Uncharted Source of Medicinal Products: The Case of the Hedychium Genus
Abstract
:1. Introduction
2. In Vitro and In Vivo Activities of Hedychium Extracts and Essential Oils
2.1. Anti-Acetylcholinesterase
2.2. Antidiabetic
2.3. Anti-Inflammatory
2.4. Antimicrobial
2.5. Antioxidant
2.6. Antitumor
2.7. Hepatoprotective
2.8. Insecticide
3. Secondary Metabolites from Hedychium Species and Its Activities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
A-431 | Human epidermoid carcinoma |
A549 | Human lung adenocarcinoma |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) |
AChE | Acetylcholinesterase |
AgNPs | H. coronarium-synthesized silver nanoparticles |
BHT | 2,6-di-tert-butyl-4-methylphenol |
BMDC | Bone marrow-derived dendritic cells |
C57BKSdb/db | Strain of laboratory mouse with a mutation that results in chronic hyperglycemia, pancreatic beta cell atrophy, low insulin level and obesity |
CAT | Catalase |
CHO | Chinese hamster ovary cells |
Colo-205 | Colorectal adenocarcinoma |
COX-1 | Cyclooxygenase 1 |
DLD-1 | Human colorectal carcinoma |
DPPH | 1,1-Diphenyl-2-picrylhydrazyl |
EC50 | Half maximal effective concentration |
ED50 | Half maximal effective dose |
GPx | Glutathione peroxidase |
HeLa | Human cervical carcinoma |
HepG2 | Human hepatocellular carcinoma |
HL-60 | Human acute promyelocytic leukemia |
HuCCA-1 | Human cholangiocarcinoma |
HUVEC | Human umbilical vascular endothelial cells |
IC50 | Half maximal inhibitory concentration |
IFN-γ | Interferon gamma |
IL-6 | Interleukin 6 |
Il-12p40 | Interleukin-12 subunit p40 |
KB | Human epidermoid carcinoma |
KT50 | Knockdown time 50% |
LC50 | Lethal concentration that kills 50% of exposed organisms |
LNCaP | Human prostate adenocarcinoma |
LPS | Lipopolysaccharide |
MAO-A | Monoamine oxidase A |
MCF-7 | Human breast adenocarcinoma |
MDA-MB-231 | Human breast adenocarcinoma |
MG132 | Carbobenzoxy-Leu-Leu-leucinal |
MIC | Minimum inhibitory concentration |
MOLT-3 | Human acute lymphoblastic leukemia T-lymphoblasts |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NCI-H187 | Human classic small cell lung carcinoma |
NF-κB | Nuclear factor kappa-B |
NO | Nitric oxide |
OHSC | Organotypic hippocampal slice cultures |
P388 | Mouse lymphoma neoplasm |
P388D1 | Murine macrophage-like lymphoma |
RAW 264.7 | Murine macrophage |
ROS | Reactive oxygen species |
S102 | Human hepatocellular carcinoma |
SI | Selectivity index |
SOD | Superoxide dismutase |
STZ | Streptozotocin |
T2DM | Type 2 diabetes mellitus |
T-47D | Human hormone-dependent breast cancer |
TNF-α | Tumor necrosis factor α |
U937 | Human histiocytic lymphoma |
Vero | African green monkey kidney epithelial cells |
XWLC-05 | Human lung adenocarcinoma |
References
- Schaal, B. Plants and people: Our shared history and future. Plants People Planet 2019, 1, 14–19. [Google Scholar] [CrossRef]
- Lemonnier, N.; Zhou, G.-B.; Prasher, B.; Mukerji, M.; Chen, Z.; Brahmachari, S.K.; Noble, D.; Auffray, C.; Sagner, M. Traditional knowledge-based medicine: A review of history, principles, and relevance in the present context of P4 systems medicine. Prog. Prev. Med. 2017, 2, e0011. [Google Scholar] [CrossRef]
- Kumar, A.; Aswal, S.; Chauhan, A.; Semwal, R.B.; Kumar, A.; Semwal, D.K. Ethnomedicinal investigation of medicinal plants of Chakrata region (Uttarakhand) used in the traditional medicine for diabetes by Jaunsari tribe. Nat. Prod. Bioprospecting 2019, 9, 175–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyk, B.-E.V. A family-level floristic inventory and analysis of medicinal plants used in Traditional African Medicine. J. Ethnopharmacol. 2020, 249, 112351. [Google Scholar] [CrossRef] [PubMed]
- Belokurov, S.S.; Narkevich, I.A.; Flisyuk, E.V.; Kaukhova, I.E.; Aroyan, M.V. Modern extraction methods for medicinal plant raw material (Review). Pharm. Chem. J. 2019, 53, 559–563. [Google Scholar] [CrossRef]
- Kharbach, M.; Marmouzi, I.; Jemli, M.E.; Bouklouze, A.; Heyden, Y.V. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—A review. J. Pharm. Biomed. Anal. 2020, 177, 112849. [Google Scholar] [CrossRef] [PubMed]
- The Plant List. Available online: http://www.theplantlist.org/browse/A/Zingiberaceae/Hedychium/ (accessed on 20 February 2020).
