Phenolic Compounds from the Aerial Parts of Blepharis linariifolia Pers. and Their Free Radical Scavenging and Enzyme Inhibitory Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedure
2.2. Plant Material
2.3. Chemicals
2.4. Extraction and Isolation
2.5. DPPH Free Radical Scavenging Activity
2.6. In Vitro Enzyme Inhibitory Activities
2.6.1. α-Glucosidase Inhibitory Activity
2.6.2. Pancreatic Lipase Inhibitory Activity
2.6.3. Tyrosinase Inhibitory Activity
2.6.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vijayalakshmi, S.; Kripa, K.G. Therapeutic uses of plants of genus Blepharis—A systematic review. Int. J. Pharma Bio Sci. 2016, 7, B236–B243. [Google Scholar]
- Quattrocchi, U. CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Eponyms, Synonyms, and Etymology; CRC Press: Boca Roston, FL, USA, 2012; p. 598. [Google Scholar]
- El Ghazali, G.E.B.; Bari, E.A.; Bashir, A.K.; Salih, A.M. Medicinal Plants of Sudan Part II. Medicinal Plants of Eastern Nuba Mountains; National Council for Research: Khartoum, Sudan, 1987. [Google Scholar]
- EL-Kamali, H.H. Ethnopharmacology of medicinal plants used in North Kordofan (Western Sudan). Ethnobot. Leafl. 2009, 13, 89–97. [Google Scholar]
- Doka, I.G.; Yagi, S.M. Ethnobotanical survey of medicinal plants in West Kordofan (Western Sudan). Ehnobot. Leafl. 2009, 13, 1409–1416. [Google Scholar]
- Sowemimo, A.; Onakoya, M.; Fageyinbo, M.S.; Fadoju, T. Studies on the anti-inflammatory and anti-nociceptive properties of Blepharis maderaspatensis leaves. Braz. J. Pharmacogn. 2013, 23, 830–835. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Sivakumar, V.; Darlinquine, S. Evaluation of wound healing activity of Ammannia baccifera and Blepharis maderaspatensis leaf extracts on rats. Braz. J. Pharmacogn. 2012, 22, 418–427. [Google Scholar] [CrossRef]
- Rajasekaran, A.; Sivakumar, V.; Darlinquine, S. Role of Blepharis maderaspatensis and Ammannia baccifera plant extracts on in vitro oxygen radical scavenging, secretion of gastric fluid and gastroprotection on ulcer induced rats. Pharm. Biol. 2012, 50, 1085–1095. [Google Scholar] [CrossRef]
- Neelambika, H.S.; Leelavathi, S. Comparative antioxidant activity of whole plant of Blepharis maderaspatensis (L.) heyne ex roth. and Blepharis molluginifolia pers. of Mysore district by DPPH method. Indo Am. J. Pharm. Res. 2015, 5, 1191–1196. [Google Scholar]
- Devarajan, N.; Ramalingam, S.; Subramaniam, S.M. Gas chromatography mass spectroscopy chromatogram and antimicrobial activity of leaf extracts of Blepharis maderaspatensis and Maesa indica. J. Herbs Spices Med. Plants 2015, 21, 267–282. [Google Scholar] [CrossRef]
- Baskar, A.A.; Al Numair, K.S.; Alsaif, M.A.; Ignacimuthu, S. In vitro antioxidant and antiproliferative potential of medicinal plants used in traditional Indian medicine to treat cancer. Redox Rep. 2012, 17, 145–156. [Google Scholar] [CrossRef]
- El-Shanawany, M.A.; Sayed, H.M.; Ibrahim, S.R.M.; Fayed, M.A.A. Stigmasterol tetracosanoate, a new stigmasterol ester from the Egyptian Blepharis ciliaris. Drug Res. 2014, 65, 347–353. [Google Scholar] [CrossRef]
- Mohamed, G.A.; Ibrahim, S.R.M.; Elkhayat, E.S.; Ross, S.A.; Sayed, H.M.; El-Moghazy, S.A.M.; El-Shanawany, M.A. Blepharisides A and B, new flavonol glycosides from Blepharis ciliaris growing in Saudi Arabia. Phytochem. Lett. 2015, 11, 177–182. [Google Scholar] [CrossRef]
