Digitalization, Diagnostics and Energy Efficiency Assessment of Buildings. Sci. Technol. Built Environ. 2023, 29, 985–997. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014 Synhtesis Report; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Kasurinen, H.; Vatanen, S.; Gronman, K.; Pajula, T.; Lakanen, L.; Salmela, O.; Soukka, R. Carbon Handprint: Potential Climate Benefits of a Novel Liquid-Cooled Base Station with Waste Heat Reuse. Energies 2019, 12, 4452. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. Eur. Comm. 2019, 53, 24. [Google Scholar] [CrossRef]
- Erbach, G.; Jensen, L.; European Parliament. BRIEFING Towards Climate Neutrality: Fit for 55 Package; EPRS|European Parliamentary Research Service: Brussels, Belgium, 2022.
- Famiglietti, J.; Toppi, T.; Bonalumi, D.; Motta, M. Heat Pumps for Space Heating and Domestic Hot Water Production in Residential Buildings, an Environmental Comparison in a Present and Future Scenario. Energy Convers. Manag. 2023, 276, 116527. [Google Scholar] [CrossRef]
- Kavvadias, K.; Thomassen, G.; Pavičević, M.; Quoilin, S. Electrifying the Heating Sector in Europe: The Impact on the Power Sector. In Proceedings of the ECOS 2019—Proceedings of the 32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Wroclaw, Poland, 23–28 June 2019; Institute of Thermal Technology: Wroclaw, Poland, 2019; pp. 3905–3916. [Google Scholar]
- Werner, S. International Review of District Heating and Cooling. Energy 2017, 137, 617–631. [Google Scholar] [CrossRef]
- ISO 14040; Life Cycle Assessment—Principles and Frameworks. International Organization of Standardization: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Roux, C.; Schalbart, P.; Assoumou, E.; Peuportier, B. Integrating Climate Change and Energy Mix Scenarios in LCA of Buildings and Districts. Appl. Energy 2016, 184, 619–629. [Google Scholar] [CrossRef]
- Famiglietti, J.; Madioum, H.; Motta, M. Developing a New Data-Driven LCA Tool at the Urban Scale: The Case of the Embodied Environmental Profile of the Building Sector. Sustainability 2023, 15, 11518. [Google Scholar] [CrossRef]
- Andersen, C.E.; Rasmussen, F.N.; Habert, G.; Birgisdóttir, H. Embodied GHG Emissions of Wooden Buildings—Challenges of Biogenic Carbon Accounting in Current LCA Methods. Front. Built Environ. 2021, 7, 729096. [Google Scholar] [CrossRef]
- Elsevier Scopus. Available online: https://www.scopus.com (accessed on 24 March 2024).
- Clarivate Web of Science. Available online: https://clarivate.com/products/scientific-and-academic-research/research-discovery-and-workflow-solutions/webofscience-platform/ (accessed on 24 March 2024).
- Google Google Scholar. Available online: https://scholar.google.com/ (accessed on 24 March 2024).
- European Commission EPBD. Directive of the European Parliament and of the Council on the Energy Performance of Buildings (Recast); EPBD: Brussels, Belgium, 2024; Volume 1275.
- ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. International Organization of Standardization: Geneva, Switzerland, 2018; Volume 2018.
- Johnsen, F.M.; Løkke, S. Review of Criteria for Evaluating LCA Weighting Methods. Int. J. Life Cycle Assess. 2013, 18, 840–849. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Sphera GaBi Database. Available online: https://about.sphera.com/ps?form_type=request-demo&lang=eng&utm_campaign=lca-experts&utm_source=google&utm_source=google&utm_medium=text&keyword=gabi&matchtype=b&device=c&_bt=687436298112&_bk=gabi&_bm=b&_bn=g&_bg=162899092772&utm_source=google&utm_medium= (accessed on 24 March 2024).
- Pauer, E.; Wohner, B.; Tacker, M. The Influence of Database Selection on Environmental Impact Results. Life Cycle Assessment of Packaging Using Gabi, Ecoinvent 3.6, and the Environmental Footprint Database. Sustainability 2020, 12, 9948. [Google Scholar] [CrossRef]
- Pré Sustainability ReCiPe Method. Available online: https://pre-sustainability.com/articles/recipe/ (accessed on 25 March 2024).