- Branney, T.M.E. Hardy Gingers: Including Hedychium, Roscocea, and Zingiber, Royal Horticultural Society Plant Collector Guide; Timber Press: Portland, OR, USA, 2005; p. 267. ISBN 0881926779. [Google Scholar]
- Basak, S.; Ramesh, A.M.; Kesari, V.; Parida, A.; Mitra, S.; Rangan, L. Genetic diversity and relationship of Hedychium from Northeast India as dissected using PCA analysis and hierarchical clustering. Meta Gene 2014, 2, 459–468. [Google Scholar] [CrossRef]
- Tanaka, N.; Ohi-Toma, T.; Aung, M.M.; Murata, J. Systematic notes on the genus Hedychium (Zingiberaceae) in Myanmar. Bull. Natl. Mus. Nat. Sci. Ser. B 2016, 42, 57–66. [Google Scholar]
- Vanchhawng, L.; Lalramnghinglova, H. Notes on the genus Hedychium J. Koen. (Zingiberaceae) in Mizoram, north east India. Int. J. Waste Resour. 2016, 6, 1000234. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.O.; Batisteli, A.F.; Espindola, E.L.G.; Matos, D.M.S. Invasive Hedychium coronarium inhibits native seedling growth through belowground competition. Flora 2019, 261, 151479. [Google Scholar] [CrossRef]
- Costa, H.; Bettencourt, M.J.; Silva, C.M.N.; Teodósio, J.; Gil, A.; Silva, L. Invasive alien plants in the azorean protected areas: Invasion status and mitigation actions. In Plant Invasions in Protected Areas Patterns, Problems and Challenges; Foxcroft, L.C., Pyšek, P., Richardson, D.M., Genovesi, P., Eds.; Invading Nature-Springer Series in Invasion Ecology; Springer Science + Business Media: Dordrecht, The Netherlands, 2013; Volume 7, Chapter 17; pp. 375–394. ISBN 978-94-007-7750-7. [Google Scholar]
- Minden, V.; Hennenberg, K.J.; Porembski, S.; Boehmer, H.J. Invasion and management of alien Hedychium gardnerianum (kahili ginger, Zingiberaceae) alter plant species composition of a montane rainforest on the island of Hawai’i. Plant Ecol. 2010, 206, 321–333. [Google Scholar] [CrossRef]
- Ashokan, A.; Gowda, V. Describing terminologies and discussing records: More discoveries of facultative vivipary in the genus Hedychium J.Koenig (Zingiberaceae) from Northeast India. PhytoKeys 2018, 96, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, E.W.; Wong, S.K. Phytochemistry and pharmacology of ornamental gingers, Hedychium coronarium and Alpinia purpurata: A review. J. Integr. Med. 2015, 13, 368–379. [Google Scholar] [CrossRef]
- Yue, Y.; Yu, R.; Fan, Y. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genom. 2015, 16, 470. [Google Scholar] [CrossRef] [Green Version]
- Badola, H.K. Hedychium spicatum—A commercial Himalayan herb needs entrepreneurship at local level. Non-Wood News 2009, 19, 26–27. [Google Scholar]
- Hartati, R.; Suganda, A.G.; Fidrianny, I. Botanical, phytochemical and pharmacological properties of Hedychium (Zingiberaceae)—A review. Procedia Chem. 2014, 13, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Pachurekar, P.; Dixit, A.K. A review on pharmacognostical phytochemical and ethnomedicinal properties of Hedychium coronarium J. Koenig an Endangered Medicine. IJCM 2017, 1, 49–61. [Google Scholar] [CrossRef]
- Rawat, S.; Jugran, A.K.; Bhatt, I.D.; Ranbeer, S.; Rawal, R.S. Hedychium spicatum: A systematic review on traditional uses, phytochemistry, pharmacology and future prospectus. J. Pharm. Pharmacol. 2018, 70, 687–712. [Google Scholar] [CrossRef] [Green Version]
- Kamble, K.G.; Dale, A.V. A review on pharmacognostic and pharmacological approach of different species of Hedychium. Indo Am. J. Phamacol. Sci. 2018, 5, 6030–6036. [Google Scholar]
- Ong, H.G.; Ling, S.M.; Win, T.T.M.; Kang, D.-H.; Lee, J.-H.; Kim, Y.-D. Ethnomedicinal plants and traditional knowledge among three Chin indigenous groups in Natma Taung National Park (Myanmar). J. Ethnopharmacol. 2018, 225, 136–158. [Google Scholar] [CrossRef]
- Panmei, R.; Gajurel, P.R.; Singh, B. Ethnobotany of medicinal plants used by the Zeliangrong ethnic group of Manipur, northeast India. J. Ethnopharmacol. 2019, 235, 164–182. [Google Scholar] [CrossRef] [PubMed]
- Tribess, B.; Pintarelli, G.M.; Bini, L.A.; Camargo, A.; Funez, L.A.; Gasper, A.L.; Zeni, A.L.B. Ethnobotanical study of plants used for therapeutic purposes in the Atlantic Forest region, Southern Brazil. J. Ethnopharmacol. 2015, 164, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Yazbek, P.B.; Matta, P.; Passero, L.F.; Santos, G.; Braga, S.; Assunção, L.; Sauini, T.; Cassas, F.; Garcia, R.J.F.; Honda, S.; et al. Plants utilized as medicines by residents of Quilombo da Fazenda, Núcleo Picinguaba, Ubatuba, São Paulo, Brazil: A participatory survey. J. Ethnopharmacol. 2019, 244, 112123. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Fernandes, V.F.; Lata, S.; Ayub, A. Indo-Amazonian ethnobotanic connections-Similar uses of some common plants. Ethnobotany 1995, 7, 29–37. [Google Scholar]
- Vásquez, J.; Alarcón, J.C.; Jiménez, S.L.; Jaramillo, G.I.; Gómez-Betancur, I.C.; Rey-Suárez, J.P.; Jaramillo, K.M.; Muñoz, D.C.; Marín, D.M.; Romero, J.O. Main plants used in traditional medicine for the treatment of snake bites n the regions of the department of Antioquia, Colombia. J. Ethnopharmacol. 2015, 170, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Parida, R.; Mohanty, S.; Nayak, S. Chemical composition of essential oil from leaf and rhizome of micropropagated and conventionally grown Hedychium coronarium Koen from Eastern India. J. Essent. Oil Bear. Plants 2015, 18, 161–167. [Google Scholar] [CrossRef]
- Ray, A.; Dash, B.; Sahoo, S.; Sahoo, A.; Jena, S.; Kar, B.; Chatterjee, T.; Ghosh, B.; Nayak, S. Development and validation of an HPTLC method for estimation of coronarin D in Hedychium coronarium rhizome. Acta Chromatogr. 2017, 29, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.; Bharati, K.A.; Ahmad, J.; Sharma, M.P. New ethnomedicinal claims from Gujjar and Bakerwals tribes of Rajouri and Poonch districts of Jammu and Kashmir, India. J. Ethnopharmacol. 2015, 166, 119–128. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Lim, Y.Y.; Wong, L.F.; Lianto, F.S.; Wong, S.K.; Lim, K.K.; Joe, C.E.; Lim, T.Y. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008, 109, 477–483. [Google Scholar] [CrossRef]
- Suroowan, S.; Pynee, K.B.; Mahomoodally, M.F. A comprehensive review of ethnopharmacologically important medicinal plant species from Mauritius. S. Afr. J. Bot. 2019, 122, 189–213. [Google Scholar] [CrossRef]
- Coe, F.G.; Anderson, G.J. Snakebite ethnopharmacopoeia of eastern Nicaragua. J. Ethnopharmacol. 2005, 96, 303–323. [Google Scholar] [CrossRef] [PubMed]
- Valadeau, C.; Castillo, J.A.; Sauvain, M.; Lores, A.F.; Bourdy, G. The rainbow hurts my skin: Medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. J. Ethnopharmacol. 2010, 127, 175–192. [Google Scholar] [CrossRef] [PubMed]
- Tawatsin, A.; Asavadachanukorn, P.; Thavara, U.; Wongsinkongman, P.; Bansidhi, J.; Boonruad, T.; Chavalittumrong, P.; Soonthornchareonnon, N.; Komalamisra, N.; Mulla, M.S. Repellency of essential oils extracted from plants in Thailand against four mosquito vectors (Diptera: Culicidae) and oviposition deterrent effects against Aedes aegypti (Diptera: Culicidae). Southeast Asian J. Trop. Med. Public Health 2006, 37, 915–931. [Google Scholar] [PubMed]
- Kiem, P.V.; Thuy, N.T.K.; Anh, H.L.T.; Nhiem, N.X.; Minh, C.V.; Yen, P.H.; Ban, N.K.; Hang, D.T.; Tai, B.H.; Tuyen, N.V.; et al. Chemical constituents of the rhizomes of Hedychium coronarium and their inhibitory effect on the pro-inflammatory cytokines production LPS-stimulated in bone marrow-derived dendritic cells. Bioorganic Med. Chem. Lett. 2011, 21, 7460–7465. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Jantan, I.; Jalil, J. Constituents of the rhizome oil of Hedychium cylindricum Ridl. J. Essent. Oil Res. 2004, 16, 299–301. [Google Scholar] [CrossRef]
- Malla, B.; Gauchan, D.P.; Chhetri, R.B. An ethnobotanical study of medicinal plants used by ethnic people in Parbat district of western Nepal. J. Ethnopharmacol. 2015, 165, 103–117. [Google Scholar] [CrossRef]
- Ranjarisoa, L.N.; Razanamihaja, N.; Rafatro, H. Use of plants in oral health care by the population of Mahajanga, Madagascar. J. Ethnopharmacol. 2016, 193, 179–194. [Google Scholar] [CrossRef]
- Sirirugsa, P. Thai Zingiberaceae: Species diversity and their uses. The International Conference on Biodiversity and Bioresource: Conservation and Utilization. Phuket, Thailand, 1998. Available online: http://old.iupac.org/symposia/proceedings/phuket97/sirirugsa.html (accessed on 27 April 2020).