- Sawadogo, W.R.; Meda, A.; Lamien, C.E.; Kiendrebeogo, M.; Guissou, I.P.; Nacoulma, O.G. Phenolic content and antioxidant activity of six Acanthaceae from Burkina Faso. J. Biol. Sci. 2006, 6, 249–252. [Google Scholar] [CrossRef]
- Elbashir, S.M.I.; Devkota, H.P.; Wada, M.; Kishimoto, N.; Moriuchi, M.; Shuto, T.; Misumi, S.; Kai, H.; Watanabe, T. Free radical scavenging, α-glucosidase inhibitory and lipase inhibitory activities of eighteen Sudanese medicinal plants. BMC Complement. Altern. Med. 2018, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dirar, A.I.; Alsaadi, D.H.M.; Wada, M.; Mohamed, M.A.; Watanabe, T.; Devkota, H.P. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- Osama, A.; Awadelkarim, S.; Ali, N.; Khalid, S.; Mohammed, S.; Hashim, N. Phytochemical composition and evaluation of antimicrobial activity of Blepharis linariifolia (Pers.) seeds. Asian J. Chem. Sci. 2017, 2, 1–6. [Google Scholar] [CrossRef]
- Devasagayam, T.P.A.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians India 2004, 52, 794–804. [Google Scholar]
- Gordon, M.H. Significance of dietary antioxidants for health. Int. J. Mol. Sci. 2012, 13, 173–179. [Google Scholar] [CrossRef]
- Indrianingsih, A.W.; Tachibana, S.; Itoh, K. In vitro evaluation of antioxidant and α-glucosidase inhibitory assay of several tropical and subtropical plants. Procedia Environ. Sci. 2015, 28, 639–648. [Google Scholar] [CrossRef]
- Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef]
- Oh, Y.S.; Bae, G.D.; Baek, D.J.; Park, E.Y.; Jun, H.S. Fatty acid-induced lipotoxicity in pancreatic beta-cells during development of type 2 diabetes. Front. Endocrinol. 2018, 9, 384. [Google Scholar] [CrossRef]
- Inthongkaew, P.; Chatsumpun, N.; Supasuteekul, C.; Kitisripanya, T.; Putalun, W.; Likhitwitayawuid, K.; Sritularak, B. α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from Dendrobium Formosum. Braz. J. Pharmacogn. 2017, 27, 480–487. [Google Scholar] [CrossRef]
- Ando, H.; Kondoh, H.; Ichihashi, M.; Hearing, V.J. Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase. J. Investig. Dermatol. 2007, 127, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, A.; Devkota, H.P.; Takano, A.; Masuda, K.; Nakane, T.; Basnet, P.; Skalko-Basnet, N. Screening of Nepalese crude drugs traditionally used to treat hyperpigmentation: In vitro tyrosinase inhibition. Int. J. Cosmet. Sci. 2008, 30, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, K.U.; Ali, A.S.; Ali, S.A.; Naaz, I. Microbial tyrosinases: Promising enzymes for pharmaceutical, food bioprocessing, and environmental industry. Biochem. Res. Int. 2014, 2014, 854687. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.H.; Solano, F.; Peñafiel, R.; Galindo, J.D.; Iborra, J.L.; Lozano, J.A. Comparative study of tyrosinases from different sources: Relationship between halide inhibition and the enzyme active site. Comp. Biochem. Physiol.—Part B Comp. Biochem. 1986, 83, 633–636. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef]
- Dirar, A.I.; Adhikari-Devkota, A.; Mahadi Hassan, M.; Wada, M.; Watanabe, T.; Devkota, H.P. Phenolic compounds as potent free radical scavenging and enzyme inhibitory components from the leaves of Guiera senegalensis. Nat. Prod. Commun. 2019, 14. [Google Scholar] [CrossRef]