- Department of Industrial Ecology-Universitet Leiden CML-IA Characterisation Factors. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors (accessed on 24 March 2024).
- UNEP Global Guidance Principles for Life Cycle Assessment Databases. Available online: www.unep.org (accessed on 24 March 2024).
- Caputo, P.; Ferla, G.; Belliardi, M.; Cereghetti, N. District Thermal Systems: State of the Art and Promising Evolutive Scenarios. A Focus on Italy and Switzerland. Sustain. Cities Soc. 2021, 65, 102579. [Google Scholar] [CrossRef]
- Lund, H.; Alberg, P.; Bach, T.; Werner, S.; Eric, J.; Gudmundsson, O.; Arabkoohsar, A.; Vad, B. Perspectives on Fourth and Fi Fth Generation District Heating. Energy 2021, 227, 120520. [Google Scholar] [CrossRef]
- Guelpa, E.; Capone, M.; Sciacovelli, A.; Vasset, N.; Baviere, R.; Verda, V. Reduction of Supply Temperature in Existing District Heating: A Review of Strategies and Implementations. Energy 2023, 262, 125363. [Google Scholar] [CrossRef]
- Lund, H.; Alberg, P.; Chang, M.; Werner, S.; Svendsen, S.; Sorknæs, P.; Eric, J.; Hvelplund, F.; Ole, B.; Mortensen, G.; et al. The Status of 4th Generation District Heating: Research and Results. Energy 2018, 164, 147–159. [Google Scholar] [CrossRef]
- Alberg, P.; Werner, S.; Dyrelund, A.; Lund, H.; Arabkoohsar, A.; Sorknæs, P.; Gudmundsson, O.; Eric, J.; Vad, B. The Four Generations of District Cooling-A Categorization of the Development in District Cooling from Origin to Future Prospect. Energy 2022, 253, 124098. [Google Scholar] [CrossRef]
- Bottero, M.; Dell’anna, F.; Morgese, V. Evaluating the Transition towards Post-Carbon Cities: A Literature Review. Sustainability 2021, 13, 567. [Google Scholar] [CrossRef]
- Soares, N.; Bastos, J.; Pereira, L.D.; Soares, A.; Amaral, A.R.; Asadi, E.; Rodrigues, E.; Lamas, F.B.; Monteiro, H.; Lopes, M.A.R.; et al. A Review on Current Advances in the Energy and Environmental Performance of Buildings towards a More Sustainable Built Environment. Renew. Sustain. Energy Rev. 2017, 77, 845–860. [Google Scholar] [CrossRef]
- Gjoka, K.; Rismanchi, B.; Crawford, R.H. Fifth-Generation District Heating and Cooling Systems: A Review of Recent Advancements and Implementation Barriers. Renew. Sustain. Energy Rev. 2023, 171, 112997. [Google Scholar] [CrossRef]
- Milousi, M.; Pappas, A.; Vouros, A.P.; Mihalakakou, G.; Souliotis, M.; Papaefthimiou, S. Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment. Energies 2022, 15, 5673. [Google Scholar] [CrossRef]
- Bartolozzi, I.; Rizzi, F.; Frey, M. Are District Heating Systems and Renewable Energy Sources Always an Environmental Win-Win Solution? A Life Cycle Assessment Case Study in Tuscany, Italy. Renew. Sustain. Energy Rev. 2017, 80, 408–420. [Google Scholar] [CrossRef]
- Olsson, L.; Wetterlund, E.; Söderström, M. Assessing the Climate Impact of District Heating Systems with Combined Heat and Power Production and Industrial Excess Heat. Resour. Conserv. Recycl. 2015, 96, 31–39. [Google Scholar] [CrossRef]
- Famiglietti, J.; Toosi, H.A.; Dénarié, A.; Motta, M. Developing a New Data-Driven LCA Tool at the Urban Scale: The Case of the Energy Performance of the Building Sector. Energy Convers. Manag. 2022, 256, 115389. [Google Scholar] [CrossRef]
- Famiglietti, J.; Aprile, M.; Spirito, G.; Motta, M. Net-Zero Climate Emissions Districts: Potentials and Constraints for Social Housing in Milan. Energies 2023, 16, 1504. [Google Scholar] [CrossRef]
