Toxic Metal Concentrations in Drinking Water and Possible Effect on Sex Hormones among Men in Sabongida-Ora, Edo State, Nigeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Water Sample Collection
2.2. Sample Size Determination
2.3. Research Design
2.4. Inclusion and Exclusion Criteria
2.5. Ethical Consideration
2.6. Data Collection Tools and Techniques
2.7. Laboratory Analysis
Estimation of Cadmium, Lead, Zinc and Copper
Procedure
2.8. Standard Preparation (QC)
2.9. Determination of Sex Hormones
2.10. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Pb | lead |
Cd | Cadmium |
Zn | Zinc |
Cu | Copper |
FSH | Follicle Stimulating Hormone |
LH | Luteinizing hormone |
PROL | Prolactin |
PROG | Progesterone |
E2 | Estradiol |
T | Testosterone |
GnRH | Gonadotropin-Releasing hormone |
HPG | Hypothalamic-Pituitary-Gonadal |
References
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- Appannagari, R.R.R. Environmental Pollution Causes and Consequences: A Study. Project: Environment and Ecology. North Asian Int. Res. J. Soc. Sci. Humanit. 2017, 3, 151–161. [Google Scholar]
- Ghassabian, A.; Trasande, L. Disruption in Thyroid Signaling Pathway: A Mechanism for the Effect of Endocrine-Disrupting Chemicals on Child Neurodevelopment. Front. Endocrinol. 2018, 9, 204. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, Y.J. Bisphenols and Thyroid Hormone. Endocrinol. Metab. 2019, 34, 340–348. [Google Scholar] [CrossRef]
- Giera, S.; Bansal, R.; Ortiz-Toro, T.M.; Taub, D.G.; Zoeller, R.T. Individual polychlorinated biphenyl (PCB) congeners produce tissue- and gene-specific effects on thyroid hormone signaling during development. Endocrinology 2011, 152, 2909–2919. [Google Scholar] [CrossRef] [Green Version]
- Graceli, J.B.; Dettogni, R.S.; Merlo, E.; Niño, O.; da Costa, C.S.; Zanol, J.F.; Ríos-Morris, E.A.; Miranda-Alves, L.; Denicol, A.C. The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis. Mol. Cell Endocrinol. 2020, 518, 110997. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, S.; Pan, L.; Dong, W.; Ma, M.; Liu, W.; Zhuang, S. The molecular mechanism of the antagonistic activity of hydroxylated polybrominated biphenyl (OH-BB80) toward thyroid receptor. Sci. Total Environ. 2019, 697, 134040. [Google Scholar] [CrossRef]
- Vanderpump, M. Epidemiology of Thyroid Disorders. The Thyroid and Its Disease: A Comprehensive Guide for the Clinician; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 75–85. [Google Scholar]
- Roman, B.R.; Morris, L.G.; Davies, L. The thyroid cancer epidemic, 2017 perspective. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 332–336. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Vidovix, T.B.; Januário, E.F.D.; Bergamasco, R.; Vieira, A.M.S. Bisfenol A adsorption using a low-cost adsorbent prepared from residues of babassu coconut peels. Environ. Technol. 2021, 42, 2372–2384. [Google Scholar] [CrossRef]
- Mishra, S.; Martin, L.; Lalumière, R.; Williams, J. Personality and Individual Differences; BPS Blackwell: England, UK, 2010; pp. 616–621. [Google Scholar]
- Harvey, P.J.; Handley, H.K.; Taylor, M.P. Identification of the sources of metal (lead) contamination in drinking waters in northeastern Tasmania using lead isotopic Compositions. Environ. Sci. Poll. Res. 2015, 22, 12276–12288. [Google Scholar] [CrossRef]
- Pezzarossa, B.; Gorini, F.; Petruzelli, G. Heavy Metal and Selenium Distribution and Bioavailability in Contaminated Sites. A Tool for Phytoremediation. In Dynamics and Bioavailability of Heavy Metals in the Rootzone; Selim, H.M., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 93–128. [Google Scholar]
- Landis, W.G.; Sofield, R.M.; Yu, M.-H. Introduction to Environmental Toxicology: Molecular Substructures to Ecological Landscapes, 4th ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hassan, H.; Sade, A.B.; Muhammad, S.B. Hypermarket retailing expansion as a hub of socio-economic development in Malaysia. J. Bus. Dev. Nations 2015, 14, 33–49. [Google Scholar]
- Nardia, P.; Fábio, S.; Evangelist, A.B.; Luciano, T.B.; Tatiana, D.; Saint’Pierre, B.; Adilson, J.; Curtius, B.; Samuel, S.; deSouzaa, F.B. The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 2009, 112, 727–732. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2000; Available online: http://www.who.int/about/licensing/copyright_form/en/index.html (accessed on 22 February 2019).