- Bhatt, V.P.; Negi, V.; Purohit, V.K. Hedychium spicatum Buch.-Ham.: A high valued skin glowing and curing medicinal herb needs future attention on its conservation. N. Y. Sci. J. 2010, 3, 86–88. [Google Scholar]
- Savithramma, N.; Sulochana, C.; Rao, K.N. Ethnobotanical survey of plants used to treat asthma in Andhra Pradesh, India. J. Ethnopharmacol. 2007, 113, 54–61. [Google Scholar] [CrossRef]
- Upasani, M.S.; Upasani, S.V.; Beldar, V.G.; Beldar, C.G.; Gujarathi, P.P. Infrequent use of medicinal plants from India in snakebite treatment. Integr. Med. Res. 2018, 7, 9–26. [Google Scholar] [CrossRef]
- Rachkeeree, A.; Kantadoung, K.; Suksathan, R.; Puangpradab, R.; Page, P.A.; Sommano, S.R. Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand. Front. Nutr. 2018, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, O.; Rajput, M.; Kumar, M.; Pant, A.K. Chemical composition and antibacterial activity of rhizome oils from Hedychium coronarium Koenig and Hedychium spicatum Buch-Ham. J. Essent. Oil Bear. Plants 2010, 13, 250–259. [Google Scholar] [CrossRef]
- Chaithra, B.; Satish, S.; Hegde, K.; Shabaraya, A.R. Pharmacological review on Hedychium coronarium Koen: The white ginger lily. Int. J. Pharm. Chem. Res. 2017, 3, 831–836. [Google Scholar]
- Rasool, S.; Maqbool, M. An overview about Hedychium spicatum: A review. J. Drug Deliv. Ther. 2019, 9, 476–480. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Arruda, M.; Viana, H.; Rainha, N.; Neng, N.R.; Rosa, J.S.; Nogueira, J.M.F.; Barreto, M.C. Anti-acetylcholinesterase and antioxidant activity of essential oils from Hedychium gardnerianum Sheppard ex Ker-Gawl. Molecules 2012, 17, 3082–3092. [Google Scholar] [CrossRef] [Green Version]
- Kharroubi, A.T.; Darwish, H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes 2015, 6, 850–867. [Google Scholar] [CrossRef]
- Dowarah, J.; Singh, V.P. Anti-diabetic drugs recent approaches and advancements. Bioorganic Med. Chem. 2020, 28, 115263. [Google Scholar] [CrossRef]
- Tse, L.-S.; Liao, P.-L.; Tsai, C.-H.; Li, C.-H.; Liao, J.-W.; Kang, J.-J.; Cheng, Y.-W. Glycemia lowering effect of an aqueous extract of Hedychium coronarium leaves in diabetic rodent models. Nutrients 2019, 11, 629. [Google Scholar] [CrossRef] [Green Version]
- Kaur, H.; Richa, R. Antidiabetic activity of essential oil of Hedychium spicatum. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 853–857. [Google Scholar] [CrossRef]
- Medzhitov, R. Inflammation 2010: New adventures of an old flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straub, R.H.; Schradin, C. Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evol. Med. Public Health 2016, 2016, 37–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghildiyal, S.; Gautam, M.K.; Joshi, V.K.; Goel, R.K. Pharmacological evaluation of extracts of Hedychium spicatum (Ham-ex-Smith) rhizome. Anc. Sci. Life 2012, 31, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Chachad, D.; Shimpi, S. Anti-inflammatory activity of “Kapurkachari”. Electron. J. Pharmacol. Ther. 2008, 1, 25–27. [Google Scholar]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.; Knight, R.; Gordon, J.I. The human microbiome project: Exploring the microbial part of ourselves in a changing world. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Khezerlou, A.; Alizadeh-Sani, M.; Azizi-Lalabadi, M.; Ehsani, A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog. 2018, 123, 505–526. [Google Scholar] [CrossRef]
- Watkins, K. Emerging infectious diseases: A review. Curr. Emerg. Hosp. Med. Rep. 2018, 6, 86–93. [Google Scholar] [CrossRef]
- Noriega, P.; Guerrini, A.; Sacchetti, G.; Grandini, A.; Ankuash, E.; Manfredini, S. Chemical composition and biological activity of five essential oils from the ecuadorian Amazon rain forest. Molecules 2019, 24, 1637. [Google Scholar] [CrossRef] [Green Version]
- Rath, C.C.; Priyadarshanee, M. Evaluation of in-vitro antibacterial activity of selected essential oils. J. Essent. Oil Bear. Plants 2017, 20, 359–367. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Dash, B.; Kar, B.; Halder, T.; Chatterjee, T.; Ghosh, B.; Panda, P.C.; Nayak, S.; Mahapatra, N. Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind. Crops Prod. 2018, 112, 353–362. [Google Scholar] [CrossRef]
- Thomas, S.; Mani, B. Composition, antibacterial and anti-oxidant potentials of the essential oil of Hedychium matthewii. Bangladesh J. Pharmacol. 2017, 12, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Shi, W.; Miklossy, J.; Tauxe, G.M.; McMeniman, C.J.; Zhang, Y. Identification of essential oils with strong activity against stationary phase Borrelia burgdorferi. Antibiotics 2018, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalagatur, N.K.; Kamasani, J.R.; Siddaiah, C.; Gupta, V.K.; Krishna, K.; Mudili, V. Combinational inhibitory action of Hedychium spicatum L. essential oil and γ-radiation on growth rate and mycotoxins content of Fusarium graminearum in maize: Response surface methodology. Front. Microbiol. 2018, 9, 1511. [Google Scholar] [CrossRef] [PubMed]
- Arora, R.; Mazumder, A. Phytochemical screening and antimicrobial activity of rhizomes of Hedychium spicatum. Pharmacog. J. 2017, 9, s64–s68. [Google Scholar] [CrossRef]
- Choudhary, G.K.; Singh, S.P.; Kumar, R.R. In vitro antioxidant and anthelmintic properties of rhizome extracts of Hedychium spicatum. Indian J. Anim. Sci. 2018, 88, 300–303. [Google Scholar]
- Chandel, N.S.; Budinger, G.R.S. The cellular basis for diverse responses to oxygen. Free Radic. Biol. Med. 2007, 42, 165–174. [Google Scholar] [CrossRef]