- Neirotti, F.; Noussan, M.; Simonetti, M. Evaluating the Emissions of the Heat Supplied by District Heating Networks through A Life Cycle Perspective. Clean Technol. 2020, 2, 392–405. [Google Scholar] [CrossRef]
- Uhrmann, H.; Heberle, F.; Brüggemann, D. Life Cycle Assessment and Scenario Analyses of an Operating Geothermal Heat Project in the Southern German Molasse Basin. In Proceedings of the 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2023), Las Palmas de Gran Canaria, Spain, 25–30 June 2023; pp. 2992–3001. [Google Scholar] [CrossRef]
- Ghafghazi, S.; Sowlati, T.; Sokhansanj, S.; Bi, X.; Melin, S. Life Cycle Assessment of Base-Load Heat Sources for District Heating System Options. Int. J. Life Cycle Assess. 2011, 16, 212–223. [Google Scholar] [CrossRef]
- Maione, A.; Massarotti, N.; Santagata, R.; Vanoli, L. Environmental Assessment of a Heating, Cooling and Electric Energy Grid from a Geothermal Source in Southern Italy. J. Clean. Prod. 2022, 375, 134198. [Google Scholar] [CrossRef]
- Karlsdottir, M.R.; Heinonen, J.; Palsson, H.; Palsson, O.P. Life Cycle Assessment of a Geothermal Combined Heat and Power Plant Based on High Temperature Utilization. Geothermics 2020, 84, 101727. [Google Scholar] [CrossRef]
- Nitkiewicz, A.; Sekret, R. Comparison of LCA Results of Low Temperature Heat Plant Using Electric Heat Pump, Absorption Heat Pump and Gas-Fired Boiler. Energy Convers. Manag. 2014, 87, 647–652. [Google Scholar] [CrossRef]
- Diaz, F.; Pakere, I.; Romagnoli, F. Life Cycle Assessment of Low Temperature District Heating System in Gulbene Region. Environ. Clim. Technol. 2020, 24, 285–299. [Google Scholar] [CrossRef]
- Guarino, F.; Longo, S.; Hachem Vermette, C.; Cellura, M.; La Rocca, V. Life Cycle Assessment of Solar Communities. Sol. Energy 2020, 207, 209–217. [Google Scholar] [CrossRef]
- Kiehle, J.; Kopsakangas-Savolainen, M.; Hilli, M.; Pongrácz, E. Carbon Footprint at Institutions of Higher Education: The Case of the University of Oulu. J. Environ. Manag. 2023, 329, 117056. [Google Scholar] [CrossRef]
- Jeandaux, C.; Videau, J.B.; Prieur-vernat, A. Life Cycle Assessment of District Heating Systems in Europe: Case Study and Recommendations. Sustainability 2021, 13, 11256. [Google Scholar] [CrossRef]
- Mahon, C.; Mediboyina, M.K.; Gartland, D.; Murphy, F. Life Cycle Assessment of Irish District Heating Systems: A Comparison of Waste Heat Pump, Biomass-Based and Conventional Gas Boiler. Clean Technol. Environ. Policy 2022, 24, 1437–1451. [Google Scholar] [CrossRef]
- Pericault, Y.; Kärrman, E.; Viklander, M.; Hedström, A. Expansion of Sewer, Water and District Heating Networks in Cold Climate Regions: An Integrated Sustainability Assessment. Sustainability 2018, 10, 3743. [Google Scholar] [CrossRef]
- Bisinella, V.; Nedenskov, J.; Riber, C.; Hulgaard, T.; Christensen, T.H. Environmental Assessment of Amending the Amager Bakke Incineration Plant in Copenhagen with Carbon Capture and Storage. Waste Manag. Res. 2022, 40, 79–95. [Google Scholar] [CrossRef]
- Wahlroos, M.; Pärssinen, M.; Rinne, S.; Syri, S.; Manner, J. Future Views on Waste Heat Utilization–Case of Data Centers in Northern Europe. Renew. Sustain. Energy Rev. 2018, 82, 1749–1764. [Google Scholar] [CrossRef]
