The Effectiveness of GLP-1 Receptor Agonist Semaglutide on Body Composition in Elderly Obese Diabetic Patients: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Blood Sampling
2.3. Bioelectrical Impedance Analysis
2.4. Statistics
3. Results
3.1. Basal Clinical Data of Patients and BW Changes after Semaglutide Administration
3.2. Changes in Blood Metabolic Parameters after Semaglutide Administration
3.3. Changes in Fat Mass, Body Fat Percentage, Ratio of Extracellular Fluid, and Bone Mineral Content after Semaglutide Treatment
3.4. Changes in MM and %MM after Semaglutide Treatment
4. Discussion
5. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koh, H.E.; van Vliet, S.; Pietka, T.A.; Meyer, G.A.; Razani, B.; Laforest, R.; Gropler, R.J.; Mittendorfer, B. Subcutaneous Adipose Tissue Metabolic Function and Insulin Sensitivity in People with Obesity. Diabetes 2021, 70, 2225–2236. [Google Scholar] [CrossRef] [PubMed]
- Antoniak, K.; Hansdorfer-Korzon, R.; Mrugacz, M.; Zorena, K. Adipose Tissue and Biological Factors. Possible Link between Lymphatic System Dysfunction and Obesity. Metabolites 2021, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Pasman, W.J.; Memelink, R.G.; de Vogel-Van den Bosch, J.; Begieneman, M.P.V.; van den Brink, W.J.; Weijs, P.J.M.; Wopereis, S. Obese Older Type 2 Diabetes Mellitus Patients with Muscle Insulin Resistance Benefit from an Enriched Protein Drink during Combined Lifestyle Intervention: The PROBE Study. Nutrients 2020, 12, 2979. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, H.W.; Jeong, J.B.; Lee, D.S.; Ahn, D.W.; Kim, J.W.; Kim, B.G.; Lee, K.L.; Oh, S.; Yoon, S.H.; et al. Association of obesity, visceral adiposity, and sarcopenia with an increased risk of metabolic syndrome: A retrospective study. PLoS ONE 2021, 16, e0256083. [Google Scholar] [CrossRef]
- Mastrototaro, L.; Roden, M. Insulin resistance and insulin sensitizing agents. Metabolism 2021, 125, 154892. [Google Scholar] [CrossRef]
- Kim, B.; Tsujimoto, T.; So, R.; Zhao, X.; Oh, S.; Tanaka, K. Changes in muscle strength after diet-induced weight reduction in adult men with obesity: A prospective study. Diabetes Metab. Syndr. Obes. 2017, 10, 187–194. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32 (Suppl. S2), S157–S163. [Google Scholar] [CrossRef]
- Moore, M.C.; Cherrington, A.D.; Wasserman, D.H. Regulation of hepatic and peripheral glucose disposal. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17, 343–364. [Google Scholar] [CrossRef]
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Yokohama, K.; Ohama, H.; Nishiguchi, S.; Higuchi, K. Sarcopenia, frailty and type 2 diabetes mellitus. Mol. Med. Rep. 2021, 24, 854. [Google Scholar] [CrossRef]
- Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 diabetes mellitus in older adults: Clinical considerations and management. Nat. Rev. Endocrinol. 2021, 17, 534–548. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; González-Ruíz, K. Predictive validity of the body adiposity index in overweight and obese adults using dual-energy x-ray absorptiometry. Nutrients 2016, 8, 737. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; González-Crespo, I.; Catalán, V. Clinical usefulness of abdominal bioimpedance (ViScan) in the determination of visceral fat and its application in the diagnosis and management of obesity and its comorbidities. Clin. Nutr. 2018, 37, 580–589. [Google Scholar] [CrossRef]
- Widen, E.M.; Strain, G.; King, W.C. Validity of bioelectrical impedance analysis for measuring changes in body water and percent fat after bariatric surgery. Obes. Surg. 2014, 24, 847–854. [Google Scholar] [CrossRef]
