Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Designs
2.3. Quantitative Real-Time Polymerase Chain Reaction (RT-PCR)
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Analysis of Ion Channels at the Skin by RT-PCR
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Momose, A.; Yabe, M.; Chiba, S.; Kumakawa, K.; Shiraiwa, Y.; Kusumi, T.; Mizukami, H. What are pruritogens of chronic kidney disease associated pruritus. Acta Derm. Venereol. 2017, 97, 1048. [Google Scholar]
- Wang, C.P.; Lu, Y.C.; Tsai, I.T.; Tang, W.H.; Hsu, C.C.; Hung, W.C.; Yu, T.H.; Chen, S.C.; Chung, F.M.; Lee, Y.J.; et al. Increased levels of total p-cresylsulfate are associated with pruritus in patients with chronic kidney disease. Dermatology 2016, 232, 363–370. [Google Scholar] [CrossRef]
- McQueen, D.S.; Noble, M.A.; Bond, S.M. Endothelin-1 activates ETA receptors to cause reflex scratching in BALB/c mice. Br. J. Pharmacol. 2007, 151, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, A.; Gwozdzinski, L.; Hikisz, P.; Gwozdzinski, K. Indoxyl sulfate generates free radicals, decreases antioxidant defense, and lead to damage to mononuclear blood cells. Chem. Res. Toxicol. 2018, 31, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Miyamoto, Y.; Honda, D.; Tanaka, H.; Wu, Q.; Endo, M.; Noguchi, T.; Kadowaki, D.; Ishima, Y.; Kotani, S.; et al. p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 2013, 83, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, N.; Kurokawa, T.; Mori, Y. Sensing of redox status by TRP channels. Cell Calcium 2016, 60, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Odorovic, S.M.; Jevtovic-Todorovic, V.; Meyenburg, A.; Mennerick, S.; Perez-Reyes, E.; Romano, C.; Olney, J.W.; Zorumski, C.F. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Neuron 2001, 31, 75–85. [Google Scholar] [CrossRef]
- Kimata, N.; Fuller, D.S.; Saitoh, A.; Akizawa, T.; Fukuhara, S.; Pisoni, R.L.; Robinson, B.M.; Akiba, T. Pruritus in hemodialysis patients: Results from the Japanese Dialysis Outcomes and Practive Patterns Study (JDOPPS). Hemodial. Int. 2014, 18, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Trantoulas, C.; McMahon, S.B. Opening paths to novel analgesics: The role of potassium channels in chronic pain. Trends Neurosci. 2014, 37, 146–158. [Google Scholar] [CrossRef]
- Benarroch, E.E. Acid-sensing cation channels. Neurology 2014, 82, 628–635. [Google Scholar] [CrossRef]
- Mizukami, H.; Mi, Y.; Wada, R.; Kono, M.; Yamashita, T.; Liu, Y.; Werth, N.; Sandhoff, R.; Proia, R.L. Systemic inflammation in glucocerebrosidase-deficient mice with minimal glucosylceramide storage. J. Clin. Investig. 2002, 109, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Geppetti, P.; Veldhuis, N.A.; Lieu, T.; Bunnett, N.W. G protein-coupled receptors: Dynamic machines for signaling pain and itch. Neuron 2015, 88, 635–649. [Google Scholar] [CrossRef] [PubMed]
- Linley, J.E.; Rose, K.; Ooi, L.; Gamper, N. Understanding inflammatory pain. Pflug. Arch. 2010, 459, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Waxman, S.G.; Zamponi, G.W. Regulating excitability of peripheral afferents. Nat. Neurosci. 2014, 17, 153–163. [Google Scholar] [CrossRef]
- Rose, K.E.; Lunardi, N.; Boscolo, A.; Dong, X.; Erisir, A.; Jevtovic-Todorovic, V.; Todorovic, S.M. Immunohistological demonstrationof Cav3.2 T-type voltage-gated calcium channel expression in soma of dorsal ganglion neurons and peripheral axons of rat and mouse. Neuroscience 2013, 250, 263–274. [Google Scholar] [CrossRef]
- Huc, S.; Monteil, A.; Bidaud, I.; Barbara, G.; Chemin, J.; Lory, P. Regulation of T-type calcium channels. Biochim. Biophys. Acta 2009, 1793, 947–952. [Google Scholar] [CrossRef]
- Chemin, J.; Traboulsie, A.; Lory, P. Molecular pathways underlying the modulation of T-type calcium channels by neurotransmitters and hormones. Cell Calcium 2006, 40, 121–134. [Google Scholar] [CrossRef]