- Tavares, W.R.; Seca, A.M.L. Inula L. Secondary metabolites against oxidative stress-related human diseases. Antioxidants 2019, 8, 122. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.D. Unlocking the potential of natural products in drug discovery. Microb. Biotechnol. 2019, 12, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.; Jena, S.; Kar, B.; Patnaik, J.; Panda, P.C.; Nayak, S. Chemical composition and antioxidant activities of essential oil of Hedychium greenii and Hedychium gracile from India. Nat. Prod. Res. 2019, 33, 1482–1485. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, L.; Yang, Z.; Wei, J.; Zhang, K.; Zheng, X.; Fang, Y.; Lin, L.; Tang, J.; Wu, F.; et al. Antioxidative activities of essential oils and ethanol extrations from ornamental Zingiberaceae species. J. Essent. Oil Bear. Plants 2017, 20, 215–222. [Google Scholar] [CrossRef]
- Usha, T.; Pradhan, S.; Goyal, A.K.; Dhivya, S.; Kumar, H.P.P.; Singh, M.K.; Joshi, N.; Basistha, B.C.; Murthy, K.R.S.; Selvaraj, S.; et al. Molecular simulation-based combinatorial modeling and antioxidant activities of Zingiberaceae family rhizomes. Pharmacogn. Mag. 2017, 13, S715–S722. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, G.K.; Singh, S.P. Ameliorating potential of Hedychium spictum on oxidative stress following chronic exposure to indoxacarb in WLH cockerels. Indian J. Anim. Res. 2017, 51, 832–836. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bidram, E.; Esmaeili, Y.; Ranji-Burachaloo, H.; Al-Zaubai, N.; Zarrabi, A.; Stewart, A.; Dunstan, D.E. A concise review on cancer treatment methods and delivery systems. J. Drug Deliv. Sci. Technol. 2019, 54, 101350. [Google Scholar] [CrossRef]
- Dutta, S.; Mahalanobish, S.; Saha, S.; Ghosh, S.; Sil, P.C. Natural products: An upcoming therapeutic approach to cancer. Food Chem. Toxicol. 2019, 128, 240–255. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Dash, B.; Sahoo, A.; Kar, B.; Patnaik, J.; Panda, P.C.; Nayak, S.; Mahapatra, N. Hedychium coronarium extract arrests cell cycle progression, induces apoptosis, and impairs migration and invasion in HeLa cervical cancer cells. Cancer Manag. Res. 2019, 11, 483–500. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, G.K.; Singh, S.P. Cytotoxic potential of rhizome extracts of Hedychium spicatum L. in HepG2 cell line using MTT. Indian J. Anim. Sci. 2017, 87, 313–315. [Google Scholar]
- Geran, R.I.; Greenberg, N.H.; McDonald, M.M.; Schumacher, A.M.; Abbott, B.J. Protocols for screening chemical agents and natural products against animal tumour and other biological systems. Cancer Chemother. Rep. 1972, 3, 1–103. [Google Scholar]
- Reddy, P.P.; Rao, R.R.; Rekha, K.; Babu, K.S.; Shashidhar, J.; Shashikiran, G.; Lakshmi, V.V.; Rao, J.M. Two new cytotoxic diterpenes from the rhizomes of Hedychium spicatum. Bioorganic Med. Chem. Lett. 2009, 19, 192–195. [Google Scholar] [CrossRef]
- Cornu, R.; Béduneau, A.; Martin, H. Influence of nanoparticles on liver tissue and hepatic functions: A review. Toxicology 2020, 430, 152344. [Google Scholar] [CrossRef]
- Chen, S.; Melchior, W.B., Jr.; Wu, Y.; Guo, L. Autophagy in drug-induced liver toxicity. J. Food Drug Anal. 2014, 22, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Madrigal-Santillán, E.; Madrigal-Bujaidar, E.; Álvarez-González, I.; Sumaya-Martínez, M.T.; Gutiérrez-Salinas, J.; Bautista, M.; Morales-González, Á.; González-Rubio, M.G.-L.; Aguilar-Faisal, J.L.; Morales-González, J.A. Review of natural products with hepatoprotective effects. World J. Gastroenterol. 2014, 20, 14787–14804. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, G.K.; Singh, S.P. In vitro hepatoprotective efficacy of extract of Hedychium spicatum rhizome in paracetamol induced toxicity in HepG2 cell line. Indian J. Anim. Sci. 2018, 88, 546–549. [Google Scholar]
- Choudhary, G.K.; Singh, S.P.; Kumar, A. Effects of GandhPaalashi (Hedychium spicatum) on the expression of hepatic genes associated with biotransformation, antioxidant and immune systems in WLH cockerels fed indoxacarb. Indian J. Anim. Sci. 2018, 88, 786–790. [Google Scholar]
- Jamison, A.; Tuttle, E.; Jensen, R.; Bierly, G.; Gonser, R. Spatial ecology, landscapes, and the geography of vector-borne disease: A multi-disciplinary review. Appl. Geogr. 2015, 63, 418–426. [Google Scholar] [CrossRef]
- Flores, H.A.; O’Neill, S.L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol. 2018, 16, 508–518. [Google Scholar] [CrossRef]
- Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 2020, 14, e0007831. [Google Scholar] [CrossRef] [Green Version]
- Dusfour, I.; Vontas, J.; David, J.-P.; Weetman, D.; Fonseca, D.M.; Corbel, V.; Raghavendra, K.; Coulibaly, M.B.; Martins, A.J.; Kasai, S.; et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl. Trop. Dis. 2019, 13, e0007615. [Google Scholar] [CrossRef]
- Kalimuthu, K.; Panneerselvam, C.; Chou, C.; Tseng, L.-C.; Murugan, K.; Tsai, K.-H.; Alarfaj, A.A.; Higuchi, A.; Canale, A.; Hwang, J.-S.; et al. Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Proces Saf. Environ. Prot. 2017, 109, 82–96. [Google Scholar] [CrossRef]
- AlShebly, M.M.; AlQahtani, F.S.; Govindarajan, M.; Gopinath, K.; Vijayan, P.; Benelli, G. Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2017, 137, 149–157. [Google Scholar] [CrossRef]