- Sharma, P.; Dubey, A.; Chatterjee, S.K. Determination of heavy metals in surface and ground water in an around (Agrang Block) Raipur District, Chhattisgarh, India. Int. J. Scientific. Eng. Res. 2013, 4, 722–724. [Google Scholar]
- Uadia, P.O.; Emokpae, M.A. Male infertility in Nigeria: A neglected Reproductive Health issue requiring attention. J. Basic. Clin. Reprod. Scis. 2015, 4, 45–53. [Google Scholar]
- Emokpae, M.A.; Brown, S.I. Effects of Lifestyle Factors on Fertility: Practical Recommendations for Modification. Reprod. Fertil. 2021, 2, R13–R26. [Google Scholar] [CrossRef]
- Moronkeji, M.A.; Emokpae, M.A.; Ojo, T.A.; Moronkeji, R.E.; Ogundoju, L.T. The Patterns and Occupational Distribution of hormonal Abnormalities among men investigated for Infertility in some centers in the Southwest, Nigeria. J. Clin. Transl. Res. 2021, 7, 113–120. [Google Scholar]
- Lwanga, S.K.; Lemeshow, S. Sample Size Determination in Health Studies: A Practical Manual; World Health Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Emokpae, M.A.; Oyakhire, F.O. Levels of some reproductive hormones, cadmium and lead among fuel pump attendants in Benin City, Nigeria. Afri. J. Med. Health Sci. 2020, 19, 70–77. [Google Scholar]
- Atsdr, U.S. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicol. Profiles. Toxic. Subst. 2015, 44, 7–9. [Google Scholar]
- Marcovecchio, J.E.; Botte, S.E.; Freije, R.H. Heavy Metals, Major Metals, Trace Elements. In Handbook of Water Analysis, 2nd ed.; Nollet, L.M., Ed.; CRC Press: London, UK, 2007; pp. 275–311. [Google Scholar]
- World Health Organization. Hazardous Chemicals in Human and Environmental Health: A Resource Book for School, College and University Students; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Momodu, M.A.; Anyakara, C.A. Heavy Metal Contamination of Ground Water: The Surulere Case Study. Res. J. Environ. Earth Scis. 2010, 2, 39–43. [Google Scholar]
- Emokpae, M.A.; Adobor, C.A. Association of seminal plasma cadmium levels with semen quality in non-occupationally exposed infertile Nigerian males. J. Environ. Occup. Scis. 2015, 3, 40–43. [Google Scholar] [CrossRef]
- Lauwerys, R.R. Health Effects of Cadmium. In Trace Metal: Exposure and Health Effects; Ferrante, E.D., Ed.; Pergamon Press: England, UK, 1979; pp. 43–64. [Google Scholar]
- Orisakwe, O.E.; Igwilo, I.O.; Afonne, O.J.; Maduabuchi, J.U.; Obi, E.; Nduka, J.C. Heavy metal hazards of sachet water in Nigeria. Arch. Environ. Occup. Health 2006, 61, 209–213. [Google Scholar] [CrossRef]
- Hammer, M.J.; Hammer Junior, M.J. Water Quality. In Water and Waste Water Technology, 5th ed.; Prentice-Hall: Hoboken, NJ, USA, 2004; pp. 139–159. [Google Scholar]
- Adepoju-Bello, A.A.; Alabi, O.M. Heavy metals: A review. The. Nig. J. Pharm. 2005, 37, 41–45. [Google Scholar]
- Emokpae, M.A.; Adobor, C.; Ibadin, K. Seminal Plasma levels of lead and mercury in infertile males in Benin City, Nigeria. Int. J. Med. Res. Health Scis. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Berman, E. Toxic Metals and Their Analysis. Philadelphia, PA: Hayden and Sons; Cornell University: New York, NY, USA, 1980; pp. 5–20. [Google Scholar]
- Zietz, B.P.; Lap, J.; Suchenwirth, J.R. Assessment and management of tap-water Lead contamination in Lower Saxon, Germany. Int. J. Environ. Health Res. 2007, 17, 407–418. [Google Scholar] [CrossRef]
- Needleman, H.L. The current status of childhood low-level lead toxicity. Neurotoxicology 1993, 14, 161–166. [Google Scholar]
- Yousefi, M.; Saleh, H.N.; Mohammadi, A.A.; Mahvi, A.H.; Ghadrpoori, M.; Suleimani, H. Data on water quality index for the ground-water in rural area Neyshabur county, Razavi province. Iran. Data Brief 2017, 15, 901–907. [Google Scholar] [CrossRef]
- Obasi, P.N.; Akudinobi, B.B. Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Appl. Water Sci. 2020, 10, 184. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR); U.S. Department of Health and Human Services, Public Health Service; Division of Toxicology: Atlanta, GA, USA, 2007.