- Sigurjonsson, H.Æ.; Elmegaard, B.; Clausen, L.R.; Ahrenfeldt, J. Climate Effect of an Integrated Wheat Production and Bioenergy System with Low Temperature Circulating Fluidized Bed Gasifier. Appl. Energy 2015, 160, 511–520. [Google Scholar] [CrossRef]
- Pratiwi, A.S.; Trutnevyte, E. Life Cycle Assessment of Shallow to Medium-Depth Geothermal Heating and Cooling Networks in the State of Geneva. Geothermics 2021, 90, 101988. [Google Scholar] [CrossRef]
- Menberg, K.; Heberle, F.; Uhrmann, H.; Bott, C.; Grünäugl, S.; Brüggemann, D.; Bayer, P. Environmental Impact of Cogeneration in Binary Geothermal Plants. Renew. Energy 2023, 218, 119251. [Google Scholar] [CrossRef]
- Mainar-Toledo, M.D.; Díaz-Ramírez, M.; Egilsson, S.J.; Zuffi, C.; Manfrida, G.; Leiva, H. Environmental Impact Assessment of Nesjavellir Geothermal Power Plant for Heat and Electricity Production. Sustainability 2023, 15, 13943. [Google Scholar] [CrossRef]
- Maione, A.; Massarotti, N.; Santagata, R.; Ulgiati, S.; Vanoli, L. Integrated Environmental Accounting of a Geothermal Grid. Renew. Sustain. Energy Rev. 2023, 185, 113613. [Google Scholar] [CrossRef]
- Wang, M.; Xu, H. The Impact of Building Height on Urban Thermal Environment in Summer: A Case Study of Chinese Megacities. PLoS ONE 2021, 16, e0247786. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-R.; Tang, Y.-F.; Wang, H.-Q.; Liu, Z.-Q.; Yang, S.; Li, C.-J.; Jin, W.-T. Comparison of Life Cycle Performance of Distributed Energy System and Conventional Energy System for District Heating and Cooling in China. J. Cent. South Univ. 2022, 29, 2357–2376. [Google Scholar] [CrossRef]
- Tester, J.W.; Beckers, K.F.; Hawkins, A.J.; Lukawski, M.Z. The Evolving Role of Geothermal Energy for Decarbonizing the United States. Energy Environ. Sci. 2021, 14, 6211–6241. [Google Scholar] [CrossRef]
- Abrahamsen, F.E.; Ruud, S.G.; Gebremedhin, A. Assessing Efficiency and Environmental Performance of a Nearly Zero-Energy University Building’s Energy System in Norway. Buildings 2023, 13, 169. [Google Scholar] [CrossRef]
- Temporim, R.B.L.; Cavalaglio, G.; Petrozzi, A.; Coccia, V.; Iodice, P.; Nicolini, A.; Cotana, F. Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L. Energies 2022, 15. [Google Scholar] [CrossRef]
- Kanematsu, Y.; Oosawa, K.; Okubo, T.; Kikuchi, Y. Designing the Scale of a Woody Biomass CHP Considering Local Forestry Reformation: A Case Study of Tanegashima, Japan. Appl. Energy 2017, 198, 160–172. [Google Scholar] [CrossRef]
- Ericsson, N.; Porsö, C.; Åhlgren, S.; Nordberg, Å.; Sundberg, C.; Hansson, P.A. Time-Dependent Climate Impact of a Bioenergy System-Methodology Development and Application to Swedish Conditions. GCB Bioenergy 2013, 5, 580–590. [Google Scholar] [CrossRef]
- Björnebo, L.; Spatari, S.; Gurian, P.L. A Greenhouse Gas Abatement Framework for Investment in District Heating. Appl. Energy 2018, 211, 1095–1105. [Google Scholar] [CrossRef]
- Spirito, G.; Dénarié, A.; Cirillo, V.F.; Casella, F.; Famiglietti, J.; Motta, M. Energy Mapping and District Heating as Effective Tools to Decarbonize a City: Analysis of a Case Study in Northern Italy. Energy Rep. 2021, 7, 254–262. [Google Scholar] [CrossRef]
- Pozzi, M.; Spirito, G.; Fattori, F.; Dénarié, A.; Famiglietti, J.; Motta, M. Synergies between Buildings Retrofit and District Heating. The Role of DH in a Decarbonized Scenario for the City of Milano. Energy Rep. 2021, 7, 449–457. [Google Scholar] [CrossRef]