- Kumrit, I.; Suksamrarn, A.; Meepawpan, P.; Songsri, S.; Nuntawong, N. Labdane-type diterpenes from Hedychium gardnerianum with potent cytotoxicity against human small cell lung cancer cells. Phytother. Res. 2010, 24, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zeng, G.; Zhao, S.; Xu, J.; Kong, L.; Li, Y.; Tan, N.; Yang, S. Cytotoxic labdane-type diterpenes from Hedychium longipetalum inhibiting production of nitric oxide. Bioorganic Med. Chem. Lett. 2015, 25, 4572–4575. [Google Scholar] [CrossRef] [PubMed]
- Chimnoi, N.; Sarasuk, C.; Khunnawutmanotham, N.; Intachote, P.; Seangsai, S.; Saimanee, B.; Pisutjaroenpong, S.; Mahidol, C.; Techasakul, S. Phytochemical reinvestigation of labdane-type diterpenes and their cytotoxicity from the rhizomes of Hedychium coronarium. Phytochem. Lett. 2009, 2, 184–187. [Google Scholar] [CrossRef]
- Chimnoi, N.; Pisutjaroenpong, S.; Ngiwsara, L.; Dechtrirut, D.; Chokchaichamnankit, D.; Khunnawutmanotham, N.; Mahidol, C.; Techasakul, S. Labdane diterpenes from the rhizomes of Hedychium coronarium. Nat. Prod. Res. 2008, 22, 1249–1256. [Google Scholar] [CrossRef]
- Ray, A.; Halder, T.; Jena, S.; Sahoo, A.; Ghosh, B.; Mohanty, S.; Mahapatra, N.; Nayak, S. Application of artificial neural network (ANN) model for prediction and optimization of coronarin D content in Hedychium coronarium. Ind. Crops Prod. 2020, 146, 112186. [Google Scholar] [CrossRef]
- Reuk-ngam, N.; Chimnoi, N.; Khunnawutmanotham, N.; Techasakul, S. Antimicrobial activity of coronarin D and its synergistic potential with antibiotics. Biomed Res. Int. 2014, 2014, 581985. [Google Scholar] [CrossRef]
- Endringer, D.C.; Taveira, F.S.N.; Kondratyuk, T.P.; Pezzuto, J.M.; Braga, F.C. Cancer chemoprevention activity of labdane diterpenes from rhizomes of Hedychium coronarium. Rev. Bras. Farmacogn. 2014, 24, 408–412. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-C.; Wen, Z.-H.; Sung, P.-J.; Shu, C.-W.; Kuo, W.-L.; Chen, P.-Y.; Jih-Jung Chen, J.-J. New labdane-type diterpenoid and cytotoxic constituents of Hedychium coronarium. Chem. Nat. Compd. 2017, 53, 72–76. [Google Scholar] [CrossRef]
- Wang, W.-H.; Gao, J.-J.; Zuo, X.-F.; Qin, X.-J.; Liu, H.-Y.; Zhao, Q. New diterpenoids from the rhizomes of Hedychium forrestii. Nat. Prod. Res. 2019, 1–7. [Google Scholar] [CrossRef]
- Carvalho, M.J.; Carvalho, L.M.; Ferreira, A.M.; Silva, A.M.S. A new xanthone from Hedychium gardnerianum. Nat. Prod. Res. 2003, 17, 445–449. [Google Scholar] [CrossRef]
- Gnerre, C.; Thull, U.; Gaillard, P.; Carrupt, P.-A.; Testa, B.; Fernandes, E.; Silva, F.; Pinto, M.; Pinto, M.M.M.; Wolfender, J.-L.; et al. Natural and synthetic xanthones as monoamine oxidase inhibitors: Biological assay and 3D-QSAR. Helv. Chim. Acta 2001, 84, 552–570. [Google Scholar] [CrossRef]
- Aung, H.T.; Nikai, T.; Niwa, M.; Takaya, Y. Benzenepolycarboxylic acids with potential anti-hemorrhagic properties and structure-activity relationships. Bioorganic Med. Chem. 2011, 19, 7000–7002. [Google Scholar] [CrossRef]
- Sülsen, V.P.; Lizarraga, E.; Mamadalieva, N.Z.; Lago, J.H.G. Potential of terpenoids and flavonoids from Asteraceae as anti-inflammatory, antitumor, and antiparasitic agents. Evid. Based. Complement. Altern. Med. 2017, 2017, 6196198. [Google Scholar] [CrossRef]
- Ray, A.; Jena, S.; Haldar, T.; Sahoo, A.; Kar, B.; Patnaik, J.; Ghosh, B.; Panda, P.C.; Mahapatra, N.; Nayak, S. Population genetic structure and diversity analysis in Hedychium coronarium populations using morphological, phytochemical and molecular markers. Ind. Crops Prod. 2019, 132, 118–133. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Rashmi; Parcha, V. Effect of seasonal variation on chemical composition and physicochemical properties of Hedychium spicatum rhizomes essential oil. J. Essent. Oil Bear. Plants 2019, 22, 1593–1600. [Google Scholar] [CrossRef]
- Safaei-Ghomi, J.; Ahd, A.A. Antimicrobial and antifungal properties of the essential oil and methanol extracts of Eucalyptus largiflorens and Eucalyptus intertexta. Pharmacogn. Mag. 2010, 6, 172–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sfara, V.; Zerba, E.N.; Alzogaray, R.A. Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus. J. Med. Entomol. 2009, 46, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Jena, S.; Kar, B.; Sahoo, A.; Pratap Chandra Panda, P.C.; Nayak, S.; Mahapatra, N. Volatile metabolite profiling of ten Hedychium species by gas chromatography mass spectrometry coupled to chemometrics. Ind. Crops Prod. 2018, 126, 135–142. [Google Scholar] [CrossRef]
- Nam, S.-Y.; Chung, C.-K.; Seo, J.-H.; Rah, S.-Y.; Kim, H.-M.; Jeong, H.-J. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int. Immunopharmacol. 2014, 23, 273–282. [Google Scholar] [CrossRef]
- Özbek, H.; Yılmaz, B.S. Anti-inflammatory and hypoglycemic activities of alpha-pinene. Acta Pharm. Sci. 2017, 55, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Leite, A.M.; Lima, E.O.; Souza, E.L.; Diniz, M.F.F.M.; Trajano, V.N.; Medeiros, I.A. Inhibitory effect of β-pinene, α-pinene and eugenol on the growth of potential infectious endocarditis causing Gram-positive bacteria. Braz. J. Pharm. Sci. 2007, 43, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Chen, H.; Chen, H.; Zhong, B.; Luo, X.; Chun, J. Antioxidant and anticancer activities of essential oil from Gannan navel orange peel. Molecules 2017, 22, 1391. [Google Scholar] [CrossRef] [PubMed]
- Parida, R.; Nayak, S. Chemical composition of Hedychium coronarium Koen. flowers from eastern India. Plant Sci. Today 2019, 6, 259–263. [Google Scholar] [CrossRef]