- Obasi, P.N.; Akudinobi, B.E.B. Geochemical assessment of heavy metal distribution and pollution status in soil/stream sediment in the Ameka mining area of Ebonyi state, Nigeria. Afr. J. Geosci. Res. 2015, 3, 1–7. [Google Scholar]
- Lukáč, N.; Massányi, P.; Kročková, J.; Nad’, P.; Slamečka, J.; Ondruška, L.; Formicki, G.; Trandžík, J. Relationship between trace element concentrations and spermatozoa quality in rabbit semen. Slovak J. Anim. Sci. 2009, 42, 46–50. [Google Scholar]
- Al-Rudainy, L.A. Blood lead level among fuel station workers. Oman. Med. J. 2010, 25, 208–211. [Google Scholar] [CrossRef]
- Al-Shamri, A.M.J.; Nama, R.S.; Radhi, A.W.; Odda, F.M. Determination of Lead, Cupper, Iron, and Zinc in Blood of Fuel Station Worker at Al–Najaf City. Iraq. Acad. Scientif. J. 2010, 15, 1–10. [Google Scholar]
- Buzcu-Guven, B.; Harriss, R. Extent, impacts and remedies of global gas Flaring and venting. Carbon. Manage. 2012, 3, 95–108. [Google Scholar] [CrossRef]
- Akinloye, O.; Arowojolu, A.O.; Shittu, O.B.; Anetor, J.I. Cadmium Toxicity: A possible cause of male infertility in Nigeria. Reprod. Biol. 2006, 6, 17–30. [Google Scholar] [PubMed]
- Umeyama, T.; Ishikawa, H.; Takeshima, H.; Yoshi, S.; Koiso, K. A Comparative study of Seminal Trace Elements in Fertile and Infertile men. Fertil. Steril. 1986, 46, 494–499. [Google Scholar] [CrossRef]
- Makada, M.T.; Amith, S. Levels Cadmium, Chromium, Nickel, Manganese and Lead in normal and pathological human Seminal Plasma. Urol. J. 2005, 72, 461–464. [Google Scholar]
- Corradi, P.F.; Corradi, R.B.; Greene, L.W. Physiology of the Hypothalamic Pituitary Gonadal Axis in the Male. Urol. Clin. 2016, 43, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Sur, U.; Erkekoglu, P.; Bulus, A.D.; Andiran, N.; Kocer-Gumusel, B. Oxidative stress markers, trace elements, and endocrine disrupting chemicals in children with Hashimoto’s thyroiditis. Toxicol. Mech. Methods 2019, 29, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Vander, A.; Sherman, J.; Luciano, D. Human physiology: The Mechanisms of Body Function. Smith. J. Med. N. Am. 1998, 56, 8–11. [Google Scholar]
- Telisman, S.; Colak, B.; Pizent, A.; Jurasoviæ, J.; Cvitkoviæ, P. Reproductive toxicity of low-level lead exposure in men. Environ. Res. 2007, 105, 256. [Google Scholar] [CrossRef]
Variables | Total (n = 90) | Dug-Well and Borehole Water Consumers (n = 60) | Control Group (n = 30) | X2 | p-Value |
---|---|---|---|---|---|
Age (Years) | |||||
18–25 | 56 (62.2%) | 31 (51.6%) | 25 (83.3%) | ||
26–35 | 20 (22.2%) | 15 (25.0%) | 5 (16.6%) | ||
36–40 | 8 (8.8%) | 8 (13.3%) | 0 (0.0%) | 71.60 | p = 0.001 |
40–above | 6 (6.6%) | 6 (10.0%) | 0 (0.0%) | ||
Body mass | Index (kg/m2) | ||||
Underweight | 3 (3.3%) | 3 (5.0%) | 0 (0.0%) | ||
Normal | 42 (46.6%) | 22 (36.6%) | 20 (66.6%) | ||