- Buffa, R.; Mereu, E.; Comandini, O. Bioelectrical impedance vector analysis (BIVA) for the assessment of two-compartment body composition. Eur. J. Clin. Nutr. 2014, 68, 1234–1240. [Google Scholar] [CrossRef]
- Xiao, J.; Purcell, S.A.; Prado, C.M. Fat mass to fat-free mass ratio reference values from NHANES III using bioelectrical impedance analysis. Clin. Nutr. 2017, 5614, 31353–31355. [Google Scholar] [CrossRef]
- Brozek, J.; Grande, F.; Anderson, J.T.; Keys, A. Densitometric analysis of body composition: Revision of some quantitative assumptions. Ann. N. Y. Acad. Sci. 1963, 110, 113–140. [Google Scholar] [CrossRef]
- Ozeki, Y.; Masaki, T.; Yoshida, Y.; Okamoto, M.; Anai, M.; Gotoh, K.; Endo, Y.; Ohta, M.; Inomata, M.; Shibata, H. Bioelectrical Impedance Analysis Results for Estimating Body Composition Are Associated with Glucose Metabolism Following Laparoscopic Sleeve Gastrectomy in Obese Japanese Patients. Nutrients 2018, 10, 1456. [Google Scholar] [CrossRef]
- Brown, E.; Heerspink, H.J.L.; Cuthbertson, D.J.; Wilding, J.P.H. SGLT2 inhibitors and GLP-1 receptor agonists: Established and emerging indications. Lancet 2021, 398, 262–276. [Google Scholar] [CrossRef]
- Vallon, V.; Thomson, S.C. Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia 2017, 60, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Bolinder, J.; Ljunggren, O.; Kullberg, J.; Johansson, L. Wilding, J.; Langkilde, A.M.; Sugg, J.; Parikh, S. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 2012, 97, 1020–1031. [Google Scholar] [CrossRef] [PubMed]
- Ohta, A.; Kato, H.; Ishii, S.; Sasaki, Y.; Nakamura, Y.; Nakagawa, T.; Nagai, Y.; Tanaka, Y. Ipragliflozin, a sodium glucose co-transporter 2 inhibitor, reduces intrahepatic lipid content and abdominal visceral fat volume in patients with type 2 diabetes. Expert. Opin. Pharmacother. 2017, 18, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- McLean, B.A.; Wong, C.K.; Campbell, J.E.; Hodson, D.J.; Trapp, S.; Drucker, D.J. Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocr. Rev. 2021, 42, 101–132. [Google Scholar] [CrossRef] [PubMed]
- Jendle, J.; Nauck, M.A.; Matthews, D.R.; Frid, A.; Hermansen, K.; During, M.; Zdravkovic, M.; Strauss, B.J.; Garber, A.J.; LEAD-2 and LEAD-3 Study Groups. Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes. Metab. 2009, 11, 1163–1172. [Google Scholar] [CrossRef]
- Feng, W.H.; Bi, Y.; Li, P.; Yin, T.T.; Gao, C.X.; Shen, S.M.; Gao, L.J.; Yang, D.H.; Zhu, D.L. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: A randomized trial. J. Diabetes Investig. 2019, 10, 399–407. [Google Scholar] [CrossRef]
- Rondanelli, M.; Perna, S.; Astrone, P.; Grugnetti, A.; Solerte, S.B.; Guido, D. Twenty-four-week effects of liraglutide on body composition, adherence to appetite, and lipid profile in overweight and obese patients with type 2 diabetes mellitus. Patient. Prefer. Adherence 2016, 10, 407–413. [Google Scholar]
- Ishii, S.; Nagai, Y.; Sada, Y.; Fukuda, Y.; Nakamura, Y.; Matsuba, R.; Nakagawa, T.; Kato, H.; Tanaka, Y. Liraglutide Reduces Visceral and Intrahepatic Fat Without Significant Loss of Muscle Mass in Obese Patients with Type 2 Diabetes: A Prospective Case Series. J. Clin. Med. Res. 2019, 11, 219–224. [Google Scholar] [CrossRef]
- Perna, S.; Guido, D.; Bologna, C.; Solerte, S.B.; Guerriero, F.; Isu, A.; Rondanelli, M. Liraglutide and obesity in elderly: Efficacy in fat loss and safety in order to prevent sarcopenia. A perspective case series study. Aging Clin. Exp. Res. 2016, 28, 1251–1257. [Google Scholar] [CrossRef]
- Agersø, H.; Jensen, L.B.; Elbrønd, B.; Rolan, P.; Zdravkovic, M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 2002, 45, 195–202. [Google Scholar] [CrossRef]