- Medeiros, J.R.; Campos, L.B.; Mendonça, S.C.; Davin, L.B.; Lewis, N.G. Composition and antimicrobial activity of the essential oils from invasive species of the Azores, Hedychium gardnerianum and Pittosporum undulatum. Phytochemistry 2003, 64, 561–565. [Google Scholar] [CrossRef]
- Ribeiro, S.S.; de Jesus, A.M.; dos Anjos, C.S.; da Silva, T.B.; Santos, A.D.C.; de Jesus, J.R.; Andrade, M.S.; Sampaio, T.S.; Gomes, W.F.; Alves, P.B.; et al. Evaluation of the cytotoxic activity of some Brazilian medicinal plants. Planta Med. 2012, 78, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Z. Naturforsch. C. J. Biosci. 2007, 62, 507–513. [Google Scholar] [CrossRef]
- Coelho, V.; Mazzardo-Martins, L.; Martins, D.F.; Santos, A.R.S.; Brum, L.F.S.; Picada, J.N.; Pereira, P. Neurobehavioral and genotoxic evaluation of (-)-linalool in mice. J. Nat. Med. 2013, 67, 876–880. [Google Scholar] [CrossRef]
- Kim, M.-G.; Kim, S.-M.; Min, J.-H.; Kwon, O.-K.; Park, M.-H.; Park, J.-W.; Ahn, H.I.; Hwang, J.-Y.; Oh, S.-R.; Lee, J.-W.; et al. Anti-inflammatory effects of linalool on ovalbumin-induced pulmonary inflammation. Int. Immunopharmacol. 2019, 74, 105706. [Google Scholar] [CrossRef]
- Chang, M.-Y.; Shieh, D.-E.; Chen, C.-C.; Yeh, C.-S.; Dong, H.-P. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs. Int. J. Mol. Sci. 2015, 16, 28169–28179. [Google Scholar] [CrossRef] [Green Version]
- Kheloul, L.; Anton, S.; Gadenne, C.; Kellouche, A. Fumigant toxicity of Lavandula spica essential oil and linalool on different life stages of Tribolium confusum (Coleoptera: Tenebrionidae). J. Asia Pac. Entomol. 2020, 23, 320–326. [Google Scholar] [CrossRef]
- Sabogal-Guáqueta, A.M.; Hobbie, F.; Keerthi, A.; Oun, A.; Kortholt, A.; Boddeke, E.; Dolga, A. Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed. Pharmacother. 2019, 118, 109295. [Google Scholar] [CrossRef] [PubMed]
- Brilhante, R.S.N.; Caetano, E.P.; Lima, R.A.C.; Marques, F.J.F.; Castelo-Branco, D.S.C.M.; Melo, C.V.S.; Guedes, G.M.M.; Oliveira, J.S.; Camargo, Z.P.; Moreira, J.L.B.; et al. Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Braz. J. Microbiol. 2016, 47, 917–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, H.M.; Ezzat, S.M. Effect of the method of preparation on the composition and cytotoxic activity of the essential oil of Pituranthos tortuosus. Z. Naturforsch. C. J. Biosci. 2011, 66, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Odyuo, N.; Roy, D.K. Hedychium chingmeianum (Zingiberaceae), a new species from Nagaland, India. Telopea 2017, 20, 193–199. [Google Scholar] [CrossRef]
- Ding, H.-B.; Bin, Y.; Zhou, S.-S.; Li, R.; Maw, M.B.; Kyaw, W.M.; Tan, Y.-H. Hedychium putaoense (Zingiberaceae), a new species from Putao, Kachin State, Northern Myanmar. PhytoKeys 2018, 94, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.; Huang, J.-Q.; Tan, J.-C.; Wu, Y.-Q.; Chen, J. Hedychium viridibracteatum X.Hu, a new species from Guangxi Autonomous Region, South China. PhytoKeys 2018, 110, 69–79. [Google Scholar] [CrossRef]
- Ashokan, A.; Gowda, V. Hedychium ziroense (Zingiberaceae), a new species of ginger lily from Northeast India. PhytoKeys 2019, 117, 73–84. [Google Scholar] [CrossRef] [Green Version]
Hedychium Species | Geographical Origin of the Reported Traditional Use | Traditional Medicinal Use | Preparation and/or Administration |
---|---|---|---|
Hedychium sp. [23] | Myanmar [23] | Cuts and wounds [23] | Cataplasms of crushed leaves and rhizomes [23] |
Weak blood circulation and to accelerate postpartum recovery [23] | Decoction of rhizomes is drunk [23] | ||
Hedychium coccineum Buch.-Ham. ex Sm. | India [24] | Jaundice [24] | Decoction of rhizomes [24] |
H. coronarium | Brazil [25,26] | Anti-inflammatory and sedative [25] | Leaves infusion [25,26] |
Headache and fever [26] | |||
China [27] | Diabetes, headache, inflammation, rheumatism and skin diseases [27] | Rhizomes [27] | |
Colombia [28] | Snake bites [28] | Decoction of rhizomes [28] | |
India [16,29,30,31] | Stimulant tonic, carminative, headache, fever, diphtheria and diabetes [16,29,30] | Grinded rhizomes [16,29,30] | |
Abdominal pain [31] | 10 g of sun-dried rhizome powder mixed with cooked vegetables [31] | ||
Malaysia [32] | Indigestion and abdominal pain [32] | Boiled leaves with betel nut are eaten [32] | |
Mauritius [33] | Carminative, cordial, emmenagogue, diuretic and toothache [33] | Decoction of rhizomes [33] | |
Rubefacient [33] | Cataplasm of fresh rhizomes [33] | ||
Rheumatism [33] | Rub affected areas with paste from crushed rhizomes cooked in mustard oil with garlic and crushed camphor bark [33] | ||
Nicaragua [34] | Snake bites [34] | Decoction of rhizomes [34] | |
Peru [35] | Soothing and rheumatism [35] | Bath is prepared with the aerial part [35] | |
Thailand [16,36] | Sore and stiff joints [16] | Application of boiled leaves in affect areas [16] | |
Tonsillitis [16] | Decoction of the stem is gargled [16] | ||
Mosquito repellent [36] | Oil from the plant [36] | ||
Vietnam [37] | Diabetes, headache, inflammation, rheumatism and skin diseases [37] | Rhizomes [37] | |
Hedychium cylindricum Ridl. | Malaysia [38] | Antirheumatic, febrifuge, tonic, treatment of skin diseases and wounds [38] | Rhizomes [38] |
Hedychium ellipticum Buch.-Ham. ex Sm. | Nepal [39] | Fever [39] | Five teaspoons twice a day of rhizome juice [39] |
Hedychium flavescens Carey ex Roscoe | Madagascar [40] | Caries [40] | Squeezed leaves liquid is applied in cotton and then placed in the affected cavity [40] |
Mauritius [33] | Rheumatism [33] | Rub affected areas with paste from crushed rhizomes cooked in mustard oil [33] | |