Overweight | 32 (35.5%) | 23 (38.6%) | 9 (30.0%) | 45.53 | p = 0.001 |
Obese | 13 (14.4%) | 12 (20.0%) | 1 (3.3%) |
Sources of Water | Toxic and | Essential | Metals | |
---|---|---|---|---|
Cd (µg/dL) | Pb (µg/dL) | Zn (µg/dL) | Cu (µg/dL) | |
Hand-dug well (n = 10) | 0.51 ± 0.02 | 1.81 ± 0.10 | 215 ± 9.8 | 125 ± 10.2 |
Borehole (n = 10) | 0.32 ± 0.01 | 1.10 ± 0.02 | 198 ± 10.2 | 105 ± 8.2 |
Treated water (n = 10) | 0.29 ± 0.01 | 0.81 ± 0.10 | 192 ± 9.8 | 104 ± 7.9 |
WHO permissible limit in drinking water | 0.3 (0.003 mg/L) | 1.0 (0.010 mg/L) | 300 (3.0 mg/L) | 200 (2.0 mg/L) |
Measured Parameters | Hand-Dug Well/Borehole Water Consumers N = 60 | Treated Water Consumers N = 30 | p-Value |
---|---|---|---|
Cd (µg/dL) | 3.62 ± 0.41 | 0.91 ± 0.21 | p = 0.001 |
Pb (µg/dL) | 3.89 ± 3.25 | 1.64 ± 0.04 | p = 0.001 |
Cu (µg/dL) | 97.03 ± 1.62 | 97.90 ± 2.63 | p = 0.335 |
Zn (µg/dL) | 98.26 ± 2.58 | 163.30 ± 3.43 | p = 0.001 |
Measured Parameters | Hand-Dug Well Water Consumers N = 30 | Borehole Water Consumers N = 30 | p-Value |
---|---|---|---|
Cd (µg/dL) | 3.61 ± 0.55 | 2.66 ± 0.21 | p = 0.001 |
Pb (µg/dL) | 4.00 ± 0.26 | 2.08 ± 0.42 | p = 0.001 |
Cu (µg/dL) | 91.08 ± 1.41 | 106.70 ± 4.41 | p = 0.001 |
Zn (µg/dL) | 97.25 ± 2.16 | 116.95 ± 4.58 | p = 0.001 |
Measured Parameters | Hand-Dug Well/Borehole Water Consumers N = 60 | Treated Water Consumers N = 30 | p-Value |
---|---|---|---|
FSH (miu/mL) | 3.26 ± 0.33 | 5.83 ± 0.38 | p = 0.001 |
LH (miu/mL) | 1.46 ± 0.14 | 6.98 ± 0.28 | p = 0.001 |
E2 (pg/mL) | 2.63 ± 0.33 | 9.93 ± 2.26 | p = 0.002 |
PROG (ng/mL) | 1.34 ± 0.41 | 4.11 ± 1.29 | p = 0.04 |
T (ng/mL) | 3.68 ± 0.30 | 6.54 ± 0.27 | p = 0.001 |
PROL (ng/mL) | 22.07± 0.66 | 18.37 ± 0.49 | p = 0.001 |
Measured Parameters | Hand-Dug Well Water Consumers N = 30 | Borehole Water Consumers N = 30 | p-Value |
---|---|---|---|
FSH (miu/mL) | 1.92 ± 0.23 | 4.72 ± 0.74 | p = 0.001 |
LH (miu/mL) | 1.10 ± 0.11 | 2.21 ± 0.30 | p = 0.001 |
E2 (pg/mL) | 1.32 ± 0.27 | 4.38 ± 0.64 | p = 0.001 |
PROG (ng/mL) | 0.91 ± 0.27 | 1.93 ± 0.10 | p = 0.244 |
T (ng/mL) | 2.79 ± 0.16 | 4.98 ± 0.36 | p = 0.001 |
PROL (ng/mL) | 19.80± 0.76 | 25.85 ± 0.67 | p = 0.001 |
Variables | N | Regression Coefficient (β) | Standard Error of Coefficient (β) | Pearson Correlation Coefficient (r) | p-Value |
---|---|---|---|---|---|
FSH (miu/mL) | |||||
Cd (µg/L) | 60 | 0.067 | 0.096 | −0.275 | 0.606 |
Pb (µg/L) | 60 | −0.260 | 0.019 | −0.398 | 0.045 ** |
Cu (µg/dL) | 60 | −0.018 | 0.022 | 0.055 | 0.863 |
Zn (µg/dL) | 60 | 0.304 | 0.005 | 0.422 | 0.0021 ** |
Age (years) | 60 | 0.009 | 0.360 | −0.015 | 0.930 |
BMI (kg/m2) | 60 | −0.062 | 0.064 | −0.172 | 0.550 |
LH (miu/mL) | |||||
Cd (µg/L) | 60 | −0.266 | 0.072 | −0.622 | 0.005 ** |
Pb (µg/L) | 60 | −0.038 | 0.014 | −0.493 | 0.674 |