- Gustafsson, M.; Gustafsson, M.S.; Myhren, J.A.; Bales, C.; Holmberg, S. Techno-Economic Analysis of Energy Renovation Measures for a District Heated Multi-Family House. Appl. Energy 2016, 177, 108–116. [Google Scholar] [CrossRef]
- Abu-Rayash, A.; Dincer, I. Development and Assessment of an Integrated Wind-Solar Based Energy System for Sustainable Communities. Energy Convers. Manag. 2023, 277, 116680. [Google Scholar] [CrossRef]
- Hampo, C.C.; Ya, H.H.; Majid, M.A.A.; Mokhtar, A.A.; Kalpani Rasangika, A.H.D.; Muhammed, M. Life Cycle Assessment of a Vapor Compression Cooling System Integrated within a District Cooling Plant. Sustainability 2021, 13, 11940. [Google Scholar] [CrossRef]
- Akbar, A.; Mokhtar, A.A.B. Integrating Life Cycle Costing (LCC) and Life Cycle Assessment (LCA) Model for Selection of Centralized Chilled Water Generation-Review Paper. MATEC Web Conf. 2017, 131, 04006. [Google Scholar] [CrossRef]
- Famiglietti, J.; Gerevini, L.; Spirito, G.; Pozzi, M.; Dénarié, A.; Scoccia, R.; Motta, M. Environmental Life Cycle Assessment Scenarios for a District Heating Network. An Italian Case Study. Energy Rep. 2021, 7, 368–379. [Google Scholar] [CrossRef]
- Ristimäki, M.; Säynäjoki, A.; Heinonen, J.; Junnila, S. Combining Life Cycle Costing and Life Cycle Assessment for an Analysis of a New Residential District Energy System Design. Energy 2013, 63, 168–179. [Google Scholar] [CrossRef]
- Famiglietti, J.; Lavagna, M.; Motta, M. Comparison among Different Approaches to Deal with Multifunctionality. In Proceedings of the XIV Convegno Della Rete Italiana LCA IX Convegno dell’ Associazione Rete Italiana LCA-La Sostenibilità della LCA tra Sfide Globali e Competitività delle Organizzazioni, Cortina d’Ampezzo, Italy, 9–11 December 2020. [Google Scholar]
- Beretta, G.P.; Iora, P.; Ghoniem, A.F. Novel Approach for Fair Allocation of Primary Energy Consumption among Cogenerated Energy-Intensive Products Based on the Actual Local Area Production Scenario. Energy 2012, 44, 1107–1120. [Google Scholar] [CrossRef]
- Heck, T. Ecoinvent Report n. 6-XIV. Chapter 6—Allocation: Combined Heat and Power; Swiss Centre for Life Cycle Inventories, Swiss Centre for Life Cycle Inventories: Zurich, Switzerland, 2007. [Google Scholar]
- Liu, Z.; Tang, Y.; Zhou, H.; Yang, S. Life Cycle Performance of a Distributed Energy System in Comparison with a Conventional Energy System for District Heating and Cooling in China. J. Clean. Prod. 2021, 288, 125663. [Google Scholar] [CrossRef]
- Roux, C.; Schalbart, P.; Peuportier, B. Development of an Electricity System Model Allowing Dynamic and Marginal Approaches in LCA—Tested in the French Context of Space Heating in Buildings. Int. J. Life Cycle Assess. 2017, 22, 1177–1190. [Google Scholar] [CrossRef]
- Caserini, S.; Livio, S.; Giugliano, M.; Grosso, M.; Rigamonti, L. LCA of Domestic and Centralized Biomass Combustion: The Case of Lombardy (Italy). Biomass Bioenergy 2010, 34, 474–482. [Google Scholar] [CrossRef]
- Solano, J.; Frossard, M.; Lasvaux, S.; Duret, A. Life Cycle Assessment of the New Solar Thermal Power Plant SolarCAD II Connected to a District Heating Network in Geneva, Switzerland. J. Phys. Conf. Ser. 2023, 2600, 152005. [Google Scholar] [CrossRef]
- Livingstone, D.; Smyth, B.M.; Lyons, G.; Foley, A.M.; Murray, S.T.; Johnston, C. Life Cycle Assessment of a Short-Rotation Coppice Willow Riparian Buffer Strip for Farm Nutrient Mitigation and Renewable Energy Production. Renew. Sustain. Energy Rev. 2022, 158, 112154. [Google Scholar] [CrossRef]