Hedychium longicornutum Griff. ex Baker | Malaysia [41] | Intestinal worms and earache [41] | Macerated roots or the whole plant [41] |
Hedychium spicatum Sm. | India [21,42,43,44] | Bad breath, bronchitis, blood diseases, hiccough and vomiting [42] | 3 to 4 g of rhizome powder two times a day [42] |
Asthma, body pain, inflammation and laxative [43] | 1 g dried rhizome powder twice a day [43] | ||
Diarrhea, fever, liver problems and pain [21] | Spoonful of dried rhizome powder thrice a day [21] | ||
Expectorant, stimulant, stomachic, tonic and vasodilator [21] | Cup of the rhizome decoction twice a day [21] | ||
Snake bites [44] | |||
Nepal [39] | Indigestion and high fever [39] | Decoction of rhizome three to five teaspoons twice a day [39] |
Compound | Extract | Hedychium Source | Activity * |
---|---|---|---|
Hedyforrestin B (1) | Hexane [95] | H. gardnerianum rhizome [95]; Hedychium longipetalum X.Hu and N.Liu rhizome [96] | Antitumor against NCI-H187 cell line (IC50 = 3.10 µM; Vero cell line IC50 = 45.07 µM with SI of 14.5; Ellipticine IC50 = 1.79 µM) [95]; Anti-inflammatory by NO inhibition (IC50 = 20.60 µM **; MG132 # IC50 = 0.17 µM **) [96] |
Hedyforrestin C (2) | Dichloromethane [95]; Methanol [37] | H. gardnerianum rhizome [95]; H. coronarium rhizome [37]; H. longipetalum rhizome [96] | Antitumor against NCI-H187 cell line (IC50 = 2.46 µM; Vero cell line IC50 = 11.88 µM with SI of 4.8; Ellipticine IC50 = 1.79 µM) [95]; Anti-inflammatory by NO inhibition (IC50 = 8.33 µM **; MG132 # IC50 = 0.17 µM **) [96] |
Hedylongnoid A (3) | † | H. longipetalum rhizome [96] | Anti-inflammatory by NO inhibition (IC50 = 22.84 µM **; MG132 # IC50 = 0.17 µM **) [96] |
Hedylongnoid B (4) | † | H. longipetalum rhizome [96] | Anti-inflammatory by NO inhibition (IC50 = 16.79 µM **; MG132 # IC50 = 0.17 µM **) [96] |
Hedylongnoid C (5) | † | H. longipetalum rhizome [96] | Anti-inflammatory by NO inhibition (IC50 = 17.50 µM **; MG132 # IC50 = 0.17 µM **) [96] |
Yunnancoronarin A (6) | Chloroform [83]; Hexane [95] | H. gardnerianum rhizome [95]; H. spicatum rhizome [83]; H. longipetalum rhizome [96] | Antitumor against NCI-H187 cell line (IC50 = 36.78 µM; Vero cell line IC50 = 108.61 µM with SI of 2.9; ellipticine IC50 = 1.79 µM) [95]; Antitumor against Colo-205 cell line (IC50 = 90.35 ± 0.10 µM **) [83]; Antitumor against CHO cell line (IC50 = 59.55 ± 3.93 µM **) [83]; Anti-inflammatory by NO inhibition (IC50 = 1.86 µM **; MG132 # IC50 = 0.17 µM **) [96] |
Coronarin D (7) | Dichloromethane [97]; Ethanol [80]; Hexane [98]; Methanol [99] | H. coronarium rhizome [80,97,98,99] | Antitumor against S102 cell line (IC50 = 25.13 µM **) [98]; Antitumor against P388 cell line (IC50 = 4.40 µM **; Etoposide IC50 = 0.12 µM **) [97]; Antibacterial against B. cereus (MIC = 19.63 µM **; oxacillin MIC = 62.28 µM **) [100]; Antifungal against Cryptococcus albidus (MIC = 78.52 µM **; Amphotericin B MIC = 0.84 µM **) [100] |
Coronarin D ethyl ether (8) | Hexane [98] | H. coronarium rhizome [98] | Antitumor against HepG2 cell line (IC50 = 46.18 µM **) [98] |
Coronarin B (9) | Dichloromethane [97]; Hexane [98] | H. coronarium rhizome [97,98] | Antitumor against MOLT-3 cell line (IC50 = 1.32 µM **; Etoposide IC50 = 0.03 µM **) [97] |
Coronarin D acetate (10) | Dichloromethane [97] | H. coronarium rhizome [97] | Antitumor against P388 cell line (IC50 = 4.72 µM **; etoposide IC50 = 0.12 µM **) [97] |
Isocoronarin D (11) | Dichloromethane [97]; Ethanol [101]; Hexane [98] | H. coronarium rhizome [97,98,101] | Antitumor against P388 cell line (IC50 = 2.14 µM **; etoposide IC50 = 0.12 µM **) [97]; Antitumor against HepG2 cell line (IC50 = 54.7 ± 0.3 µM) [101] |
Benzoyl eugenol (12) | Ethanol [101] | H. coronarium rhizome [101] | Antitumor against HEK293 by NF-ĸB inhibition (IC50 = 32.5 ± 4.9 µM) [101] |
Ethoxycoronarin D (13) | Ethanol [101] | H. coronarium rhizome [101] | Cancer chemo preventive by COX-1 inhibition (IC50 = 3.8 ± 0.1 µM) [101] Antitumor against HEK293 by NF-ĸB inhibition (IC50 = 3.2 ± 0.3 µM) [101] |
Methoxy-coronarin D (14) | Ethanol [101] | H. coronarium rhizome [101] | Cancer chemo preventive by COX-1 inhibition (IC50 = 0.9 ± 0.0 µM) [101] Antitumor against HEK293 by NF-κB inhibition (IC50 = 7.2 ± 0.3 µM) [101] |
Hedychiumin (15) | Methanol [102] | H. coronarium aerial part [102] | Antitumor against P388D1 cell line (IC50 = 17.15 ± 1.92 µM **; doxorubicin IC50 = 0.74 ± 0.11 µM **) [102] |
Calcaratarin A (16) | Methanol [102] | H. coronarium aerial part [102] | Antitumor against P388D1 cell line (IC50 = 24.56 ± 1.92 µM **; doxorubicin IC50 = 0.74 ± 0.11 µM **) [102] |
Coronarin A (17) | Hexane [95]; Methanol [102] | H. gardnerianum rhizome [95]; H. coronarium aerial part [102] | Antitumor against NCI-H187 cell line (IC50 = 40.77 µM; Vero cell line IC50 = 150.45 µM with SI of 3.7; ellipticine IC50 = 1.79 µM) [95]; Antitumor against DLD-1 cell line (IC50= 41.61 ± 6.32 µM **; doxorubicin IC50 = 0.39 ± 0.07 µM **) [102] |
9-Hydroxy hedychenone (18) | Chloroform [83] | H. spicatum rhizome [83] | Antitumor against Colo-205 cell line (IC50 = 76.40 ± 0.03 µM **) [83]; Antitumor against CHO cell line (IC50 = 49.87 ± 0.29 µM **) [83] |
Hedychilactone B (19) | Chloroform [83] | H. spicatum rhizome [83] | Antitumor against Colo-205 cell line (IC50 = 86.55 ± 0.06 µM **) [83]; Antitumor against CHO cell line (IC50 = 60.94 ± 0.25 µM **) [83] |