- Heyer, G.; Vogelgsang, M.; Hornstein, O.P. Acethylcholine is an inducer of itching in patients with atopic eczema. J. Dermatol. 1997, 24, 621–625. [Google Scholar] [CrossRef]
- Kang, H.W.; Vitko, I.; Lee, S.S.; Perez-Reyes, E.; Lee, J.H. Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels. J. Biol. Chem. 2010, 285, 3271–3281. [Google Scholar] [CrossRef]
- Mathie, A.; Sutton, G.L.; Clarke, C.E.; Veale, E.L. Zinc and copper. Pharmacol. Ther. 2006, 111, 567–583. [Google Scholar] [CrossRef]
- Begum, R.; Belury, M.A.; Burgess, J.R.; Peck, L.W. Supplementation with n-3 and n-6 polyunsaturated fatty acids. J. Ren. Nutr. 2004, 14, 233–241. [Google Scholar] [CrossRef]
- Zampoli, G.W.; Lewis, R.J.; Todorovic, S.M.; Arneric, S.P.; Snutch, T.P. Role of voltage-gated calcium channels in ascending pain pathways. Brain Res. Rev. 2009, 60, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Hille, B. (Ed.) The superfamily of voltage-gated channels. In Ion Channels of Excitable Membranes, 3rd ed.; Sinauer Press: Sunderland, MA, USA, 2001; pp. 61–92. [Google Scholar]
- Renganathan, M.; Cummins, T.R.; Waxman, S.G. Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 2001, 86, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Toth, B.I.; Szallasi, A.; Biro, T. Transient receptor potential channels and itch: How deep should we scratch? Handb. Exp. Pharmacol. 2015, 226, 89–133. [Google Scholar] [PubMed]
- Taberner, F.J.; Fernandez-Ballester, G.; Fernandez-Carvajal, A.; Ferrer-Montiel, A. TRP channels interaction with lipids and its implications in disease. Biochim. Biophys. Acta 2015, 1848, 1818–1827. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, N.A.; Poole, D.P.; Grace, M.; Mclntyre, P.; Bunnett, N.W. The G protein-coupled receptor-transient receptor potential channel axis: Molecular insights for targeting disorders of sensation and inflammation. Pharmacol. Rev. 2015, 67, 36–73. [Google Scholar] [CrossRef] [PubMed]
- Khomula, E.V.; Viatchenko-Karpinski, V.Y.; Borisyuk, A.L.; Duzhyy, D.E.; Belan, P.V.; Voitenko, N.V. Specific functioning of Cav3.2 T-type calcium and TRPV1 channels under different types of STZ-diabetic neuropathy. Biochim. Biophys. Acta 2013, 1832, 636–649. [Google Scholar] [CrossRef]
- Wilson, S.R.; Gerhold, K.A.; Bifolck-Fisher, A.; Liu, Q.; Patel, K.N.; Dong, X.; Bautista, D.M. TRPA1 is required for histamine-independent, Mas-related g protein-coupled receptor-mediated itch. Nat. Neurosci. 2011, 14, 595–602. [Google Scholar] [CrossRef]
- Hsu, C.C.; Kin, R.L.; Lee, L.Y.; Lin, Y.S. Hydrogen sulfade induces hypersensitivity of rat capsaicin-sensitive lung vagal neurons. Am. J. Physiol. Regul. Integr Comp. Physiol. 2013, 305, 769–779. [Google Scholar] [CrossRef]
- Benarroch, E.E. Anoctamins (TMEM16 proteins). Neurology 2017, 89, 722–729. [Google Scholar] [CrossRef]
- Sun, X.; Gu, X.Q.; Haddad, G.G. Calcium influx via L- and N-type calcium channels activates a transient large-conductance Ca2+-activated K+ current in mouse neocortical pyramidal neurons. J. Neurosci. 2003, 23, 3639–3648. [Google Scholar] [CrossRef] [PubMed]
- Pedemonte, N.; Galietta, L.J.V. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 2014, 94, 419–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hees, J.; Gybels, J. C nociceptor activity in human nerve during painful and non painful skin stimulation. J. Neurosurg. Psychiatry 1981, 44, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.Y.; Chen, W.; Cui, S.; Liao, F.F.; Yi, M.; Liu, F.Y.; Wan, Y. Upregulation of Cav3.2 T-type calcium channels in adjacent intact L4 dorsal root ganglion neurons in neuropathic pain rats with L5 spinal nerve ligation. Neurosci. Res. 2019, 142, 30–37. [Google Scholar] [CrossRef]