- Faria, S.L.; Faria, O.P.; Cardeal, M.D. Validation study of multi-frequency bioelectrical impedance with dual-energy X-ray absorptiometry among obese patients. Obes. Surg. 2014, 24, 1476–1480. [Google Scholar] [CrossRef]
- Sorli, C.; Harashima, S.I.; Tsoukas, G.M.; Unger, J.; Karsbøl, J.D.; Hansen, T.; Bain, S.C. Efficacy and safety of once-weekly semaglutide monotherapy versus placebo in patients with type 2 diabetes (SUSTAIN 1): A double-blind, randomised, placebo-controlled, parallel-group, multinational, multicentre phase 3a trial. Lancet Diabetes Endocrinol. 2017, 5, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Rayner, J.J.; Banerjee, R.; Francis, J.M. Normalization of visceral fat and complete reversal of cardiovascular remodeling accompany gastric bypass, not banding. J. Am. Coll. Cardiol. 2015, 66, 2569–2570. [Google Scholar] [CrossRef]
- Bradley, D.P.; Kulstad, R.; Racine, N.; Shenker, Y.; Meredith, M.; Schoeller, D.A. Alterations in energy balance following exenatide administration. Appl. Physiol. Nutr. Metab. 2012, 37, 893–899. [Google Scholar] [CrossRef]
- Ishoy, P.L.; Knop, F.K.; Broberg, B.V.; Bak, N.; Andersen, U.B.; Jorgensen, N.R.; Holst, J.J.; Glenthøj, B.Y.; Ebdrup, B.H. Effect of GLP-1 receptor agonist treatment on body weight in obese antipsychotic-treated patients with schizophrenia: A randomized, placebo-controlled trial. Diabetes. Obes. Metab. 2017, 19, 162–171. [Google Scholar] [CrossRef]
- Bunck, M.C.; Diamant, M.; Eliasson, B.; Corner, A.; Shaginian, R.M.; Heine, R.J.; Taskinen, M.R.; Yki-Järvinen, H.; Smith, U. Exenatide affects circulating cardiovascular risk biomarkers independently of changes in body composition. Diabetes Care 2010, 33, 1734–1737. [Google Scholar] [CrossRef]
- Hong, J.Y.; Park, K.Y.; Kim, B.J.; Hwang, W.M.; Kim, D.H.; Lim, D.M. Effects of short-term exenatide treatment on regional fat distribution, glycated hemoglobin levels, and aortic pulse wave velocity of obese type 2 diabetes mellitus patients. Endocrinol. Metab. 2016, 31, 80–85. [Google Scholar] [CrossRef]
- Blundell, J.; Finlayson, G.; Axelsen, M.; Flint, A.; Gibbons, C.; Kvist, T.; Hjerpsted, J.B. Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes. Obes. Metab. 2017, 19, 1242–1251. [Google Scholar] [CrossRef]
- Masaki, T.; Ozeki, Y.; Yoshida, Y.; Okamoto, M.; Miyamoto, S.; Gotoh, K.; Shibata, H. Glucagon-Like Peptide-1 Receptor Agonist Semaglutide Improves Eating Behavior and Glycemic Control in Japanese Obese Type 2 Diabetic Patients. Metabolites 2022, 12, 147. [Google Scholar] [CrossRef]
- Li, Z.; Ni, C.L.; Yao, Z.; Chen, L.M.; Niu, W.Y. Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells. Metabolism 2014, 63, 1022–1030. [Google Scholar] [CrossRef]
- Andreozzi, F.; Raciti, G.A.; Nigro, C.; Mannino, G.C.; Procopio, T.; Davalli, A.M.; Beguinot, F.; Sesti, G.; Miele, C.; Folli, F. The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. J. Transl. Med. 2016, 14, 229. [Google Scholar] [CrossRef]
- Abdulla, H.; Phillips, B.; Smith, K.; Wilkinson, D.; Atherton, P.J.; Idris, I. Physiological mechanisms of action of incretin and insulin in regulating skeletal muscle metabolism. Curr. Diabetes Rev. 2014, 10, 327–335. [Google Scholar] [CrossRef]
- Yang, J. Enhanced skeletal muscle for effective glucose homeostasis. Prog. Mol. Biol. Transl. Sci. 2014, 121, 133–163. [Google Scholar] [PubMed]
- Sargeant, J.A.; Henson, J.; King, J.A.; Yates, T.; Khunti, K.; Davies, M.J. A Review of the Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Lean Body Mass in Humans. Endocrinol. Metab. 2019, 34, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. (Lausanne) 2019, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.; Clements, J.N. Clinical review of subcutaneous semaglutide for obesity. J. Clin. Pharm. Ther. 2022, 47, 184–193. [Google Scholar] [CrossRef]