- Shimamura, T.; Sumikura, Y.; Yamazaki, T.; Tada, A.; Kashiwagi, T.; Ishikawa, H.; Matsui, T.; Sugimoto, N.; Akiyama, H.; Ukeda, H. Applicability of the DPPH assay for evaluating the antioxidant capacity of food additives - inter-laboratory evaluation study. Anal. Sci. 2014, 30, 717–721. [Google Scholar] [CrossRef]
- Jabeen, B.; Riaz, N.; Saleem, M.; Naveed, M.A.; Ashraf, M.; Alam, U.; Rafiq, H.M.; Tareen, R.B.; Jabbar, A. Isolation of natural compounds from Phlomis stewartii showing α-glucosidase inhibitory activity. Phytochemistry 2013, 96, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Bitou, N.; Ninomiya, M.; Tsujita, T.; Okuda, H. Screening of lipase inhibitors from marine algae. Lipids 1999, 34, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Karasawa, H.; Miyase, T.; Fukushima, S. Studies on the constituents of Cistanchis Herba. III. Isolation and structures of new phenylpropanoid glycosides, Cistanosides A and B. Chem. Pharm. Bull. 1984, 32, 3009–3014. [Google Scholar] [CrossRef]
- Pereira, A.C.; Carvalho, H.W.P.; Silva, G.H.; Oliveira, D.F.; Figueiredo, H.C.P.; Cavalheiro, A.J.; Carvalho, D.A. Purification of an antibacterial compound from Lantana lilacina. Braz. J. Pharmacogn. 2008, 18, 204–208. [Google Scholar] [CrossRef]
- Huang, Z.; Dostal, L.; Rosazza, J.P.N. Mechanisms of ferulic acid conversions to vanillic acid and guaiacol by Rhodotorula rubra. J. Biol. Chem. 1993, 268, 23954–23958. [Google Scholar]
- da Silva, L.A.L.; Faqueti, L.G.; Reginatto, F.H.; dos Santos, A.D.C.; Barison, A.; Biavatti, M.W. Phytochemical analysis of Vernonanthura tweedieana and a validated UPLC-PDA method for the quantification of eriodictyol. Braz. J. Pharmacogn. 2015, 25, 375–381. [Google Scholar] [CrossRef]
- Rahman, W.; Ishratullah, K.; Wagner, H.; Seligmann, O.; Chari, V.M.; Österdahl, B.G. Prunin-6″-O-p-coumarate, a new acylated flavanone glycoside from Anacardium occidentale. Phytochemistry 1978, 17, 1064–1065. [Google Scholar] [CrossRef]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef]
- Sakurai, A.; Kato, T. A new glycoside, Kusaginin isolated from Clerodendron trichotomum. Bull. Chem. Soc. Jpn. 1983, 56, 1573–1574. [Google Scholar] [CrossRef] [Green Version]
- Ashour, M.A.-G. Isolation, HPLC/UV characterization and antioxidant activity of phenylethanoids from Blepharis edulis (Forssk.) Pers. growing in Egypt. Bull. Fac. Pharm. Cairo Univ. 2012, 50, 67–72. [Google Scholar] [CrossRef] [Green Version]
- El-Shanawany, M.A.; Sayed, H.M.; Ibrahim, S.R.M.; Fayed, M.A.A.; Radwan, M.M.; Ross, S.A. A new isoflavone from Blepharis ciliaris of an Egyptian origin. Med. Chem. Res. 2013, 22, 2346–2350. [Google Scholar] [CrossRef]
- Tanase, C.; Coșarcă, S.; Muntean, D.-L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashour, M.A.-G. New diacyl flavonoid derivatives from the Egyptian plant Blepharis edulis (Forssk.) Pers. Bull. Fac. Pharm. Cairo Univ. 2015, 53, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Tapas, A.; Sakarkar, D.; Kakde, R. Flavonoids as nutraceuticals: A review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef]