Cu (µg/dL) | 60 | −0.055 | 0.016 | 0.033 | 0.452 |
Zn (µg/dL) | 60 | 0.573 | 0.004 | 0.745 | 0.001 ** |
Age (years) | 60 | −0.034 | 0.027 | −0.068 | 0.630 |
BMI (kg/m2) | 60 | 0.022 | 0.648 | −0.205 | 0.765 |
Variables | N | Regression Coefficient (β) | Standard Error of Coefficient (β) | Pearson Correlation Coefficient (r) | p-Value |
---|---|---|---|---|---|
E2 (pg/L) | |||||
Cd (µg/L) | 60 | 0.066 | 0.287 | −0.230 | 0.622 |
Pb (µg/L) | 60 | −0.026 | 0.057 | −0.250 | 0.840 |
Cu (µg/dL) | 60 | 0.040 | 0.065 | 0.065 | 0.703 |
Zn (µg/dL) | 60 | −0.399 | 0.016 | 0.412 | 0.003 ** |
Age (years) | 60 | −0.041 | 0.107 | −0.041 | 0.687 |
BMI (kg/m2) | 60 | −0.131 | 0.191 | −0.268 | 0.223 |
PROG (ng/mL) | |||||
Cd (µg/L) | 60 | −0.170 | 0.183 | −0.222 | 0.229 |
Pb (µg/L) | 60 | 0.147 | 0.036 | −0.055 | 0.287 |
Cu (µg/dL) | 60 | −0.075 | 0.041 | −0.087 | 0.499 |
Zn (µg/dL) | 60 | −0.192 | 0.010 | 0.229 | 0.172 |
Age(years) | 60 | −0.022 | 0.068 | 0.004 | 0.841 |
BMI (kg/m2) | 60 | −0.036 | 0.081 | −0.102 | 0.661 |
Variables | N | Regression Coefficient (β) | Standard Error of Coefficient (β) | Pearson Correlation Coefficient (r) | p-Value |
---|---|---|---|---|---|
PROL (ng/mL) | |||||
Cd (µg/L) | 60 | −0.053 | 0.160 | 0.282 | 0.679 |
Pb (µg/L) | 60 | 0.354 | 0.032 | 0.443 | 0.006 ** |
Cu (µg/dL) | 60 | 0.093 | 0.036 | −0.024 | 0.356 |
Zn (µg/dL) | 60 | −0.257 | 0.009 | −0.404 | 0.047 ** |
Age (years) | 60 | 0.061 | 0.060 | 0.098 | 0.654 |
BMI (kg/m2) | 60 | −0.046 | 0.106 | 0.072 | 0.654 |
TESTO (ng/mL) | |||||
Cd (µg/L) | 60 | −0.132 | 0.087 | −0.426 | 0.280 |
Pb (µg/L) | 60 | −0.105 | 0.017 | −0.400 | 0.382 |
Cu (µg/dL) | 60 | −0.005 | 0.020 | 0.072 | 0.961 |
Zn (µg/dL) | 60 | 0.418 | 0.005 | 0.542 | 0.001 ** |
Age (years) | 60 | 0.006 | 0.033 | −0.035 | 0.949 |
BMI (kg/m2) | 60 | 0.054 | 0.058 | −0.109 | 0.580 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enehizena, O.O.; Emokpae, M.A. Toxic Metal Concentrations in Drinking Water and Possible Effect on Sex Hormones among Men in Sabongida-Ora, Edo State, Nigeria. Medicines 2022, 9, 4. https://doi.org/10.3390/medicines9010004
Enehizena OO, Emokpae MA. Toxic Metal Concentrations in Drinking Water and Possible Effect on Sex Hormones among Men in Sabongida-Ora, Edo State, Nigeria. Medicines. 2022; 9(1):4. https://doi.org/10.3390/medicines9010004
Chicago/Turabian StyleEnehizena, Osaro Ogie, and Mathias A. Emokpae. 2022. "Toxic Metal Concentrations in Drinking Water and Possible Effect on Sex Hormones among Men in Sabongida-Ora, Edo State, Nigeria" Medicines 9, no. 1: 4. https://doi.org/10.3390/medicines9010004
APA StyleEnehizena, O. O., & Emokpae, M. A. (2022). Toxic Metal Concentrations in Drinking Water and Possible Effect on Sex Hormones among Men in Sabongida-Ora, Edo State, Nigeria. Medicines, 9(1), 4. https://doi.org/10.3390/medicines9010004