Hedychilactone C (20) | Chloroform [83] | H. spicatum rhizome [83] | Antitumor against Colo-205 cell line (IC50 = 111.73 ± 0.09 µM **) [83]; Antitumor against CHO cell line (IC50 = 70.82 ± 0.24 µM **) [83] |
Hedychilactone D (21) | Chloroform [83] | H. spicatum rhizome [83] | Antitumor against Colo-205 cell line (IC50 = 36.41 ± 0.09 µM **) [83]; Antitumor against CHO cell line (IC50 = 23.27 ± 3.39 µM **) [83] |
Chrysin (22) | Chloroform [83] | H. spicatum rhizome [83] | Antitumor against Colo-205 cell line (IC50 = 117.25 ± 0.24 µM **) [83]; Antitumor against CHO cell line (IC50 = 83.94 ± 4.37 µM **) [83] |
Teptochrysin (23) | Chloroform [83] | H. spicatum rhizome [83] | Antitumor against Colo-205 cell line (IC50 = 122.63 ± 0.11 µM **) [83]; Antitumor against CHO cell line (IC50 = 110.86 ± 0.15 µM **) [83] |
Hedychin C (24) | Ethanol [103] | H. forrestii rhizome [103] | Antitumor against XWLC-05 cell line (IC50 = 53.6 µM) [103] |
Coronarin E (25) | Hexane [95] | H. gardnerianum rhizome [95] | Antitumor against NCI-H187 cell line (IC50 = 49.73 µM; Vero cell line IC50 = 164.19 µM with SI of 3.3; ellipticine IC50 = 1.79 µM) [95] |
Villosin (26) | Dichloromethane [95] | H. gardnerianum rhizome [95] | Antitumor against NCI-H187 cell line (IC50 = 0.40 µM; Vero cell line IC50 > 166.42 μM with SI > 416; ellipticine IC50 = 1.79 µM) [95] |
Yunnancoronarin B (27) | Hexane [95] | H. gardnerianum rhizome [95] | Antitumor against NCI-H187 cell line (IC50 = 44.57 µM; Vero cell line IC50 = 106.21 µM with SI of 2.4; ellipticine IC50 = 1.79 µM) [95] |
1-Hydroxyxanthone (28) | Acetone [104] | H. gardenerianum rhizome [104] | Anti-depressant by MAO-A inhibition (IC50 = 0.31 ± 0.05 µM) [105] |
Salicylic acid (29) | Acetone [104] | H. gardenerianum rhizome [104] | Anti-hemorrhagic (IC50 = 0.20 µM) [106] |
Compound | Activity * | Hedychium Source |
---|---|---|
1,8-Cineole (32) | Antifungal against C. albicans (MIC = 203 µM **; nystatin MIC = 135 µM **) [110]; Insecticide against Rhodnius prolixus (KT50 = 117.2 min for 100 µL dose) [111] | H. coronarium rhizome [16,112]; Hedychium flavescens Carey ex Rosc. rhizome [112]; Hedychium flavum Roxb rhizome [112]; H. gardnerianum rhizome [74]; H. gracile rhizome [73,112]; H. greenii rhizome [73]; H. larsenii rhizome [94]; H. spicatum rhizome [67,109,112] |
α-Pinene (33) | Anti-acetylcholinesterase (IC50 = 10.50 ± 0.51 µM **; ursolic acid IC50 = 0.416 ± 0.003 µM **) [50]; Anti-allergic (dose of 10 mg/kg on mouse) [113]; Antidiabetic (dose of 0.25 mL/kg on mouse) [114]; Anti-inflammatory (mouse ED50 = 0.039 mL/kg) [114]; Antimicrobial against Streptococcus pneumoniae (MIC = 5 µL/mL; gentamicin MIC = 21 µM **) [115]; Antitumor against A549 cell line (IC50 = 161.56 ± 12.85 µM ** [116] | H. coccineum (syn. Hedychium aurantiacum Roscoe) rhizome [112]; H. coronarium flower [117] and rhizome [16,112]; H. flavescens rhizome [112]; H. flavum rhizome [112]; H. gardnerianum flower [118], leaf [118] and rhizome [112]; H. greenii rhizome [73,112]; H. matthewii rhizome [65]; H. spicatum rhizome [109] |
β-Pinene (34) | Antimicrobial against S. pneumoniae (MIC = 20 µL/mL; gentamicin MIC = 21 µM **) [115]; Antitumor against HCT-8 cell line (IC50 = 176.9 ± 2.9 µM **) [119] | H. coccineum (syn. H. aurantiacum) rhizome [112]; H. coronarium flower [117] and rhizome [16,108,112]; H. ellipticum rhizome [112]; H. flavescens rhizome [112]; H. flavum rhizome [112]; H. gardnerianum flower [118], leaf [118] and rhizome [112]; H. gracile rhizome [73,112]; H. greenii rhizome [73]; H. larsenii rhizome [94]; H. matthewii rhizome [65]; H. spicatum rhizome [67,109]; Hedychium thyrisiforme Smith. rhizome [112] |
Linalool (35) | Antibacterial against Bacillus mycoides (10 µL cause 11 mm inhibition zone; 10 µL of penicillin = 12 mm inhibition zone) [120] Antidepressive (dose of 100 mg/kg on mouse) [121]; Anti-inflammatory (dose of 30 mg/kg on mouse) [122]; Antitumor against U937 cell line (IC50 = 2.59 µM; 5-FU IC50 = 4.86 µM) [123]; Fumigant against Tribolium confusum larvae (LC50 = 14.198 μL/L of air) [124]; Neuroprotective (100 μM reduced 30% OHSC cell death) [125] | H. coronarium flower [117] and rhizome [108]; H. flavum rhizome [112]; H. larsenii rhizome [94]; H. matthewii rhizome [65]; H. spicatum rhizome [67,109] |
Terpinen-4-ol (36) | Antibacterial against Burkholderia pyriocinia (10 µL cause 8 mm inhibition zone; 10 µL of penicillin cause 9 mm inhibition zone) [120]; Antifungal against Histoplasma capsulatum (MIC = 129.70 µM **; AMB MIC = 0.54 µM **) [126]; Antitumor against MCF-7 cell line (IC50= 18.02 µM **; doxorubicin IC50 = 1.29 µM **) [127] | H. ellipticum rhizome [112]; H. gracile rhizome [73,112]; H. larsenii rhizome [94]; H. matthewii rhizome [65]; H. thyrisiforme rhizome [112] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tavares, W.R.; Barreto, M.d.C.; Seca, A.M.L. Uncharted Source of Medicinal Products: The Case of the Hedychium Genus. Medicines 2020, 7, 23. https://doi.org/10.3390/medicines7050023
Tavares WR, Barreto MdC, Seca AML. Uncharted Source of Medicinal Products: The Case of the Hedychium Genus. Medicines. 2020; 7(5):23. https://doi.org/10.3390/medicines7050023
Chicago/Turabian StyleTavares, Wilson R., Maria do Carmo Barreto, and Ana M. L. Seca. 2020. "Uncharted Source of Medicinal Products: The Case of the Hedychium Genus" Medicines 7, no. 5: 23. https://doi.org/10.3390/medicines7050023
APA StyleTavares, W. R., Barreto, M. d. C., & Seca, A. M. L. (2020). Uncharted Source of Medicinal Products: The Case of the Hedychium Genus. Medicines, 7(5), 23. https://doi.org/10.3390/medicines7050023