- Nilsson, J.; Martin, M. Exploratory Environmental Assessment of Large-Scale Cultivation of Seaweed Used to Reduce Enteric Methane Emissions. Sustain. Prod. Consum. 2022, 30, 413–423. [Google Scholar] [CrossRef]
- Björnsson, L.; Pettersson, M.; Börjesson, P.; Ottosson, P.; Gustavsson, C. Integrating Bio-Oil Production from Wood Fuels to an Existing Heat and Power Plant-Evaluation of Energy and Greenhouse Gas Performance in a Swedish Case Study. Sustain. Energy Technol. Assessments 2021, 48, 101648. [Google Scholar] [CrossRef]
- Abokersh, M.H.; Gangwar, S.; Spiekman, M.; Vallès, M.; Jiménez, L.; Boer, D. Sustainability Insights on Emerging Solar District Heating Technologies to Boost the Nearly Zero Energy Building Concept. Renew. Energy 2021, 180, 893–913. [Google Scholar] [CrossRef]
- Nordenstam, L. Attributional or Consequential Assessments in a Cyclic Greenhouse Gas Management Process–Comparison of Guidance on Use and Production of Electricity and District Heating. J. Clean. Prod. 2021, 317, 128214. [Google Scholar] [CrossRef]
- Feofilovs, M.; Pakere, I.; Romagnoli, F. Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia. Environ. Clim. Technol. 2019, 23, 272–290. [Google Scholar] [CrossRef]
Primary keywords | Life Cycle | District Heating |
Secondary keywords | Environmental Impact LCA | District Cooling |
Main Categories | Sub-Aspects |
---|---|
Technical aspects | Network typology |
Methodological aspects | Functional unit |
Database adopted | |
Characterization methodology | |
Multifunctionality (if present) | |
modeling approach (attributional or consequential) |
- | 3GDHN | 4GDHN | 5GDHCN |
---|---|---|---|
General information about energy recovery | Possibility of recovering waste heat at high temperatures | Possibility of integrating renewable sources and waste heat at low temperatures | Increased efficiency by recovering waste heat from the evaporator of chillers in substations |
Supply temperature of the fluid [°C] | 80–100 °C [31] 80–90 °C [29] Over 80 °C (adopted) | 80–50 °C [31] 80–30 °C [32] 80–40 °C (adopted) | Lower than 50 °C [31] Lower than 30 °C [32] Lower than 40 °C (adopted) |
Pipe technology and grid losses | Utilizes prefabricated and insulated pipes | Reduces grid losses compared to 3GDH | Utilizes prefabricated and non-insulated pipes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Autelitano, K.; Famiglietti, J.; Aprile, M.; Motta, M. Towards Life Cycle Assessment for the Environmental Evaluation of District Heating and Cooling: A Critical Review. Standards 2024, 4, 102-132. https://doi.org/10.3390/standards4030007
Autelitano K, Famiglietti J, Aprile M, Motta M. Towards Life Cycle Assessment for the Environmental Evaluation of District Heating and Cooling: A Critical Review. Standards. 2024; 4(3):102-132. https://doi.org/10.3390/standards4030007
Chicago/Turabian StyleAutelitano, Kevin, Jacopo Famiglietti, Marcello Aprile, and Mario Motta. 2024. "Towards Life Cycle Assessment for the Environmental Evaluation of District Heating and Cooling: A Critical Review" Standards 4, no. 3: 102-132. https://doi.org/10.3390/standards4030007
APA StyleAutelitano, K., Famiglietti, J., Aprile, M., & Motta, M. (2024). Towards Life Cycle Assessment for the Environmental Evaluation of District Heating and Cooling: A Critical Review. Standards, 4(3), 102-132. https://doi.org/10.3390/standards4030007