Score (Severity) | Daytime Symptoms | Nighttime Symptoms |
---|---|---|
4 (severe) | Intolerable itching, worsened instead of relieved by scratching. Cannot focus on work or study | Can hardly sleep because of itching. Scratching all the time, but itching intensifies with scratching |
3 (moderate) | Scratching even in the presence of others. Irritation as a result of itching, continuous scratching | Wake up because of itching. Can fall asleep again after scratching, but continue to scratch unconsciously while sleeping |
2 (mild) | Itch sensation is relieved by light, occasional scratching. Not too disturbing | Feel somewhat itchy, which is relieved by scratching. Do not wake up because of itch sensations |
1 (slight) | Feel itchy sometimes, but tolerable without scratching | Feel slightly itchy when going to sleep, but do not need to scratch. Sleeping well |
0 (no symptoms) | Hardly feel itchy or do not feel itchy at all | Hardly feel itchy or do not feel itchy at all |
Gene Name | Assay ID |
---|---|
ASIC1(acid sensing ion channel subunit 1) | Hs00952807_m1 |
Anoctamin 1 | Hs00216121_m1 |
CACNA 1B (Cav2.2) | Hs04996252_m1 |
CACNA1H (Cav3.2) | Hs01103527_m1 |
KCNA4 (Kv1.4) | Hs00937357_s1 |
KCNMA1 (BKCa) | Hs01119504_m1 |
SCN10A (Nav1.8) | Hs01045151_m1 |
TRPA1 | Hs00175798_m1 |
TRPV1 | Hs00218912_m1 |
beta-2-microglobulin | Hs00187842_m1 |
Characteristic | Non-Pruritus (n = 12) | Pruritus (n = 11) | p Value |
---|---|---|---|
Degree of pruritus | none, slight | mild, moderate, severe | |
Gender (F/M) | 4/8 | 4/7 | >0.05 |
Age (y.o.) | 68 ± 10 | 68 ± 10 | >0.05 |
Original disease (DM/CGN/PCK/unknown) | 7/1/2/2 | 9/1/0/1 | >0.05 |
HBV/HCV (n) | 0/1 | 0/0 | >0.05 |
Duration of HD (days) | 23 (0–12779) | 9 (0–5318) | >0.05 |
Albumin (d/dL) | 3.2 ± 0.6 | 3.3 ± 0.4 | >0.05 |
Corrected Ca (mg/dL) | 8.8 ± 1.1 | 8.9 ± 0.6 | >0.05 |
iP (mg/dl) | 5.0 ± 1.8 | 5.7 ± 1.3 | >0.05 |
i-PTH (pg/mL) | 219 ± 126 | 233 ± 135 | >0.05 |
hsCRP (mg/dL) | 0.17 (0.02–1.44) | 0.32 (0.04–8.00) | >0.05 |
Ferritin (ng/mL) | 119 ± 84 | 130 ± 59 | >0.05 |
Anti-pruritic therapy (nalfurafine, urea, predonisolone, crotamiton, diphenhydramine) | 7 (58%) | 3 (27%) | >0.05 |
Gene Name | Non-Pruritus | Pruritus | p-Value | |
---|---|---|---|---|
Cav3.2 | CACNA 1H | 0.948 (0.660–1.809) (n = 6) | 2.490 (0.910–4.993) (n = 6) | 0.039 |
Cav2.2 | CACNA 1B | 1.344 (0.038–19.186) (n = 5) | 0.089 (0.066–0.977) (n = 3) | >0.05 |
Anoctamin1 | TMEM 16A | 1.094 (0.653–1.517) (n = 10) | 1.528 (0.819–6.733) (n = 11) | 0.009 |
ASIC1 | 0.796 (0.505–3.000) (n = 8) | 2.962 (0.334–14.189) (n = 7) | >0.05 | |
Kv1.4 | KCNA4 | No date | No date | |
Na1.8 | SCN10A | No date | No date | |
TRPA1 | No date | No date | ||
TRPV1 | 1.013 (0.804–1.223) (n = 3) | 0.394 (0.256–0.463) (n = 3) | 0.048 | |
KCa1.1 (BKCa) | KCNMA1 | 0.911 (0.526–1.685) (n = 7) | 2.657 (0.664–4.042) (n = 7) | 0.020 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Momose, A.; Yabe, M.; Chiba, S.; Kumakawa, K.; Shiraiwa, Y.; Mizukami, H. Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus. Medicines 2019, 6, 110. https://doi.org/10.3390/medicines6040110
Momose A, Yabe M, Chiba S, Kumakawa K, Shiraiwa Y, Mizukami H. Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus. Medicines. 2019; 6(4):110. https://doi.org/10.3390/medicines6040110
Chicago/Turabian StyleMomose, Akishi, Micihihiro Yabe, Shigetoshi Chiba, Kenjirou Kumakawa, Yasuo Shiraiwa, and Hiroki Mizukami. 2019. "Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus" Medicines 6, no. 4: 110. https://doi.org/10.3390/medicines6040110
APA StyleMomose, A., Yabe, M., Chiba, S., Kumakawa, K., Shiraiwa, Y., & Mizukami, H. (2019). Role of Dysregulated Ion Channels in Sensory Neurons in Chronic Kidney Disease-Associated Pruritus. Medicines, 6(4), 110. https://doi.org/10.3390/medicines6040110