- Ahmad, V.U.; Burki, A.M.; Mahmood, I.; Smith, D.L. Chemical constituents of Blepharis sindica seeds. J. Chem. Soc. Pak. 1984, 6, 217–223. [Google Scholar]
- Harraz, F.M.; Pedersen, A.T.; Andersen, Ø.M.; Verotta, L.; Tatò, M. Acylated flavonoids from Blepharis ciliaris. Phytochemistry 1996, 43, 521–525. [Google Scholar] [CrossRef]
- Frum, Y.; Viljoen, A.M.; Van Heerden, F.R. Verbascoside and luteolin-5-o-β-d-glucoside isolated from Halleria lucida L. exhibit antagonistic anti-oxidant properties In Vitro. S. Afr. J. Bot. 2007, 73, 583–587. [Google Scholar] [CrossRef] [Green Version]
- Sheng, G.Q.; Zhang, J.R.; Pu, X.P.; Ma, J.; Li, C.L. Protective effect of verbascoside on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Eur. J. Pharmacol. 2002, 451, 119–124. [Google Scholar] [CrossRef]
- Sgarbossa, A.; Dal Bosco, M.; Pressi, G.; Cuzzocrea, S.; Dal Toso, R.; Menegazzi, M. Phenylpropanoid glycosides from plant cell cultures induce heme oxygenase 1 gene expression in a human keratinocyte cell line by affecting the balance of NRF2 and BACH1 transcription factors. Chem. Biol. Interact. 2012, 199, 87–95. [Google Scholar] [CrossRef]
- Georgiev, M.; Pastore, S.; Lulli, D.; Alipieva, K.; Kostyuk, V.; Potapovich, A.; Panetta, M.; Korkina, L. Verbascum xanthophoeniceum-derived phenylethanoid glycosides are potent inhibitors of inflammatory chemokines in dormant and interferon-gamma-stimulated human keratinocytes. J. Ethnopharmacol. 2012, 144, 754–760. [Google Scholar] [CrossRef]
- Butsat, S.; Siriamornpun, S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem. 2010, 119, 606–613. [Google Scholar] [CrossRef]
- Romanova, D.; Vachálkova, A.; Čipák, L.; Ovesná, Z.; Rauko, P. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma 2001, 48, 104–107. [Google Scholar] [PubMed]
- Harikrishna, D.; Appa Rao, A.V.N.; Prabhakar, M.C. Pharmacological investigation of prunin-6’’-O-p-coumarate: A flavonoid glycoside. Indian J. Pharmacol. 2004, 36, 244–245. [Google Scholar]
- Baron, A.D. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pract. 1998, 40, S51–S55. [Google Scholar] [CrossRef]
- Van De Laar, F.A.; Lucassen, P.L.; Akkermans, R.P.; Van De Lisdonk, E.H.; Rutten, G.E.; Van Weel, C. α-Glucosidase inhibitors for patients with type 2 diabetes: Results from a Cochrane systematic review and meta-analysis. Diabetes Care 2005, 28, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Ren, B.; Qin, W.; Wu, F.; Wang, S.; Pan, C.; Wang, L.; Zeng, B.; Ma, S.; Liang, J. Apigenin and naringenin regulate glucose and lipid metabolism, and ameliorate vascular dysfunction in type 2 diabetic rats. Eur. J. Pharmacol. 2016, 773, 13–23. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Cheng, N.; Yi, W.B.; Peng, S.M.; Zou, X.Q. Synthesis, nitric oxide release, and α-glucosidase inhibition of nitric oxide donating apigenin and chrysin derivatives. Bioorg. Med. Chem. 2014, 22, 1515–1521. [Google Scholar] [CrossRef]
- Shay, J.; Elbaz, H.A.; Lee, I.; Zielske, S.P.; Malek, M.H.; Hüttemann, M. Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev. 2015, 2015, 181260. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Zhang, G.; Lin, S.; Gong, D. Inhibitory mechanism of apigenin on α-glucosidase and synergy analysis of flavonoids. J. Agric. Food Chem. 2016, 64, 6939–6949. [Google Scholar] [CrossRef]