- Takeda, K.; Ono, H.; Ishikawa, K.; Ohno, T.; Kumagai, J.; Ochiai, H.; Matumoto, A.; Yokoh, H.; Maezawa, Y.; Yokote, K. Central administration of sodium-glucose cotransporter-2 inhibitors increases food intake involving adenosine monophosphate-activated protein kinase phosphorylation in the lateral hypothalamus in healthy rats. BMJ Open Diabetes Res. Care 2021, 9, e002104. [Google Scholar] [CrossRef]
- Miura, H.; Sakaguchi, K.; Okada, Y.; Yamada, T.; Otowa-Suematsu, N.; So, A.; Komada, H.; Hirota, Y.; Ohara, T.; Kuroki, Y.; et al. Effects of ipragliflozin on glycemic control, appetite and its related hormones: A prospective, multicenter, open-label study (SOAR-KOBE Study). J. Diabetes Investig. 2019, 10, 1254–1261. [Google Scholar] [CrossRef]
Baseline | 3 Months | p | |
---|---|---|---|
Age (years) | 52.0 ± 6.9 | ||
Diabetic duration (years) | 11.1 ± 11.3 | ||
Body weight (kg) | 93.9 ± 14.6 | 90.8 ± 14.6 | <0.01 |
Total body weight loss (kg) | 3.1 ± 2.5 | ||
%TBWL | 3.3 ± 2.5 | ||
%EBWL | 9.8 ± 7.3 | ||
BMI (kg/m2) | 35.9 ± 6.1 | 34.7 ± 5.8 | <0.01 |
Fasting plasma glucose (mg/dL) | 116.3 ± 29.8 | 104.5 ± 36.1 | 0.03 |
HbA1c (%) | 7.0 ± 1.0 | 6.4 ± 1.0 | <0.01 |
Triglycerides (mg/dL) | 151.0 ± 62.7 | 152.1 ± 60.3 | 0.75 |
HDL cholesterol (mg/dL) | 58.9 ± 9.8 | 57.5 ± 9.6 | 0.39 |
LDL cholesterol (mg/dL) | 122.1 ± 24.2 | 109.1 ± 21.7 | 0.05 |
BUN (mg/dL) | 14.1 ± 3.4 | 14.5 ± 5.4 | 0.77 |
Creatinine (mg/dL) | 0.7 ± 0.3 | 0.8 ± 0.2 | 0.17 |
AST (IU/L) | 20.3 ± 10.3 | 21.2 ± 9.4 | 0.15 |
ALT (IU/L) | 24.1 ± 14.1 | 25.5 ± 14.0 | 0.51 |
GTP (IU/L) | 22.5 ± 10.1 | 22.0 ± 12.7 | 0.38 |
Baseline | 3 Months | p | |
---|---|---|---|
FM (kg) | 40.5 ± 12.7 | 38.2 ± 12.8 | <0.01 |
FM (%) | 42.5 ± 9.5 | 41.4 ± 10.2 | <0.01 |
Skeletal MM (kg) | 29.5 ± 5.3 | 29.0 ± 5.4 | <0.05 |
Skeletal MM (%) | 31.9 ± 5.7 | 32.3 ± 6.1 | 0.06 |
Bone mineral content | 2.90 ± 0.63 | 2.91 ± 0.64 | 0.76 |
Ratio of extracellular fluid | 0.39 ± 0.01 | 0.39 ± 0.01 | 0.79 |
Baseline | 3 Months | p | |
---|---|---|---|
Right upper leg muscle (%) | 3.2 ± 0.6 | 3.3 ± 0.7 | 0.07 |
Right lower leg muscle (%) | 9.0 ± 1.4 | 9.0 ± 1.6 | 0.81 |
Left upper leg muscle (%) | 3.3 ± 0.6 | 3.3 ± 0.7 | 0.31 |
Left lower leg muscle (%) | 8.9 ± 1.5 | 8.9 ± 1.6 | 0.75 |
Upper leg muscle (%) | 6.5 ± 1.2 | 6.6 ± 1.3 | 0.15 |
Lower leg muscle (%) | 18.0 ± 2.9 | 18.0 ± 3.2 | 0.81 |
Lower/Upper leg muscle | 2.8 ± 0.2 | 2.7 ± 0.3 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozeki, Y.; Masaki, T.; Kamata, A.; Miyamoto, S.; Yoshida, Y.; Okamoto, M.; Gotoh, K.; Shibata, H. The Effectiveness of GLP-1 Receptor Agonist Semaglutide on Body Composition in Elderly Obese Diabetic Patients: A Pilot Study. Medicines 2022, 9, 47. https://doi.org/10.3390/medicines9090047
Ozeki Y, Masaki T, Kamata A, Miyamoto S, Yoshida Y, Okamoto M, Gotoh K, Shibata H. The Effectiveness of GLP-1 Receptor Agonist Semaglutide on Body Composition in Elderly Obese Diabetic Patients: A Pilot Study. Medicines. 2022; 9(9):47. https://doi.org/10.3390/medicines9090047
Chicago/Turabian StyleOzeki, Yoshinori, Takayuki Masaki, Akari Kamata, Shotaro Miyamoto, Yuichi Yoshida, Mitsuhiro Okamoto, Koro Gotoh, and Hirotaka Shibata. 2022. "The Effectiveness of GLP-1 Receptor Agonist Semaglutide on Body Composition in Elderly Obese Diabetic Patients: A Pilot Study" Medicines 9, no. 9: 47. https://doi.org/10.3390/medicines9090047
APA StyleOzeki, Y., Masaki, T., Kamata, A., Miyamoto, S., Yoshida, Y., Okamoto, M., Gotoh, K., & Shibata, H. (2022). The Effectiveness of GLP-1 Receptor Agonist Semaglutide on Body Composition in Elderly Obese Diabetic Patients: A Pilot Study. Medicines, 9(9), 47. https://doi.org/10.3390/medicines9090047