- Aparna, P.; Tiwari, A.K.; Srinivas, P.V.; Ali, A.Z.; Anuradha, V.; Rao, J.M. Dolichandroside A, a new α-glucosidase inhibitor and DPPH free-radical scavenger from Dolichandrone falcata seem. Phyther. Res. 2009, 23, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Mbaze, L.M.A.; Poumale, H.M.P.; Wansi, J.D.; Lado, J.A.; Khan, S.N.; Iqbal, M.C.; Ngadjui, B.T.; Laatsch, H. α-Glucosidase inhibitory pentacyclic triterpenes from the stem bark of Fagara tessmannii (Rutaceae). Phytochemistry 2007, 68, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.; Dai, H.; Pan, S.; Wang, H.; Hu, Y.; Ma, W. Isolation and characterization of an α-glucosidase inhibitor from Musa spp. (Baxijiao) flowers. Molecules 2014, 19, 10563–10573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez, G.; Zamilpa, A.; Zavala, M.; Perez, J.; Morales, D.; Tortoriello, J. Chrysoeriol and other polyphenols from Tecoma stans with lipase inhibitory activity. J. Ethnopharmacol. 2016, 185, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Fujimori, K. Antiadipogenic effect of dietary apigenin through activation of AMPK in 3T3-L1 cells. J. Agric. Food Chem. 2011, 59, 13346–13352. [Google Scholar] [CrossRef]
- Jo, Y.H.; Kim, S.B.; Ahn, J.H.; Liu, Q.; Hwang, B.Y.; Lee, M.K. Inhibitory activity of benzophenones from Anemarrhena asphodeloides on pancreatic lipase. Nat. Prod. Commun. 2013, 8, 481–483. [Google Scholar] [CrossRef] [Green Version]
- Ha, T.J.; Hwang, S.W.; Jung, H.J.; Park, K.H.; Yang, M.S. Apigenin, tyrosinase inhibitor isolated from the flowers of Hemisteptia lyrata Bunge. Agric. Chem. Biotechnol. 2002, 45, 170–172. [Google Scholar]
- Son, Y.O.; Lee, S.A.; Kim, S.S.; Jang, Y.S.; Chun, J.C.; Lee, J.C. Acteoside inhibits melanogenesis in B16F10 cells through ERK activation and tyrosinase down-regulation. J. Pharm. Pharmacol. 2011, 63, 1309–1319. [Google Scholar] [CrossRef]
- Park, S.H.; Oh, T.H.; Kim, S.S.; Kim, J.E.; Lee, S.J.; Lee, N.H. Constituents with tyrosinase inhibitory activities from branches of Ficus erecta var. sieboldii King. J. Enzym. Inhib. Med. Chem. 2012, 27, 390–394. [Google Scholar] [CrossRef] [Green Version]
- Guillen Quispe, Y.N.; Hwang, S.H.; Wang, Z.; Lim, S.S. Screening of Peruvian medicinal plants for tyrosinase inhibitory properties: Identification of tyrosinase inhibitors in Hypericum laricifolium juss. Molecules 2017, 22, 402. [Google Scholar] [CrossRef] [Green Version]
- Bandeira, S.d.M.; da Fonseca, L.J.S.; Guedes, G.d.S.; Rabelo, L.A.; Goulart, M.O.F.; Vasconcelos, S.M.L. Oxidative stress as an underlying contributor in the development of chronic complications in diabetes mellitus. Int. J. Mol. Sci. 2013, 14, 3265–3284. [Google Scholar] [CrossRef] [PubMed]
Position | δC | δH, mult. (J in Hz) | Position | δC | δH, mult. (J in Hz) |
---|---|---|---|---|---|
1 | 131.5 | 1″ | 127.7 | ||
2 | 116.5 | 6.69, d (2.0) | 2″ | 114.7 | 7.05, d (2.0) |
3 | 144.7 | 3″ | 149.8 | ||
4 | 146.1 | 4″ | 146.8 | ||
5 | 117.1 | 6.67, d (8.0) | 5″ | 116.3 | 6.77, d (8.2) |
6 | 121.3 | 6.56, dd (2.0, 8.0) | 6″ | 123.2 | 6.95, dd (2.0, 8.3) |
7 | 36.6 | 2.79, m | 7″ | 148.0 | 7.59, d (15.8) |
8 | 72.4 | 4.05, dd (8.7, 16.3) 3.72, dd (8.2,16.3) | 8″ | 115.3 | 6.27, d (15.8) |
1′ | 104.2 | 4.37, d (8.0) | 9″ | 168.3 | |
2′ | 76.2 | 3.39, dd (8.0, 9.1) | 1′′′ | 103.1 | 5.18, d (1.6) |
3′ | 81.7 | 3.81, t (9.2) | 2′′′ | 72.3 | 3.91, m |
4′ | 70.4 | 4.91, t (9.5) | 3′′′ | 72.1 | 3.55, m |
5′ | 76.1 | 3.53, m | 4′′′ | 73.8 | 3.35, m |
6′ | 62.4 | 3.61, m | 5′′′ | 70.6 | 3.52, m |
6′′′ | 18.5 | 1.09, d (6.2) |
Position | Vanillic Acid (2) | Apigenin (3) | ||
---|---|---|---|---|
δC | δH, mult. (J in Hz) | δC | δH, mult. (J in Hz) | |
1 | 127.9 | - | ||
2 | 114.0 | 7.51, brs | 166.3 | |
3 | 149.6 | 103.9 | 6.59, s | |
4 | 147.8 | 183.9 | ||
5 | 115.6 | 6.87, d (8.2) | 163.2 | |
6 | 124.4 | 7.45, brd (8.2) | 100.1 | 6.21, d (2.1) |
7 | 174.5 | 166.0 | ||
8 | 95.0 | 6.45, d (2.1) | ||
9 | 159.4 | |||
10 | 105.3 | |||
1′ | 123.3 | |||
2′ and 6′ | 129.4 | 7.85, d (8.8) | ||
3′ and 5′ | 117.0 | 6.93, d (8.8) | ||
4′ | 162.7 | |||
OCH3 | 56.7 | 3.86, s |
Position | δC | δH, mult. (J in Hz) | Position | δC | δH, mult. (J in Hz) |
---|---|---|---|---|---|
2 | 79.7 | 5.29, dd (3.0, 12.6) | 1″ | 100.5 | 4.98, d (7.4) |
3 | 43.6 | 2.72–3.10, m | 2″ | 73.8 | 3.38–4.58 |
4 | 197.6 | 3″ | 77.2 | 3.38–4.58 | |
5 | 164.3 | 4″ | 71.0 | 3.38–4.58 | |
6 | 96.8 | 6.18, d (2.2) | 5″ | 75.1 | 3.38–4.58 |
7 | 166.2 | 6″ | 64.2 | 4.32, m | |
8 | 96.7 | 6.25, d (2.2) | 1′′′ | 126.6 | |
9 | 163.6 | 2′′′ and 6′′′ | 130.7 | 7.38, d (8.7) | |
10 | 104.6 | 3′′′ and 5′′′ | 116.4 | 6.81, d (8.7) | |
1′ | 129.9 | 4′′′ | 160.4 | ||
2′ and 6′ | 128.4 | 7.26, d (8.5) | 7′′′ | 146.5 | 7.60, d (15.9) |
3′ and 5′ | 116.1 | 6.84, d (8.5) | 8′′′ | 114.4 | 6.32 d (15.9) |
4 | 158.2 | 9′′′ | 168.7 |
Compounds | DPPH Free Radical Scavenging Activity | Enzyme Inhibitory Activities | ||
---|---|---|---|---|
α-Glucosidase | Lipase | Tyrosinase | ||
Verbascoside (1) | 22.03 ± 0.04 | NA 1 | NA 1 | 97.44 ± 2.48 |
Vanillic acid (2) | 217.02 ± 3.01 | NA 1 | NA 1 | NA 1 |
Apigenin (3) | 386.29 ± 3.42 | 34.73 ± 1.78 | 12.46 ± 2.04 | 23.14 ± 1.83 |
6″-O-p-Coumaroylprunin (4) | 186.24 ± 1.19 | 46.30 ± 2.92 | 2.25 ± 0.17 | 136.12 ± 0.78 |
Positive controls | 39.07 ± 0.31 (Trolox) | 565.56 ± 1.54 (Acarbose) | 18.40 ± 1.71 (Cetilistat) | 435.98 ± 3.71 (Arbutin) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirar, A.I.; Wada, M.; Watanabe, T.; Devkota, H.P. Phenolic Compounds from the Aerial Parts of Blepharis linariifolia Pers. and Their Free Radical Scavenging and Enzyme Inhibitory Activities. Medicines 2019, 6, 113. https://doi.org/10.3390/medicines6040113
Dirar AI, Wada M, Watanabe T, Devkota HP. Phenolic Compounds from the Aerial Parts of Blepharis linariifolia Pers. and Their Free Radical Scavenging and Enzyme Inhibitory Activities. Medicines. 2019; 6(4):113. https://doi.org/10.3390/medicines6040113
Chicago/Turabian StyleDirar, Amina Ibrahim, Mikiyo Wada, Takashi Watanabe, and Hari Prasad Devkota. 2019. "Phenolic Compounds from the Aerial Parts of Blepharis linariifolia Pers. and Their Free Radical Scavenging and Enzyme Inhibitory Activities" Medicines 6, no. 4: 113. https://doi.org/10.3390/medicines6040113
APA StyleDirar, A. I., Wada, M., Watanabe, T., & Devkota, H. P. (2019). Phenolic Compounds from the Aerial Parts of Blepharis linariifolia Pers. and Their Free Radical Scavenging and Enzyme Inhibitory Activities. Medicines, 6(4), 113. https://doi.org/10.3390/medicines6040113